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CHAPTER 2 
On Unconventional Computing for Sound and Music 
 
Eduardo R. Miranda, Alexis Kirke, Edward Braund and Aurélien Antoine 
 
Abstract 
Advances in technology have had a significant impact on the way in which we produce 
and consume music. The music industry is most likely to continue progressing in 
tandem with the evolution of electronics and computing technology. Despite the 
incredible power of today’s computers, it is commonly acknowledged that computing 
technology is bound to progress beyond today’s conventional models. Researchers 
working in the relatively new field of Unconventional Computing (UC) are investigating 
a number of alternative approaches to develop new types of computers, such as 
harnessing biological media to implement new kinds of processors. This chapter 
introduces the field of UC for sound and music, focusing on the work developed at 
Plymouth University’s Interdisciplinary Centre for Computer Music Research (ICCMR) 
in the UK. From musical experiments with Cellular Automata modelling and in vitro 
neural networks, to quantum computing and bio-processing, this chapter introduces the 
substantial body of scientific and artistic work developed at ICCMR. Such work has 
paved the way for on-going research towards the development of robust general-
purpose bio-processing components, referred to as biomemristors, and interactive 
musical biocomputers. 
 
2.1 Introduction  
 
Originally, the term ‘computer’ referred to a person or groups of people who followed 
sets of rules to solve mathematical or logic based problems. It was not until the 
beginning of the 20th century that it began to refer to a machine that performs such 
tasks. In the 1930s Alan Turing formalised the behaviour of these machines to create a 
theoretical model of a computer: the Turing Machine (Turing 1936). Shortly after this, in 
the 1940s John von Neumann developed a stored-program computing architecture 
(Aspray 1990). Whereas a Turing Machine is a theoretical machine invented to explore 
the domain of computable problems mathematically, von Neumann’s architecture is a 
scheme for building actual computing devices. These two seminal works are considered 
the precursors of today’s commercial computers, with their underlying concepts 
remaining relatively unchanged. However, we should note that the idea of developing 
programmable calculating machines had existed before Turing and von Neumann’s 
works. Notable examples are Charles Babbage’s various attempts at building 
mechanical calculating engines in the early 1800s (Swade 1991). 
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During the past 80 years or so, what we consider to be conventional computation has 
advanced at a rapid speed. Yet, despite the incredible power of today’s computers, it is 
commonly acknowledged that computing technology is bound to progress beyond 
today’s conventional models. For instance, D-Wave Systems, in Canada, has recently 
started to sell the world’s first commercial quantum computer. This technology, 
however, is unaffordable for the time being and it is likely to remain so for a while.  
 
Researchers working in the relatively new field of Unconventional Computing (UC) are 
developing a number of alternative approaches for implementing new processing 
devices; these include harnessing chemical and biological media, and understanding 
the immense parallelism and non-linearity of physical systems. Notable experiments 
have been developed to demonstrate the feasibility of building computers using 
reaction-diffusion chemical processors (Adamatzky et al. 2003) and biomolecular 
processors exploring the self-assembly properties of DNA (Shu et al. 2015). The 
rationale here is that natural agents (biological, chemical, etc.) would become 
components of the design rather than sources of inspiration to implement abstract 
models for software simulation. For instance, instead of modelling the functioning of 
neuronal networks for implementing machine learning algorithms, the UC approach is 
looking into harnessing networks of real brain cells to implement such algorithms. 
Please refer to Chapter 1 of this volume for a comprehensive introduction to the field of 
UC. 
 
With respect to music, computers and music technology have developed almost in 
tandem. Back in the late 1940s, scientists of Australia’s Council for Scientific and 
Industrial Research (CSIR) installed a loudspeaker on the CSIR Mk1 computer, which 
was one of the first four or five electronic computers built in the world at the time. 
Programmers would use the loudspeaker to play a sound at the end of their program to 
notify the operator that the machine had halted. Not surprisingly, a mathematician with 
a musical upbringing, Geoff Hill, had the brilliant idea of programming this computer to 
play back an Australian folk tune (Doornbusch 2004). This is allegedly the first ever 
piece of computer music. Since this early interdisciplinary endeavour, advances in 
Computer Science have had a significant impact on the way music and audio media is 
produced and consumed. Therefore, it is likely that future developments in Computer 
Science will continue to impact the music industry.  
 
In Computer Music, there is a tradition of experimenting with emerging technologies, 
but until very recently, developments put forward by the field of UC have been left 
largely unexploited. This is most probably so due to a myriad of constraints, including 
the field’s heavy theoretical nature, and the costly investment required to develop a 
laboratory and hire specially trained personnel to build prototypes and conduct 
experiments. Nevertheless, research into unconventional modes of computation has 
been building momentum and the accessibility of prototypes for the computer music 
community has been widening. This increased accessibility has enabled computer 
musicians to begin exploring the potential of emerging UC paradigms. For instance, 
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Miranda and Kirke have recently composed pieces of music using respectively a 
bespoke biocomputer (introduced below) and the D-Wave machine (see Chapter 5). 
 
In the meantime, and given the abovementioned constraints, a realistic approach to 
initiate research into UC for sound and music is to work with modelling. The notion of 
simulating aspects of UC on conventional digital computers may sound preposterous, 
but as we will demonstrate below, it is a sensible and effective approach to get started. 
After all, as Susan Stepney discussed in Chapter 1, as well as developing hardware, 
UC research also involves the development of non-classical algorithms inspired by the 
way physical and biological processes work. 
 
 
2.2 Olivine Trees: Musical Experiments with Cellular Automata 
 
Cellular Automata (CA) modelling is a valuable tool to simulate aspects of biological, 
chemical and physical systems, which have been explored in UC. A typical example is 
reaction-diffusion chemical reactions (Adamatzky et al. 2003). “In the strict sense of the 
term, reaction-diffusion systems are systems involving constituents locally transformed 
into each other by chemical reactions and transported in space by diffusion. They arise, 
quite naturally, in chemistry and chemical engineering but also serve as a reference for 
the study of a wide range of phenomena encountered beyond the strict realm of 
chemical science such as environmental and life sciences.” (Nicolis and De Wit 2007). 
 
Back in 1992, Miranda developed a CA model of a reaction-diffusion system to 
implement a sound synthesiser on a Connection CM-200 parallel computer at 
Edinburgh Parallel Computing Centre (Miranda et al. 1992; Miranda 1995).  
 
A cellular automaton is normally implemented on a computer as an array (one-
dimensional CA) or as grid (two-dimensional CA) of cells. Every cell can exist in a 
defined quantity of states, which are normally represented as integer numbers and 
displayed on the computer screen by colours. To enable the model to evolve, transition 
rules are applied to the cells informing them to change state according to state of their 
neighbourhood; the changes take place synchronously to all cells with the beat of an 
imaginary clock. Typically these rules remain the same throughout the model, but this 
is not necessarily the case. Initially, at time t = 0, each cell is assigned its starting state. 
The model can then produce a new generation (t = 1) of the grid by applying the 
defined rules. This process can continue for an infinite amount of generations.   
 
Figure 1 illustrates a simple one-dimensional cellular automaton. It consists of a line of 
thirty cells, each of which can have a value of zero or one, which are represented by 
the colours white or black. In this example, there are eight transition rules that are 
shown above the grid. For example, rule number 6 (the sixth from the left) states that if 
a cell is equal to one (black) and both its neighbours are equal to zero (white) at row t, 
then this cell’s value will remain equal to one (black) at the next time-step (t + 1, one 
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row down). Note that in order to apply the rules to all cells simultaneously, the algorithm 
considers that the first and the last cells of the line are connected in a virtual loop:  the 
left side neighbour of the first cell (counting from left to right) is the last cell of the row. 
 

