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bDANI Analitica s.r.l.

Abstract

This paper addresses the problem of simultaneous state estimation and inertial and frictional parameter
identification for planar rigid-bodies subject to unscheduled frictional impacts. The aim is to evaluate to
what level of accuracy, given noisy captured poses of an object free-falling under gravity and impacting the
surrounding environment, it is conceivable to reconstruct its states, the sequence of normal and tangential
impulses and, concurrently, estimate its inertial properties along with Coulomb’s coefficient of friction at
contacts.

To this aim we set up a constrained nonlinear optimization problem, where the unscheduled impacts are
handled via a complementarity formulation. To assess the validity of the proposed approach we test the
identification results both (i) with respect to ground truth values produced with a simulator, and (ii) with
respect to real experimental data. In both cases, we are able to provide accurate/realistic estimates of the
inertia-to-mass ratio and friction coefficient along with a satisfactory reconstruction of systems states and
contact impulses.

Keywords: Inertia estimation, contact dynamics, frictional impacts, nonlinear optimization.

1. Introduction and motivation

The possibility of identifying inertial parameters of objects undergoing passive trajectories in the presence
of frictional contact can be beneficial to a wide range of fields. Therefore, it should not surprise that studies
to solve this problem efficiently have been carried out for many years and for the most diverse applications.
As an example, the ability to render a robot capable to autonomously learn the characteristics of an object,5

in order to dexterously manipulate it, to move it or simply to predict its trajectory, is a valuable resource
which would greatly broaden the set of tasks that could be achieved with minimal human intervention.

One of the most intriguing scenarios that springs to mind, when dealing with inertia identification, is
probably humanoid robotics. Here a robot needs to not only to estimate the inertia of objects it is going to
interact with, but also to continuously track its own time-varying inertia, in order to balance properly while10

performing given tasks. Even in more classical scenarios like those typical of industrial manufacturing, the
growing need for autonomy would greatly benefit from the implementation of handling systems which could
autonomously decide upon the most appropriate way to manipulate objects undergoing various processes.
For the above mentioned situations, and possibly many others, the knowledge of the inertial parameters
involved is principal to develop controls without the need to rely on a-priori models, often incapable of15

accounting for the many variables governing complex tasks.
In this paper, we set out to investigate the possibility of identifying the inertial parameters of planar rigid

objects undergoing frictional unscheduled impacts, with the sole knowledge of their motion as captured with
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a low-cost vision system — with resolution and frame rate typical of a common action camera. While trying
to achieve this goal, we introduce some novelties which fix some lacks and issues with other formulations.20

In particular: (i) we identify the friction coefficient between falling object and environment; (ii) instead of
using raw data from the camera, along with its noise, we use those data to build a virtual trajectory, which
fits the noisy one while remaining physically consistent. In this way, we have a noise filter built inside the
identification formulation; (iii) we provide an identifiability analysis that explains the reason why using raw
and noisy data is not a good idea in the context of inertia identification.25

The envisioned application of our work is to endow a robot with the ability to learn the inertial properties
of an object by watching its free-falling trajectories when it is thrown by another agent. In a developmental
perspective, this would resamble how nonverbal babies learn the laws of physics and the properties of their
toys, among other actions, by dropping them [1].

The paper is organized as follows: Sect. 2 provides motivations by analyzing a broad set of solutions30

proposed in the literature for inertial identification in different engineering disciplines and applications. The
comparison is then focused towards scenarios closer to our contribution, namely inertial identification in the
case of free-falling objects undergoing unscheduled frictional impacts.

In Sect. 3 we recall the time-stepping scheme behind the contact dynamics model used in our simulator,
which makes use of a simple method to keep track of contact events. Even if state of the art methods are35

recalled, the main motivation for this section is to fix the notation for the rest of the paper. The formulation
as a Nonlinear Programming Problem (NLP) of the whole framework and a procedure for its solution is
provided as well.

In Sect. 4, after using the model adopted in Sect. 3 to generate simulated trajectories of a 2D object, we
verify that the simulated motions give a realistic representation of contact events by analyzing impact values40

and the associated energy dissipation, thus proving that such formulation provides a physically consistent
methodology for predicting the behaviour of a known object. Our results are also compared with those ob-
tained with other formulations employed in the literature that make use of direct force-gap complementarity
conditions, showing that only the approach we adopt gives realistic information that converge to asymptotic
values as the time step decreases.45

We then modify the presented formulation for identification purposes by proposing, in Sect. 5, a modified
NLP that solves simultaneously the problem of state and parameter estimation. Here, an observability
analysis is also performed to assess parameter identifiability under given conditions.

