3,433 research outputs found

    Impulse-based discrete element modelling of rock impact and fragmentation, with applications to block cave mining

    Get PDF
    Impulse-based methods efficiently and accurately model high-frequency collisions of complex shapes based on the enforcement of non-penetrating constraints. It does not rely on penalty parameters nor requires the computation of penetration between bodies. This work presents a novel necessary condition for energy conservation in impulse-based methods. In previous versions of the impulse methods, such as sequential and simultaneous impulse methods, the relative velocity at the contact points after collision is directly derived from the relative velocity before collision, in a purely simultaneous or sequential manner. This work presents a novel energy tracking method (ETM), in which the relative velocities are iteratively but gradually adjusted, simultaneously modelling their interaction at each iteration. ETM ensures the energy conservation while capturing the propagation of forces during collision. The ETM is applied to model the dynamics of fragment collision in the context of fragmentation. Two approaches of fragmentation are proposed: a finite-discrete element approach, and a low cost, fragmentation pattern-based approach. The first approach models the growth of fractures using the finite element method (FEM) and advanced re-meshing technology. This finite-discrete element approach suffers from the drawback of massive computational cost. The low-cost, fragmentation pattern-based approach separate colliding bodies directly. The fragmentation pattern is generated using Weibull distribution equations, the patterns and size distributions computed using full finite/discrete element simulations and experimental results. This work investigates the influence of fragmentation on the frequency of hang-up events and on the gravity flow of rock fragments within a block caving system. Numerical results indicate that models that do not consider fragmentation tend to overestimate the frequency of hang-up accidents.Open Acces

    A numerical method for fluid-structure interactions of slender rods in turbulent flow

    Get PDF
    This thesis presents a numerical method for the simulation of fluid-structure interaction (FSI) problems on high-performance computers. The proposed method is specifically tailored to interactions between Newtonian fluids and a large number of slender viscoelastic structures, the latter being modeled as Cosserat rods. From a numerical point of view, such kind of FSI requires special techniques to reach numerical stability. When using a partitioned fluid-structure coupling approach this is usually achieved by an iterative procedure, which drastically increases the computational effort. In the present work, an alternative coupling approach is developed based on an immersed boundary method (IBM). It is unconditionally stable and exempt from any global iteration between the fluid part and the structure part. The proposed FSI solver is employed to simulate the flow over a dense layer of vegetation elements, usually designated as canopy flow. The abstracted canopy model used in the simulation consists of 800 strip-shaped blades, which is the largest canopy-resolving simulation of this type done so far. To gain a deeper understanding of the physics of aquatic canopy flows the simulation data obtained are analyzed, e.g., concerning the existence and shape of coherent structures

    On state and inertial parameter estimation of free-falling planar rigid bodies subject to unsche dule d frictional impacts

    Get PDF
    This paper addresses the problem of simultaneous state estimation and inertial and frictional parameter identification for planar rigid-bodies subject to unscheduled frictional impacts. The aim is to evaluate to what level of accuracy, given noisy captured poses of an object free-falling under gravity and impacting the surrounding environment, it is conceivable to reconstruct its states, the sequence of normal and tangential impulses and, concurrently, estimate its inertial properties along with Coulomb’s coefficient of friction at contacts. To this aim we set up a constrained nonlinear optimization problem, where the unscheduled impacts are handled via a complementarity formulation. To assess the validity of the proposed approach we test the identification results both (i) with respect to ground truth values produced with a simulator, and (ii) with respect to real experimental data. In both cases, we are able to provide accurate/realistic estimates of the inertia-to-mass ratio and friction coefficient along with a satisfactory reconstruction of systems states and contact impulses
    • …
    corecore