 
 

Figure 1: An example of a one-dimensional cellular automaton. 
 
In the case of two-dimensional CA the transition rules take into account the eight 
nearest neighbours of each cell (Figure 2). In order to apply the transition rules one 
needs to consider that the grid of cells forms a doughnut-shaped object, where the right 
edge of the grid wraps around to join the left edge and the top edge wraps around to 
join the bottom edge. However, the grid is often displayed flat on a computer screen. 
 
 

 
 

Figure 2: An example of a two-dimensional cellular automaton. 
 
 
The examples above are of CA with cells that can exists as either zero (represented as 
white) or one (represented as black). The cells of Miranda’s reaction-diffusion model 
can have values other than only zeroes and ones. By way of introduction, let us 
consider this automaton as a grid of cells, each of which represents a simple electronic 
circuit characterised by a varying internal voltage. At a given instant, each of these cells 
can be in any one of the following states: fired, quiescent and depolarized, depending 
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on the value of their internal voltage V at a certain time t. In addition to V, the 
automaton’s transition rules take into consideration the following variables: 
 

• The values of R1 and R2, which represent the resistance values of a 
potential divider 

• The value of C, which represent an electronic capacitor 
• The value of Max, which is a threshold value 

 
A cell interacts with its neighbours through the flow of electric current between them. If 
a cell’s internal voltage V is equal to zero, then this cell is in a quiescent state. As the 
transition rules (see below) are applied, the internal voltages of the cells tend to 
increase. Once the value of V for a certain cell reaches 1 then this cell becomes 
depolarized. However the cells have a potential divider, defined by the values of R1 and 
R2, which is aimed at creating a global resistance against depolarization over the whole 
network. Also, they have an electronic capacitor C, whose value regulates the rate of 
this increase. The values of R1, R2, C and Max are identical for all cells on the grid. 
 
Depolarized cells go through a period of increasing depolarization gradients until their V 
remains below a pre-defined maximum threshold value Max. When the value V of a cell 
reaches the maximum threshold Max, then it fires and in the next time step it becomes 
quiescent again: that is, V becomes equal to zero. Before we look at the transition rules, 
let us establish that: 
 

• The voltage value V of cell n at time t is notated as cell(n, t) = V 
• F is the number of fired neighbouring cells (i.e., cells with V = Max) 
• D is the number of depolarized neighbouring cells 
• S is the sum of the values V of all neighbours 

 
The transition rules are as follows: 
 
Rule 1:  if cell(n, t) = 0  

then cell(n, t+1) = int((F ÷ R1) + (D ÷ R2)) 
 
Rule 2: if cell(n, t) > 0 and cell(n, t) < Max 

then cell(n, t+1) = int((S ÷ F) + C) 
 
Rule 3: if cell(n, t) = Max  

then cell(n, t+1) = 0 
 
 
As an example, let us consider the case of the cell n in co-ordinates (x, y) shown on 
grid on the left hand side of Figure 3. Let us assume that the values of Max, R1, R2 and 
C were pre-defined as follows: Max = 4, R1 = 8.5, R2 = 5.2 and C = 3, respectively. In 
this example, cell(n, t) = 0. Therefore the first rule applies. There are 3 fired neighbours 
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(i.e., with V = Max) and 4 depolarized ones, that is: F = 3 and D = 4, respectively. 
Therefore, the new value for this cell is calculated as follows: 
 

cell(n, t+1) = int((3 ÷ 8.5) + (4 ÷ 5.2)) 
cell(n, t+1) = int(0.359 + 0.769) 
cell(n, t+1) = int(1.128) 
cell(n, i+1) = 1 

 
The cell becomes depolarized: its new voltage at time t+1 is depicted on the grid on the 
right hand side of Figure 3. 
 

 
 

Figure 3: An illustration of the application of transitions rules to 1 cell on the cellular 
automaton. 

 
 
Before running the automaton, one defines the values for R1, R2, C and Max. Then, the 
system initializes the cells with random values for V, ranging from 0 to Max. The 
automaton is displayed as a grid of coloured squares, with different colours 
corresponding to different states. To begin with we see a wide distribution of different 
colours on the grid, as shown on the grid on the top left hand side of Figure 4. As the 
automaton runs, the image tends to evolve towards oscillatory cycles of patterns, 
representing reaction and diffusion of cell states.  
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Figure 4: Various stages of the reaction-diffusion simulation. 
 
The system implements a synthesis technique referred to as granular synthesis. 
Granular synthesis works by generating a rapid succession of very short sound bursts 
(e.g., 50 milliseconds long each), referred to as sound grains (Miranda 2002). Each of 
these grains represents the entire automaton’s grid at the respective refresh point 
(Figure 7); in other words, each cycle of the automaton (t, t + 1, t + 2, …), produces a 
sound grain. 
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Figure 5: A granular sound comprising a succession of 5 grains. 
 
 
A sound grain is a composite sound on its own right, comprising a number of partials, 
each of which is synthesized by a sine wave oscillator (Figure 5). The synthesiser is 
composed of a number of such oscillators. Each of them requires a frequency value in 
order to produce the respective partial. The system translates the voltage values V of 
the automaton’s cells into frequency values for these oscillators. 
 
The standard procedure to visualize the behaviour of a cellular automaton on a 
computer screen is to associate the cells’ values with a colour, but in this system the 
values are also associated to different frequency values. For example, the voltage value 
corresponding to the colour yellow could be associated with 110Hz, the colour red with 
220Hz, blue with 440Hz, and so on. These associations are arbitrarily defined and 
different associations will produce different sounds. 
 
The automaton’s grid is divided into smaller uniform sub-grids of cells and each of 
these sub-grids is associated to an oscillator (Figure 6).  
 

 
 

Figure 6: Sub-grids of cells are associated to different oscillators. 
 
At each cycle of the automaton, the system calculates frequency values for the 
oscillators, which simultaneously synthesize partials that are added together in order to 
produce the respective sound grain (Figure 7).  Figure 6 depicts an example of a grid of 
400 cells divided into 16 sub-grids of 25 cells each; each sub-grid is associated to a 
different oscillator. In this case, the system would synthesize grains with spectra 
composed of 16 partials each. 
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Figure 7: At each refresh point of the automaton a sound grain is synthesised. 
 
 
The frequencies are calculated by taking the arithmetic mean over the frequencies 
associated to the values (or colours) of the cells of the respective sub-grids. For 
example, let us consider an hypothetical case where each oscillator is associated with a 
sub-grid of 16 cells, and that at a certain refresh point, 3 cells correspond to 55Hz, 2 to 
110Hz, 7 to 220Hz and the remaining 4 to 880Hz. In this case, the mean frequency 
value for this oscillator will be 340.31Hz.  
 
In 1993 Miranda composed, Olivine Trees, an electroacoustic piece of music using this 
system, which is believed to be the first ever piece of parallel computer music. The work 
effectively explores two veins of UC: a reaction-diffusion system and parallel 
processing. A recording of Olivine Trees is available on SoundCloud (Miranda 1994). 
 