Section 6 shows the results of our identification method, applied to both simulated motions and real
experiments. Conclusions and suggestions for future improvements are presented in Sect. 7.50

2. Literature review

2.1. State and parameter estimation

In order to design efficient and robust controls for mechanical systems with contacts, one should be able
to predict their behaviour with a sufficient level of realism. This requires accurate knowledge of the most
relevant dynamic quantities such as body inertia, contact friction and restitution coefficient.55

In a general estimation problem, one can propose a first classification of the contributions based on
whether only the (time dependent) state of a system, only its (constant) parameters or both simultaneously
should be estimated. A brief description of such problem categories can be found in [2], where also a variation
of the widely used Extended Kalman Filter (EKF) for the resolution of nonlinear estimation problems is
introduced.60

Examples of state estimation can be found in [3], where the focus is on the estimation of pose and
motion of objects in planar pushing tasks, in [4, 5], where vision and tactile information to estimate an
object’s state are combined, and in [6], where the use of contact sensors is made for the same purpose.
In [7], Verscheure estimates contact parameters, namely stiffness and friction, thus solving a so-called system
estimation problem. Among the contributions focused on dual estimation, i.e. the concurrent resolution of65

state and system estimation, we find [8] and [9], each devising a different version of the SLAM (Simultaneous
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Localization And Mapping) problem, and [10], where the authors make use of a physics engine to render the
estimation dynamically consistent.

According to the presented classification, our work belongs to the category of dual estimation. In fact, we
combine state estimation and inertia and friction identification to fit a measured trajectory with a dynamic70

model where some parameters are unknown and should be estimated as well.

2.2. Inertia identification

If the focus of the estimation problem is towards object’s inertia properties, namely mass, inertia tensor
components and position of its center of mass, there are various reliable options, provided one can directly
interact with the object under investigation by means of appropriate equipments. Surveys of methods for75

the identification of the above-mentioned inertia properties can be found in [11] or, for the particular case
of modal analysis, in [12].

When the object is relatively accessible for the process, a modal analysis can be performed, as in [13]
and [14], with the use of platforms on springs. A well rooted method for inertia identification requires the
use of a multifilar pendulum. We find examples of such technique in [15], [16] or [17], where it is suggested80

to exploit a universal joint to cope with the issue of aligning the object’s center of gravity with the axis of
the pendulum. West [18] and Barreto [19] place the objects under investigation on Stewart platforms and
measure the joint and the base forces and torques resulting from an imposed motion. A similar procedure is
followed both in [20] and in [21], where the authors make use of appropriate measurement manipulators to
impose the motion, as well as in [22], where a bench with rotating joints is devised, which is equipped with85

load cells.
The above methodologies can only be applied when the object under investigation is not in use for the

duration of the measuring process, which often takes a long time. Our work, instead, tries to eliminate the
need for physical interaction with the object, whose inertial properties should be identifiable while it is being
operated by other agents.90

2.3. Inertia self–identification

Examples of machines self-identification are common in literature. A reference case in the field is the one
described by Atkeson in [23], who equipped a robotic manipulator with appropriate force and torque sensors
to identify not only the inertia of a manipulated load, but also of its own links.

More recently, road vehicle inertia identification has become possible by means of on-board sensors as95

described in [24] and [25], with the possibility of exploiting also GPS information, as investigated in [26]
and [27].

Although the above-mentioned works allow for identification of machines while they are in operation, the
sensors’ information required is very rich, diverse and still quite costly (forces, torques). While it may make
sense for high-end vehicle applications, there are some fields which would greatly benefit from a reduction100

of the required sensors used in the identification process. That is why the formulation we present makes use
of visual data only, as captured with a relatively low-cost camera, making it a fairly affordable solution for
anyone.

2.4. Inertia identification from visual data

With the aim of reducing the needed data for identification, Ayusawa in [28] and [29] identifies a multibody105

system’s inertia by measuring its posture with a motion capture equipment. The limits of his work, from our
perspective, is that contact forces must be absent (as in the case of free-flying objects) or known through
measurements. These assumptions, of course, eliminate the high nonlinearities connected with contact events
which, instead, are the main challenge and contribution of our work.

With the precise aim of including contact events and contact forces in the inertia identification process,110

we find the work of Fazeli [30]. This paper is indeed the closest to ours, both in terms of goals and approach,
and actually inspired our own research in this field. Our study is devised with the aim to improve upon
results by Fazeli’s paper by relaxing some of the hypotheses therein and resolving some of its issues. Similarly
to [30] we setup a nonlinear problem (NLP) to reconstruct the trajectory of the identified object. However,
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Figure 1: A representation of normal and tangential unit vectors forming the frames {S(j)} = {Q(j); t(j),n(j)}, for each
contact point Q(j) of a generic 2D object.

in the process of performing inertia identification, we also present mainly the following improvements to115

state of the art methods: (i) provide an estimate for the unknown friction coefficient, and (ii) smoothen
the reconstructed trajectory instead of making direct use of possibly very noisy data. Our contribution also
extends to (iii) an original observability analysis to justify the need of reconstructing the object’s trajectory
instead of using the captured, noisy one.

A very interesting study where concurrent state and parameter estimation are performed in the context of120

contact and manipulation is [10]. However, here the estimation is focused mostly towards contact parameters,
such as contact stiffness and friction, and the sensor data are much richer and costly than those provided by
a single camera (ATI force and torques sensors, Vicon motion capture systems).

Similar studies on informative trajectories for identification, called persistently exciting (PE) trajectories
can be found in [31] or [32]. However, these analyses make stricter assumptions on types of motions undergone125

by the system which are completely removed in our approach.

3. Simulation model – contact dynamics with restitution

In this section we present a dynamic simulation model with intermittent contacts that provides a sufficient
level of realism in terms of contact impulses and energy dissipation to generate virtual experiments of an
object free-falling and impacting the surrounding environment. This model is adapted from the time-stepping130

schemes originally proposed in [33] and [34]. Investigations on the efficiency of such schemes can be found
in [35]. No original contributions are claimed in this section. Its motivation is mostly to establish the
notation and present the relevant states and parameters of the system to be identified later. The simulated
trajectories and the contact impulse sequences, generated with this model, will be used as ground truth
values to be compare with the outcome of the identification program explained later in Sect. 5.135

3.1. Dynamics

We consider a 2D environment and Nc contact forces acting on a single object at points Q(j), with
j = 1, . . . , Nc. By attaching frame {S(j)} = {Q(j); t(j),n(j)} to each contact point, where n(j) and t(j) are,
respectively, the inward normal and tangent unit vectors to the object’s boundary, the corresponding contact

force f (j)
c can be decomposed in its normal and tangential components as f (j)

c = f
(j)
n n(j) + f

(j)
t t(j), as in140

Figure 1.
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By labelling forces as conservative, contact-generated, and external ones, respectively, the Newton-Euler
equations of motion of the object can be written as follows

Mv̇ + K(q,v) = −∇V + Gσ + f ext (1)

v = q̇ (2)

where:

• q = (x y θ)
T ∈ R3 is object’s configuration, with x and y coordinates of its center of mass (COM)

and θ its orientation with respect to a fixed frame;

• v = (vx vy ω)
T ∈ R3 is the object’s velocity, with vx, vy linear velocities of its COM and ω its145

angular velocity with respect to a fixed frame;

• M := diag (m, m, J) ∈ R3×3 is the object’s inertia matrix, m being its mass and J its moment of
inertia with respect to the COM;

• K = K(q,v) ∈ R3 is the vector containing the object’s gyroscopic terms;

• ∇V = ∇V(q) ∈ R3 is the gradient of the potential energy, which gives the resultant of the conservative150

forces;

• G = G(q) = (N(q) T(q)) ∈ R3×2Nc is the generalized grasp matrix, built with matrices N(q) ∈
R3×Nc and T(q) ∈ R3×Nc which map, respectively, normal and tangential contact forces at each Q(j)

into wrenches with respect to the COM and appear explicitly as follows

N(q) =
(

N(q)(1) · · · N(q)(Nc)
)
,

T(q) =
(

T(q)(1) · · · T(q)(Nc)
)

;
(3)

• σ =
(
σTn σTt

)T ∈ R2Nc is the vector where all the normal and tangential components of the contact
forces are stacked:

σn =
(
f

(1)
n · · · f

(Nc)
n

)T
,

σt =
(
f

(1)
t · · · f

(Nc)
t

)T
;

• f ext ∈ R3 is the resultant of external non-conservative forces acting on the body, if any.