 
2.3 Cloud Chamber: Musical Experiments with Particle Physics 
 
Research towards building a quantum machine that can fully embody computational 
models based on quantum properties of superposition and entanglement has been 
making steady progress. However, such machines are not generally available as we 
write this chapter. Nevertheless, it is possible to develop musical experiments in order 
to get started with particle physics, gain hands-on experience and prepare the ground 
for future work. For instance, Kirke championed the Cloud Chamber project, which was 
helpful to test musical ideas and prepare the ground to secure partnerships to develop 
a musical composition using a D-Wave computer located at the University of Southern 
California, in the USA (Chapter 5).  
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Cloud Chamber is also the title of Kirke’s duet for violin and subatomic particles. The 
Interdisciplinary Centre for Computer Music Research (ICCMR) team developed a 
system for Cloud Chamber that renders the behaviour of atomic particles into sounds, 
which accompanies a solo violin live on stage.  Here the violin controls an 
electromagnetic field system, which influences the way in which the particle tracks 
behave.  
 
A diffusion cloud chamber was used to create a volume of supersaturated alcohol 
vapour that condenses on ions left in the wake of charged particles. This is 
accomplished by establishing a steep vertical temperature gradient with liquid nitrogen. 
Alcohol evaporates from the warm top region of the chamber and diffuses toward the 
cold bottom. The gravitationally stable temperature distribution permits a layer of 
supersaturation near the chamber bottom. Charged particles passing through the 
supersaturated air at close to the speed of light leave behind numerous ions along each 
centimetre traversed. In the absence of a radioactive source, most events observed in 
the cloud chamber are cosmic rays (Radtke 2001). About two-thirds of sea level cosmic 
rays are muons; one sixth are electrons, and most of the remaining one-sixth are 
neutrons. Neutrons cannot be directly observed, because they will not ionize air within 
the chamber. Low energy (<100keV) electrons can be identified from the convoluted 
character of the tracks. Higher energy electrons and muons form straighter tracks.  
 
ICCMR developed a system referred to as Cloud Catcher.  With a camera placed above 
the cloud chamber, Cloud Catcher is programmed to pick up the ions created by the 
radioactive particles and translate their trajectories into sound. It provides real-time 
audio input granulation (Truax 1988) driven by live video colour tracking. The system 
carries out video colour tracking by calculating bounding dimensions for a range of 
values. A frame of video is represented as a two-dimensional matrix, with each cell 
representing a pixel of the frame, and each cell containing four values representing 
alpha, red, green, and blue on a scale from 0 to 255 (RGB standard). The system 
scans the matrix for values in the range [min, max] and outputs the minimum and 
maximum points that contain values in the range [min, max] within the matrix. The 
bounding region is a rectangle, thus the software outputs the indices for the left-top and 
bottom-right cells of the region in which it finds the specified values. 
 
Cloud Catcher provides the ability to define a colour range, which allows for targeting 
suitable colour ranges in the images. Every time a colour in the chosen range appears 
on the video, it will produce as output two coordinates related to the region boundaries; 
otherwise it will have no output. These two coordinates are then used to control the 
audio output, through real-time granular sampling.  
 
Granular sampling is a variant of the granular synthesis techniques introduced in the 
previous session. Instead of synthesizing the sound grains from scratch, here the 
system employs a granulator mechanism to extract small portions of a given sound. 
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The granulator uses these portions to produce a new sound in a number of ways. The 
simplest method is to extract only a single grain and replicate it many times, as shown 
in Figure 8 (Miranda 2002). In Cloud Chamber, the audio input to the granulator is taken 
from the violin during performance and Cloud Catcher controls the way the grains are 
re-combined to produce new sounds (Kirke et al. 2011). 
 

 
Figure 8: Granular sampling works by extracting grains from a given sound. 

 
ICCMR devised an interface for Cloud Catcher, which enables a musician to use an 
acoustic instrument live to create a physical force field that directly affects the ions 
generated by radioactive particles. In short, we capture the sound of the violin with a 
clip-in microphone and convert it into an electrical signal, which is used to modulate a 
high-voltage power supply with an adjustable output between 1.5 and 3 kV. This 
connects to a projection field electrode installed in the cloud chamber. Thus the violin 
sounds modulate a positive potential in the chamber top. Applying a varying positive 
potential to the chamber top will directly change the particle tracks appearing in the 
chamber. Therefore the violinist can influence the behaviour of the subatomic particle 
tracks in the chamber during the performance and to a certain extent the violinist can be 
influenced by the sounds of the subatomic particles. 
 
Musically speaking, Cloud Chamber is a semi-deterministic piece of music.  Despite the 
fact that the violinist can be influenced by the sounds emanating from the Cloud 
Catcher, there is a musical score for the violinist to follow. The score draws on the 
Standard Model of Particle Physics for inspiration (Ellis 2006); it contains melodies 
generated algorithmically using the quark structure of observable Baryons and data 
kindly provided by ISIS Neutron and Muon Source, in Oxford, UK, from their experiment 
shining neutrons through liquid crystal (Newby et al. 2009). It should be noted that the 
use of this approach to generating musical material algorithmically for the score is not 
argued as being a meaningful expression of the Standard Model or of quarks. It was 
mainly used as a framework around which the composer could construct the piece. 
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Nevertheless, what is interesting here is that the method by which the particles 
generate sounds is based on non-deterministic quantum principles. Therefore, it is 
reasonable to believe that Cloud Chamber is the first piece of quantum music ever 
composed.  
 

 
 

Figure 9: First performance of Cloud Chamber in 2011 in Plymouth, UK. 

Cloud Chamber received its premiere in 2011 at Peninsula Arts Contemporary Music 
Festival (PACMF), Plymouth, UK. It was performed subsequently at ISIS Neutron and 
Muon Source, at the Rutherford-Appleton Laboratories, Oxford, UK and at California 
Academy of Sciences, in San Francisco, USA. A movie documenting the performance 
in San Francisco is available on-line (Kirke et al. 2013). 
 
 
2.4 Making Sounds with In Vitro Neuronal Networks 
 
Research into harnessing the complex dynamics of cultured brain cells to develop novel 
processing devices using neuronal networks cultured on circuit boards has been 
gaining momentum since DeMarse et al. (2001) reported the development of an 
artificial animal, or Animat, controlled by a processor built with using dissociated cortical 
neurones from rats. Distributed patterns of neural activity, also referred to as spike 
trains, controlled the behaviour of the Animat in a computer-simulated virtual 
environment. The Animat provided electrical feedback about its movement within its 
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environment to the neurones on the processing device. Changes in the Animat’s 
behaviour were studied together with the neuronal processes that produced those 
changes in an attempt to understand how information was encoded and processed by 
the cultured neurones. 
 
Increasingly sophisticated methods are being developed to culture brain tissue in vitro - 
neurones and glia - in a multi-electrode array (MEA) device, which is a mini Petri dish-
like device with embedded electrodes (Figure 10). The electrodes can detect action 
potentials of aggregates of brain cells and stimulate them with electrical pulses (Figure 
11). An MEA can record neuronal signals fast enough to detect the firing of thousands 
of nearby neurones as micro-voltage spikes. Neuronal network phenomena can be 
studied by supplying electrical stimulation through the multiple electrodes, which 
typically induces widespread neuronal activity (Potter et al. 2004, Bontorin et al. 2007, 
Novellino et al. 2007). Interestingly, Potter at al. (2004) introduced an art installation 
created with artists at SymbioticA in Australia. They connected an MEA device with 
cultured neurones in their lab in Atlanta to a robotic drawing arm in Perth. A video 
camera relayed the drawing process to Atlanta comparing the image in progress with a 
photograph of a person. The comparison generated a feedback signal for the cells on 
the MEA device.  
 
 

 
 

Figure 10: A typical MEA used to stimulate and record electrical activity of cultured 
brain cells on the surface of an array of electrodes. Reprinted from (Miranda et al. 2009) 

and with kind permission from Multichannel Systems 
http://www.multichannelsystems.com/. 
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Figure 11: Phase contrast microscopy showing aggregates of cultured cells on a MEA 

device. Reprinted from (Miranda et al. 2009). 
 
In vitro cultures of brain cells display a strong disposition to form synapses, especially 
so when subjected to electrical stimulation. The cells spontaneously branch out, even if 
left to themselves without external input other than nutrients in the dish.  They establish 
connections with their neighbours within days, demonstrating an inherent bias to form 
communicating networks. In most cases, after a few weeks in culture, the development 
of these networks becomes relatively stable and is characterized by spontaneous 
bursts of activity (Kamioka et al. 1996). Furthermore, it has been possible to maintain 
functioning cultures of brain cells or a number of months, allowing for continuous long-
term observations of their behaviour. 
 
In addition to our far-reaching ambition of developing general-purpose bio-processors 
using living brain cells, ICCMR is particularly interested in exploring the potential of in 
vitro neuronal networks for developing bio-processors for sound and music because of 
their dynamic and rich temporal behaviour. To gain a better understanding of what it 
takes to develop our ambition, we conducted experiments with brain cells from seven-
day-old chicken embryos, in collaboration with scientists at the University of the West of 
England, Bristol (Miranda et al. 2009). The objective was to harness the cells to build a 
musical instrument. We wanted to find out if it would it be possible to listen to the 
electrical activity of the cells, and if so, whether or not it would be possible to control this 
activity in order to make different sounds. 
 
Figure 12 shows a typical chicken embryo aggregate neuronal culture, also referred to 
as a spheroid. These spheroids were grown in culture in an incubator for 21 days. 
Subsequently, they were placed into a MEA device in such a way that at least two 
electrodes made connections into the neurones of the spheroid. One electrode was 
arbitrarily designated as the input by which to apply electrical stimulation and another 
as the output from which to record the effects of the stimulation on the spheroid’s 
spiking behaviour. Please refer to (Uroukov et al. 2006) for more information on the 
protocols for culturing cells and placement into an MEA device.  
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Figure 12: Image of a typical chicken embryo aggregate neuronal culture on a scanning 
electron microscope, magnified 5000 times. (Courtesy of Larry Bull, University of the 
West of England, UK.) 
 
Stimulation at the input electrode typically consisted of a train of biphasic pulses of 
300mV each, coming once every 300ms. This induced change in the stream of spikes 
at the output electrode, which was recorded and saved into a file. Stimulation sessions 
lasted for 60secs, with a 600-second rest between them.  An increase in the spiking 
behaviour was observed after each session, which was an indication that such 
stimulations fostered self-organisation within the spheroid. The neuronal networks 
formed in such a way that external stimulation caused significant excitation within the 
neuronal network. 
 
Figure 13 plots an excerpt lasting for 1sec of typical neuronal activity from one of the 
sessions. Note that the neurones are constantly firing spontaneously. The noticeable 
spikes of higher amplitude indicate concerted increases of firing activity by groups of 
neurones, which were responses to input stimuli. 
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Figure 13: Plot of the first 1 second of a data file showing the activity of the spheroid in 

terms of µV against time. Induced spikes of higher amplitudes took place between 
400ms and 600ms. Reprinted from (Miranda et al. 2009). 

 
In order to listen to the neuronal activity, we developed a sonification technique, which 
combined aspects of additive synthesis and granular synthesis (Miranda 2002). The 
technique employed nine sinusoidal oscillators, each of which produced a partial for the 
resulting waveform. That is, the sound was composed of 9 sine waves. The system 
required 3 input values to generate a sound: frequency (freq), amplitude (amp) and 
duration (dur). Therefore, each reading from the output electrode yielded three values 
for the synthesiser: freq, amp and dur.   
 
Essentially, the synthesiser was additive, comprising 9 sine wave oscillators. Each 
electrode reading generated freq and amp values for one of the oscillators, technically 
referred to as the fundamental oscillator. The values for the other 8 oscillators were 
relative to the values of the fundamental oscillator; e.g., , 

, and so on. The same applies for the amplitudes of the partials. 
The synthesiser was also granular because each of these readings produced a very 
short burst of sound. In effect, each spike of the spike train was translated into a grain 
of granular sound synthesis. 
 
The frequency of the fundamental oscillator was calculated in Hz as follows: 

€ 

freq = (datum ×ϕ) +α . We set 440=α as an arbitrary reference to 440Hz; changes to 

€ 

freqosc2 = freqosc1 × 0.7

€ 

freqosc3 = freqosc1 × 0.6
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this value will produce sounds at different registers. The variable 

€ 

ϕ  is a scaling factor, 
which accounted for the range of values in the data file. This scaling factor needed to 
be variable because the range of 

€ 

µV  values produced by the spheroids may vary with 
different experimental conditions. Typically 

€ 

ϕ = 20. 
 
The synthesiser’s amplitude parameter was a number between 0 and 10. The 
amplitude was calculated as follows: 

€ 

amp = 2 × log10(abs(datum) + 0.01) + 4.5 . This 
produced a value between 0.5 and 9.5. In order to avoid negative amplitudes we took 
the absolute value of the datum. Then, 0.01 was added in order to avoid the case of 
logarithm of 0, which cannot be computed. We later decided to multiply the result of the 
logarithm by 2, in order to increase the interval between the amplitudes. Since 

€ 

log10(0.01) = −2, if we multiplied this result by 2 then the minimum possible outcome 
would have been equal to -4. We added 4.5 to the result because our aim was to assign 
a positive amplitude value to every datum, even if it values 0µV.  
 
The duration of the sound was calculated in seconds; it was proportional to the absolute 
value of the datum, which was divided by a constant c: 

€ 

dur =
abs(datum)

c
+ t . Typically 

€ 

c =100 . Initially, the sonification technique produced a sound grain for every datum. 
However, this generated excessively long sounds. In order to address this problem, we 
developed a method to compress the data, which preserved the behaviour that we 
wanted to sonify, namely patterns of neural activity and induced spikes. For a detailed 
explanation of the compression method, please refer to (Miranda et al. 2009). 
 
Figure 14 shows the cochleogram of an excerpt of a sonification, where one can clearly 
observe sonic activity corresponding to induced spiking activity.  
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Figure 14: Cochleogram of an excerpt of a sonification of the spiking data plotted in 
Figure 13. Note that spikes of higher amplitude produced variations in the spectrum of 

the resulting sound, as shown in the middle of the cochleogram. Reprinted from 
(Miranda et al. 2009). 

 
 
With this experiment we were able to test the hypothesis that it is possible to build a 
musical instrument using in vitro neural networks. We developed a method to listen to 
the electrical activity of the cells. Moreover, we were able to play the instrument, i.e., 
produce sound variations, by inducing spiking behaviour through electrical stimulation. 
 
The idea of harnessing the naturally elegant and efficient problem-solving methods of 
biological organisms to build novel computing systems is an important approach to 
research into UC, and the one that is probably most accessible to computer musicians 
as we write this chapter. A variety of reports have been published describing research 
into harnessing properties of biological tissues or organisms to perform certain types of 
computational tasks (Armstrong and Ferracina 2013; Adamatzky 2016). However, 
research into harnessing in vitro neurones is currently unrealistic for the great majority 
of investigators and entrepreneurs looking into exploring practical applications of UC 
developments, including computer music. Nonetheless, emerging research into using 
the plasmodial slime mould Physarum polycephalum is proving to be an affordable 
alternative: this organism is openly obtainable, economical to culture, safe to handle 
(not toxic), and does not require expensive equipment to develop experiments.  
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Figure 15: Physarum polycephalum is a suitable biological medium to develop research 

into UC for musical applications. 
 
 
2.5 Probing the Potential of Slime Mould Computing 
 
Physarum polycephalum, henceforth referred to as P.polycephalum, is naturally found 
in cool, moist and dark environments. It exhibits a complex lifecycle, but the point of 
interest here is its vegetative plasmodium stage. During its vegetative plasmodium 
stage, it exists as a single amorphous cell visible via the human eye, with a multitude 
of nuclei; hence the term ‘polycephalum’, which literarily means ‘many heads’. The 
plasmodium is capable of responding with natural parallelism to surrounding 
environmental conditions: it grows towards chemo-attractants (food) and moves away 
from chemo-repellents (e.g., salt). As it propagates along gradients of stimuli it 
develops a network of protoplasmic filaments connecting areas of colonization. The 
cytoplasm contains a semi-ridged cytoskeleton embedded with actin-myosin filaments 
that rhythmically contract and expand, producing the shuttle streaming of its internal 
fluid endoplasm. These rhythms are coupled with spatially distributed biochemical 
oscillations. Indeed, the topology of the slime mould can be described as a network 
of biochemical oscillators: waves of contraction or relaxation, which collide inducing 
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shuttle streaming. This intracellular activity produces fluctuating levels of electrical 
potential as pressure within the cell changes. Typically this is in the range of 
±50mV, displaying oscillations at periods of approximately 50-200sec with 
amplitudes of ±5-10mV dependent on the organism’s physiological state (Meyer and 
Stocking 1970). Research has been put forward demonstrating that such patterns can 
be used to accurately denote behaviour (Adamatzky 2010). This is one of the main 
features of P.polycephalum that renders it attractive for research into UC. 
 
A natural characteristic of the slime mould is the time it can take to span an 
environment. Depending on how the experimental environment is set up, it can take 
several hours to exhibit substantial growth and exhaust available sources of nutrients. 
Much research is being conducted worldwide to utilise more instantaneous 
behavioural aspects of the organism; e.g., using intracellular activity as real-time 
logic gates. In the meantime, one solution that has been adopted by a number of 
research laboratories is to work with computer models of the slime mould (Jones 
2010).  Another approach, which is the one adopted for our investigation at ICCMR, is 
to record the behaviour of the slime and subsequently use the data off-line. This 
approach enables one to experiment directly with the biological substrate.  
 
The plasmodium is relatively easy to culture in Petri dishes with scattered sources of 
food, such as oat flakes (Figure 16). It is possible to prompt it to behave in controlled 
ways by placing attractants and repellents on the dish. The ability to manipulate growth 
patterns has underpinned the early stages of research into building P.polycephalum-
based machines to realize tasks deemed as computational: e.g., the organism was 
prompted to find the shortest path to a target destination through a maze (Adamatzky 
2010) and solve the classic combinatorial optimization Steiner tree problem (Caleffi et 
al. 2015). However, it is the electrical properties of the organism that have more 
recently been the focus of research: electrical current can be relayed through its 
protoplasmic filaments and its intracellular activity can function as logic gates.  
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Figure 16: Photograph of a Petri dish with the slime in plasmodium state, showing: (A) 
a place where it has been inoculated, (B) protoplasmic network connecting areas 
of colonisation, (C) colonised region containing nutrients (in this case an oat flake), 
and (D) extending pseudopods forming a search front along a gradient towards 

another oat flake, marked by (E). 
 
Miranda and his team have conducted a number of experiments investigating ways to 
harness the behaviour of the slime mould with a view on building audio and music 
systems, and ultimately a musical biocomputer. In a preliminary study, a foraging 
environment was constructed with electrodes embedded into areas containing oat 
flakes. Electrical potentials were recorded from these electrodes as the slime mould 
navigated within the foraging environment. The recorded data from each electrode 
were rendered as frequency and amplitude values for a bank of oscillators forming an 
additive synthesiser. In order to record the behaviour of the slime mould we use a 
combination of time-lapse imagery and/or electrical potential data by means of bare-
wire electrodes (Miranda et al. 2011). Subsequent experiments include the 
development of a musical step sequencer, a sound synthesiser and a generative 
music system. Those initial experiments produced encouraging results, which paved 
the way to our current research into building a P.polycephalum-based bio-processing 
device: the biomemristor. Below we introduce the preliminary work that paved the way 
to our biomemristor research, which is detailed in Chapter 8. 
 
 
2.5.1 Musical Step Sequencer 
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Musical step sequencers are devices that loop through a defined quantity of steps 
at given time intervals. Each of these steps can normally exist in one of two states: 
active or inactive. When active, a given sound event will be triggered as the 
sequencer reaches its respective position in the loop. No sound is produced when 
the reached position is inactive. 
 
In order to implement the slime mould step sequencer, we designed an environment 
that represents a step sequencer’s architecture as schematically shown in Figure 17. It 
consisted of a Petri dish divided into six electrode zones, representing sequencing 
steps (S1, ..., S6 ), arranged in a circular fashion (representing the sequencer loop) 
with a central inoculation area.  
 

 
 

Figure 17: Step sequencer architecture. 
 
Oat flakes were placed on the electrode zones and in the inoculation area, and the 
slime mould was placed in the inoculation area. In order to record the behaviour of the 
slime we used two forms of hardware: a USB manual focus camera and high-
resolution data logger. Each experiment took place in a 90mm Petri dish with the 
camera centred above. In order to guarantee an environment that promoted growth, 
a black enclosure was placed over the Petri dish limiting the light intensity level 
imposed on the slime mould. Lighting for image capture was achieved by means 
of an array of white LEDs, which turned on and off periodically. Electrical potential 
levels were recorded using an ADC-20 high-resolution data logger. Within each 
Petri dish, bare-wire electrodes are placed through small holes in the base with 
wiring underneath secured using adhesive tack (Figure 18, left hand side). The 
electrodes are arranged with one reference electrode and six measurement 
electrodes, one for each step of the sequencer: the reference resides in the centre 
(i.e., in the inoculation area) and gave a ground potential for each of the 
measurement electrodes. 
 
Each electrode was coated in non-nutrient agar, which kept humidity high for the 
slime to grow. Due to the agar substrate being liquid-based and thus a conductor, 
a non-conductive plastic sheet isolated each step (electrode zone) area, allowing 
electrical potentials to be recorded across the environment without interference. 
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Oat flakes were placed on each step on top of the respective electrode wire, 
maintaining an equal distance from the centre to entice the propagation and 
facilitate colonisation (Figure 18, right hand side). 
 

 
 
Figure 18: Photographs showing the construction of the environment for the step 
sequencer. Shown on the left hand side is the bare-wire electrode array wired into 
position. The right hand side shows the completed growth environment with each 

electrode embedded within blocks of agar. 
 
To start the process, we inoculated a piece of slime mould in the centre region and 
began to record data. Inoculation sources were extracted from a small P.polycephalum 
farm that we maintained at ICCMR and put through a period of approximately six hours 
of starvation before the experiment began. This starvation process accelerates initial 
propagation speed. 
 
We programmed the system to take 100 data samples from each electrode at intervals 
of 1 sec throughout the duration of the experiment. Samples were then averaged to 
give a single reading for each second. This level of recording detail was necessary in 
order to capture the natural gradients associated with various progressions, some of 
which are fairly prompt. Image snapshots were taken at intervals of 5 minutes with the 
LEDs turning on 5 sec before and staying active for 10 sec. 
 
In order to use the recorded date for music, we first established a data recall system. 
Here, the user could define how fast they wished the electrical potential data to be 
recalled in terms of number of entries per second. Upon doing so, the system defined 
the frame rate for the time lapsed imagery, in order to play back the images in motion 
with perfect synchrony. The interface was built around the time lapsed imagery 
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playback, forging a connection between the user and the organism. Once in the 
system, each electrical potential entry was broken into its six individual readings and 
adjusted to become an absolute value. The system then stepped through each 
measurement taking a reading at a user-defined speed in terms of beat per minutes. A 
step only became active within the sequence once it was colonised by the slime. 
Otherwise, no reading was taken. Once activated, the system looked for a level of 
change in electrical potential in order to retire steps from triggering sounds when the 
slime mould was no longer active. This was achieved by storing readings over a short 
period of time and reviewing any oscillatory behaviour. 
 
We developed several variations of the sequencer to probe its usability in realistic 
musical production. One of these versions looked at harnessing the slime mould’s 
behaviour to extend the functionality of a conventional step sequencer by triggering 
different sounds as a function of each step’s electrical potential readings. The 
readings were used to trigger one of four sound samples assigned to each step. The 
system allowed us to associate 4 sounds to each step of the sequencer. Each of them 
was subsequently associated with a voltage range; e.g., sound A would be triggered if 
the voltage values between -15mV and +15mV, sound B if it values between 16mV and 
30mV, and so on.  
 
The user interface (Figure 19) provided an interactive graph showing the 
combined electrical potential readings (on the top right hand side). This p r ov i d ed  
t h e  a b i l i t y  to change the current position of the data being recalled, creating 
means to restructure the output of the sequencer.  
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Figure 19: The slime step sequencer user interface. 
 
 
2.5.2 Slime Granular Synthesis 
 
As we have seen in section 2.2, granular synthesis works by generating a rapid 
succession of very short sound bursts. There have been various approaches to 
composing sounds with granular synthesis algorithmically. For instance, Valle and 
Lombardo (2003) developed a method that employed a directed graph.  Sequences of 
grains were produced according to a graph actant that moved between connected 
vertices, each of which represented a sound generator.  
 
Inspired by Valle and Lombardo’s graphs-based system, we exploited the slime 
mould’s ability to create and reconfigure networks of protoplasmic veins between 
sources of nutrients to build a granular synthesiser. In a nutshell, the slime mould’s 
protoplasmic network created sequences of grains that were directly sampled from the 
organism’s oscillatory behaviour.  
 
The slime mould environment that we created for the synthesiser resembled the one 
that we designed for the step sequencer introduced above. Oat flakes were placed in a 
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Petri dish, on zones furnished with electrodes. Each of these electrode zones was 
associated with a different grain generator: the electrodes read electrical data from the 
slime, which were used to generate sound grains (Figure 20).  A generator started 
producing grains as soon as the slime mould colonised the respective electrode zone, 
and started digesting the oat flake. It ceased to produce grains only when the 
respective oat flake had been consumed.   
 

 
 

Figure 20:  The slime environment for the granular synthesiser. 
 
At a predetermined granular sampling rate, the organism’s oscillatory behaviour was 
sampled to produce sound grains. The electrical readings from each electrode were 
scaled into audio buffers. At defined time intervals, the appropriate buffers were 
addressed to produce sound grains, which were subsequently sequenced together in 
descending order according to each electrode’s running average potential. The 
amplitudes of the grains were established by scaling the respective electrode’s 
electrical potential reading at the time of streaming from the audio buffers to a pre-
defined range. Their durations were defined using a potential difference value scaled to 
a composer-defined minimum and maximum range.  
 
In order to ensure that grains were only produced from electrodes colonised by the 
slime mould, our system monitored each electrode’s readings for oscillations. When no 
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oscillatory behaviour was registered across the whole environment, the system halted 
and rendered the final audio.  
 
We set the parameters of our system to produce grains between 30 and 100 
milliseconds long every 5 hours. The results were spectrally rich and dynamic sounds 
(Figure 21). Such morphology was a direct consequence of using a slow adapting ever-
changing living entity. 
 

  
 
Figure 21: Cochleogram of a typical sound produced by the slime granular synthesiser. 
 
 
2.5.3 Kolmogorov-Uspensky Musical Machine 
 
A Kolmogorov-Uspensky (KU) machine (Kolmogorov and Uspenskii 1958) is an abstract 
computation model that computes the same class of functions as the Turing machine 
(Turing 1936). However, in contrast to the Turing machine’s tape, a KU machine utilizes 
a finite undirected connected graph with bounded degrees of nodes and labels as its 
storage structure, which it can reconfigure. Only one node can be active at a given time 
step, and each node and edge must be uniquely labelled. Thus, every passage from the 
active node can be described as a sting of their unique labels. A fixed radius around the 
active node is known as the active zone. According to the isomorphism of the active 
zone, the program executes the following instructions: 
 

• Add new node with a pair of edges connecting to the active node 
• Remove node and its incident edges 
• Add edges between nodes 
• Remove edges between nodes 
• Halt 
 

The computational process moves on the graph, activating nodes and adding and 
removing edges in accordance with a program. Once the program has executed the 
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instructions, the internal state changes accordingly. Adamatzky provided a step-by-step 
comparison of a KU machine and the P.polycephalum’s behaviour, speculating that the 
organism is the best biological realization of a KU machine one can possibly find in 
nature (Adamatzky 2007). 
 
In this section, we report on an algorithmic composition method that harnesses 
Adamatzky’s framework for a KU machine implemented with P.polycephalum. His 
implementation of a biological KU machine exploited the plasmodium’s natural ability to 
form planar graphs, which it can dynamically reconfigure over time. Figure 22 depicts a 
visual comparison of a culture of plasmodium and a KU machine.  
 
 

 
 
Figure 22: A visual comparison of the culture of plasmodium (left) displayed in Figure 1 

and a KU machine (right). 
 
The elements of the KU machine depicted in Figure 22 are summarised as follows: 
 

• Active zone: At every time step there must be an active node. This is a 
built-in function of the plasmodium: the organism generates waves of vein 
contraction, which cause a pressure gradient to build up in the tubes. Such 
pressure results in the periodic movement of protoplasm back-and-forth, changing 
direction approximately every 50 seconds with greater net flow occurring in the 
direction of propagation. 

 
• Nodes: A P.polycephalum KU machine has two types of nodes: stationary 
and dynamic. Sources of food represent stationary nodes while all other sites 
where two or more veins originate (protoplasmic vein junctions) represent 
dynamic nodes. Often, the organism forms dynamic nodes when extending 
pseudopods that break off into two or more directions, resulting in a single vein 
branching into two or more. 

 
• Edges: Protoplasmic veins that connect nodes represent edges. A KU 
machine’s storage graph is undirected. For example, if nodes a and b are 
connected, then they are connected with edges (ab) and (ba). A P.polycephalum 
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KU machine implements this with a single vein but with the periodic movement of 
protoplasm back-and-forth. 

 
• Data input and program: Data input and program are represented by the 
spatial configuration of stationary nodes (oat flakes). 

 
• Addressing and labelling: P.polycephalum does not implement any 
aspects that provide a direct method of uniquely labelling nodes and edges. 
Adamatzky suggested and experimented with using food colouring. However, in 
our approach to a biological KU machine, we will use either handwritten or digital 
labels. 

 
• Results: The plasmodium halts the computation when all data nodes are 
utilized - when it has exhausted all available food sources - or when humidity 
levels are too low for it to continue foraging. When this occurs, the plasmodium 
enters is dried up dormant state (or sclerotium state). The result of a computation 
is the final graph structure formed by the plasmodium’s protoplasmic vein network. 

 
For our algorithmic composition approach, each node represented a predetermined 
musical phrase (𝑃!,…𝑃!), which was input by the user. Nodes were distributed within 
the computational arena at the beginning of an experimental run. This configuration 
defined the system’s state at the beginning of the experimentation (t = 0). Upon the 
active zone connecting nodes with edges, the connected node’s musical phrases were 
transformed using a set of composer-defined rules to create a new iteration (𝑃!). These 
rules could either be universal, unique to each node, or dependent on the isomorphism 
of the active node’s neighbourhood. The respective node’s memory was subsequently 
updated with the new iteration. As a KU machine’s storage graph is undirected, both 
nodes’ phrases were transformed, with the destination node being processed first. Once 
the system has updated the destination node’s memory, it placed the newly transformed 
phrase into an output sequence, creating a progressive arrangement of musical 
phrases. The algorithm at each time step looks like this: 
 
  ADD EDGE (𝑃! ,𝑃!) 
   READ 𝑃! 
   TRANSFORM 𝑃!! 

UPDATE  𝑃! with 𝑃!! 
OUTPUT 𝑃! 

ADD EDGE (𝑃! ,𝑃!) 
   READ 𝑃! 
   TRANSFORM 𝑃!! 

UPDATE  𝑃! with 𝑃!! 
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In addition to our P.polycephalum KU machine framework, there were ways a composer 
could further augment the algorithmic composition process. By harnessing phenomena 
that attract, repel or retard the organism, a composer could gain additional control. Such 
phenomena include glucose and various carbohydrates for attractants, salt and metal 
ions for repellents, and experimental temperature for retardants. Through the use of 
these stimuli, a composer could, for example, restrict access to certain nodes, intensify 
a node’s stimuli gradient and cause a computation to prematurely halt.  
 
In the field of algorithmic composition, practitioners often incorporate chance and/or 
pseudo-random processes. An interesting consequence of using a P.polycephalum KU 
machine for algorithmic composition was that these are given by default. As the 
plasmodium is an ever-changing living entity, we cannot predict its propagation trajectory 
between nodes with absolutely certainty. Furthermore, in some cases environmental 
factors out of our control may impact the organism’s behaviour. For example, nodes (in 
this case, oat flakes) may become infected, causing them to alter classification from 
attractant to repellent. It is also likely that computations within the same experimental 
setup will have varying results. 

 

 
 

Figure 23: A photograph of the experimental space at the start of an experiment. 
 
To experiment with our approach, we distributed five oat flake nodes within 90mm Petri 
dishes lined with a moistened filter paper (Figure 23). A short musical phrase (Figure 
24) was assigned to each of the five nodes. By way of creating the active zone and 
initiating the machine, we inoculated the plasmodium into the space using a colonized 
oat flake. As this oat flake also represented a node, we assigned it a musical phrase as 
well.  
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In order to interface with the KU machine, to interpret the plasmodium’s behaviour and 
process the musical phrase transformations, we designed some custom software split 
into two sections, the recorder and the interpreter.  
 

 
(a) 𝑃! 

 
(b) 𝑃! 

 
(c) 𝑃! 

 
(d) 𝑃! 

 
(e) 𝑃! 

 
(f) 𝑃! 

 
 
Figure 24: Musical phrases assigned to the nodes of the P.polycephalum KU machine. 

 
The recorder section was used to apply digital labels and monitor the computation using 
time-lapsed imagery; we took snapshots every 30 minutes. Once the computation had 
halted, the interpreter section implemented the algorithmic composition. Here, the 
software was preloaded with our musical phrases (using MIDI files), and required us to 
inform it of the active zone’s movement at each time step: e.g., (𝑃! → 𝑃!). In this 
example, we programmed the interpreter to transform musical phrases using universal 
rules, instead of assigning each node individual rules. 
 
The rules split each phrase into four sections (𝑃!𝑥!,… ,𝑃!𝑥!), and transform each MIDI 
note value, the delta time between note onsets and each note’s duration. The rule 
compared values within each section against the mean µ of their respective counterpart 
section. The resulting difference values were then divided by the other section’s 
respective standard deviation σ, and rounded to the nearest whole number. However, if 
the σ was equal to 0, the software combined both section’s phrases and calculated a 
new value for σ. Subsequent values were next multiplied by their own section’s σ and 
added to the mean µ, resulting in the transformed musical phrase. This is formalised as 
follows (1): 
 

𝑃! → 𝑃! =
𝑃!𝑥!! − 𝜇𝑃!𝑥!

𝜎𝑃!𝑥! × 𝜎𝑃!𝑥! + 𝜇𝑃!𝑥!  

(1) 
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If, however, 𝑷𝒏𝒙𝒊𝒏 < 1, then the algorithm would replace the value with the µ of their 
respective counterpart section.  
 
 

 
(a) t = 0  (b) t = 1  (c) t = 2 
 

 
(d) t = 3   (e) t = 4  (f) t = 5 
 

 
(g) t = 6  (h) t = 7  (i) t = 8 
 

 
(j) t = 9 

Figure 25: An overview of our experiment with the P.polycephalum KU machine. 
 
An overview of an experiment with the P.polycephalum KU machine is shown in 
Figure 25, depicting the active zone dynamics described in Table 1. These 
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illustrations are of the experimental setup shown in Figure 23. Each illustration 
correlates to one of the sections in Figure 26. The time step when the plasmodium 
added a dynamic node to the storage structure is shown in 25(f), which is also 
shown in photograph form in Figure 28. 
 

 
 
Figure 26: An example of a musical result. This score is labelled to correlate with the 

time steps displayed in Table 1 and the illustrations depicted in Figure 25. 
 
 

 
 
Figure 27: One of the transformations made by our system at t = 2, using the rules 
presented in Equation 1. As depicted in Figure 25(c), 𝑃𝟒 was the origin node and 𝑃𝟔 

the destination. 
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Timestep Origin 
Node 

Destination 
Node 

1 P1 P4 
2 P4 P6 
3 P1 P3 
4 P1 P2 
5 P4 P7 
6 P7 P3 
7 P3 P5 
8 P7 P5 
9 P5 P6 

 
Table 1: The active zone movements of the example experiment. 

 
 

 
 
 

Figure 28: A photograph of t = 5, schematically shown in Figure 25(f). In this case, 
the active zone added a dynamic node to the storage structure by forming 

pseudopods that dispersed on several different trajectories. 
 

If the organism added a dynamic node to the storage structure (a protoplasmic vein 
junction), our system combined the two phrases of the nodes at either end of the 
edge where the junction originated, and saved this phrase under a unique label 𝑃!. 
However, if the plasmodium created the dynamic node from extending pseudopods 
that dispersed in more than two trajectories, then the node was assigned the original 
node’s musical phrase. As the organism’s protoplasmic vein network can become 
very complex, we only classified what we considered to be major vein junctions as 
dynamic nodes. An example of our dynamic node classification process is depicted in 
Figure 27. Our rationale for only classifying major junctions as dynamic nodes was 
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due to the techniques and imaging equipment we would require to analyse the 
smaller (microscopic) parts of the organism’s network. Once the system had 
processed the transformations, it rendered the composition into a standard music file, 
which can be loaded into most music editing software.  

The experiment described here took approximately 92 hours to complete, with the 
computation halting as the organism entered its dormant sclerotium phase. The 
organism entered this dormant phase as a result of it exhausting available sources of 
food and the filter paper substrate drying out. Table 1 summarizes active zone 
dynamics while Figure 25 displays a sequence of illustrations of the time-lapse 
photos. During the experiment, the plasmodium added one dynamic node 𝑷𝟕 to the 
storage structure, which occurred at t = 5. This 𝑷𝟕 node formed from an active zone 
originating from 𝑷𝟒, which formed pseudopods that dispersed on two different 
trajectories (Figure 28 ), first arriving at 𝑷𝟑 at t = 6, then arriving at 𝑷𝟓 at t = 8. 
Figure 26 shows the algorithmic composition result of our experiment. As the 
organism created a dynamic node, the algorithm created a new musical phrase 𝑷𝟕, 
which was a 𝑷𝟒 phrase at t = 5. Depicted in Figure 27 is one of the transformations 
made by the system at t = 2, showing the transformation of nodes 𝑷𝟒 and 𝑷𝟔, 
resulting in a new iteration of 𝑷𝟔. Note that the result of this algorithmic composition 
approach was reminiscent of the set of given musical phrases, but with modifications.  
 
At this point of our research we were able to confirm that P.polycephalum exhibits 
properties that can be harnessed to implement systems for generative audio and 
music. The experience we gained from working with the organism and implementing 
the systems prepared the ground for our current research, which is aimed at building 
general-purpose bio-processors with this organism. 
 
 
2.6 Biocomputer Music: Towards Physarum polycephalum Bio-processors 
 
The material make up and scheme of our conventional computer’s hardware have 
remained relatively unchanged throughout the years, with the main developments 
concerning reduction in size and heightened efficiency. The material base of those 
computing architectures has revolved around the three fundamental passive circuit 
components: capacitor, inductor and resistor. In 1971, Chua theorised a fourth 
fundamental component (Chua 1971): the memristor. Unlike the other three 
components, the memristor is non-linear and possesses a memory. The trajectory 
of these developments seems to be following the trajectory of Turing and von 
Neumann, in the sense that Chua came up with the theory and now someone needs 
to implement it in hardware (Strukov et al. 2008). There is no memristor 
commercially available to date; it still needs to be engineered for mass production.  
 
The memristor is exciting because it has the potential to revolutionise the material 
basis of computation. The memristor changes its resistance according to the 
amount of charge that has previously run through it. As a result of its resistance 
function, a memory of previous states can be accessed by applying voltages across 
the component’s terminals. For a detailed introduction to the memristor, please refer 
to Chapter 6. 
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In 2009, Pershin and colleagues published a paper that described P.polycephalum’s 
adaptive learning behaviour in terms of a memristive model (Pershin et al. 2009). 
Subsequently Gale and colleagues demonstrated in laboratory experiments that the 
protoplasmic tube of the slime mould displayed behaviour consistent with 
memristive systems (Gale et al. 2014). We followed these works with research 
aimed at implementing P.polycephalum-based memristors, or biomemristors. We 
have been developing increasingly sophisticated versions of biomemristors based 
on P.polycephalum, which we have used to build various prototypes of interactive 
musical biocomputers. Chapter 8 discusses this work in more detail. 
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Figure 29: The first version of ICCMR’s interactive musical biocomputer. 
 

Miranda has composed two unprecedented pieces of music for piano using two 
different instances of the interactive musical biocomputer. The first, entitled 
Biocomputer Music, was premiered at PACMF 2015, Plymouth, UK. Here, the 
biocomputer listens to the pianist and generates musical responses in real-time, 
which are played on the same piano through electromagnets that set its strings into 
vibration (Figure 30). The second, entitled Biocomputer Rhythm, was composed for 
the 2016 edition of PACMF, where the biocomputer also plays percussion 
instruments. Here the biocomputer was programmed with the ability to learn how to 
produce sequences of musical responses based on the sequences played by the 
pianist. 

 
 

 
 
 
Figure 30: The biocomputer plays the piano through electromagnets placed close to 

the strings. 
 
 
A recording of Bicomputer Music is available through SoundCloud (Miranda 2014) 
and video documentaries introducing the research and both compositions are 
available through Vimeo (Miranda 2015, Miranda 2016). 
 
 
2.7 Concluding Remarks and Further Work 
 
Research into UC for sound and music is no longer in its infancy, but it is far from 
mature yet. Most developments are still in the proof of concept stage, but this has 
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not deterred the Computer Music community to develop musical experiments, and 
produce compositions and performances at professional level. 
 
One important vein of research that we are developing at ICCMR concerns the 
development of the biomemristor, which is discussed in more detail in Chapter 8. To 
this end we are working towards gaining a better understanding of 
P.polycephalum’s material make up and the parameters for handling its 
memristance. What is exciting about this organism is that it is a biological system 
that displays complexities, which might be harnessed to implement different classes 
of memristors or variations thereof (Chua 2015). 
 
Once the components of P.polycephalum are better identified and characterised, a 
natural progression would be to investigate the possibility of engineering, using 
these biological components, a comparable system to operate in vitro rather than in 
vivo. In doing this, we may be able to reduce system volatility and standardise 
components by re-engineering some of the existing biological elements. In essence, 
this is a Synthetic Biology approach. Synthetic Biology is an engineering approach 
to biology involving the rational design of devices and systems using biological 
materials and components of known technical specifications. An additional benefit of 
producing components this way is the ability to engineer elements that do not exist 
in nature. By this we mean add components that are not part of the natural 
biological system. This could involve, for example, coupling the electrical conducting 
system to various actuators. Adding other electrical components such as different 
types of switches (toggle, selector, proximity) should also be possible. Success here 
would widen the application of P.polycephalum-based biomemristors. 
 
Another important vein of research concerns the development of suitable encoding 
methods to represent musical information on biomemristors and develop methods 
by which the system processes and generates music, which flesh out the non-linear 
analogue nature of those components. We believe that research at this front will 
also shed light on musical representation and processing for other modalities of UC, 
such as quantum computing music. 
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2.9 Questions 
 

1. Why are Cellular Automata suitable for modelling UC? 
2. Are there any other methods for simulating UC on conventional computers? If 

so, give an example of such simulation. 
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3. Can you think of ways of using the Cellular Automata reaction-diffusion 
model to generate musical sequences instead of synthesise sounds? 

4. Why it was necessary to apply data compression to the data produced by the 
in vitro neuronal networks? 

5. How does the violin interact with atomic particle tracks in the Cloud Chamber 
experiment? 

6. What is the main barrier that computer musicians face in order to experiment 
with UC? 

7. What is Physarum polycephalum and why this organism is suitable for 
research into UC and music? 

8. Why has the granular techniques to synthesise sounds been adopted so 
widely in the works presented in this chapter? 

9. What is a memristor and why is the UC community excited about it? 
10.  What is Synthetic Biology and how does this connect with research into UC? 
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