3.2. Restitution

To determine whether an object makes contact with the environment and which components of force are
involved, we first look at the state of the gap, following the considerations formulated in [36] for a single155

point contact.

For the j-th contact pair, the normal gap g
(j)
n (q) is the distance between points on the object and the

environment that are “most likely” to make contact; in the case of object and environment locally convex

around Q(j), g
(j)
n (q) is the minimum distance between the two. The normal gap is a scalar quantity that

is positive (> 0) when there is no contact, negative (< 0) when there is interpenetration and equal to zero160

(= 0) if there is contact.

The time derivative of g
(j)
n (q), here denoted as separation velocity ġ

(j)
n (q,v), represents the rate at which

the gap opens. If it is negative, the object is moving towards the environment, reducing the gap and possibly
making contact.

By using the above-mentioned quantities, it is possible to make a distinction among four possible situa-165

tions, as shown in Figure 2. No contact force is present when either the body is separated (case 1: g
(j)
n (q) > 0)

or moving away from the environment (case 4: ġ
(j)
n (q,v) > 0). The conditions in which contact forces are

present are those of impulsive contact. These happen when the two bodies are either moving towards each

5
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Figure 2: Four possible contact states. Case 1: g
(j)
n (q) > 0 (no impulse); Case 2: g

(j)
n (q) = 0 and ġ

(j)
n (q,v) < 0 (impulse);

Case 3: g
(j)
n (q) = 0 and ġ

(j)
n (q,v) = 0 (impulse); Case 4: g

(j)
n (q) = 0 and ġ

(j)
n (q,v) > 0. (no impulse).

other from a tangent condition (case 2: g
(j)
n (q) = 0, ġ

(j)
n (q,v) < 0), or in the event of prolonged contact

(case 3: g
(j)
n (q) = 0, ġ

(j)
n (q,v) = 0), when the velocity field keeps the body in tangent contact with the170

environment.
To include all the above possible states in our formulation we use the classical Newtonian approach to

contact [37]. The restitution coefficient ε, with 0 ≤ ε ≤ 1, is introduced to model contact elasticity; its value
ranges from completely inelastic (ε = 0) to perfectly elastic (ε = 1) contact.

The relation between normal contact force f
(j)
n and kinematic state of contact is then given by the restitution175

conditions

f (j)
n ≥ 0

ġ(j)
n (q,v+) + ε ġ(j)

n (q,v) ≥ 0 (4)

f (j)
n

(
ġ(j)

n (q,v+) + ε ġ(j)
n (q,v)

)
= 0

where v+ is object’s velocity immediately after contact has occurred.

Conditions in Eq. (4), abbreviated as 0 ≤ f (j)
n ⊥

(
ġ

(j)
n (q,v+) + ε ġ

(j)
n (q,v)

)
≥ 0, are the well known

complementarity conditions [38]. These are introduced to cope with mutually exclusive conditions and are
highly nonlinear.180

In our case, by activating Eqs. (4) if and only if the gap is closed (g
(j)
n (q) = 0), we ensure that the

change in contact normal velocity ġ
(j)
n (q,v) is associated with (and caused by) a contact force f

(j)
n acting on

the object as a result of a collision, as shown in Figure 3.
There exists a number of proposed corrections that render complementarity problems more easily solvable,

but the drawback is often to smoothen them. This is certainly an issue when modelling rigid-body contacts,185

because contact forces are often impulsive; smoothed complementarity condition would tend to distribute
the contact impulse in a time window that is too wide for a rigid-body contact, thus reducing physical
plausibility.

We propose, instead, a solution that turns the contact phenomenon into an on/off condition. To this aim,
we transform restitution conditions in Eqs. (4) into Mixed Integer conditions. Mixed Integer Programming is
used when some variables are required to assume only integer values; in our case, by following the so called
Big-M method [39], we introduce a scalar quantity H, sufficiently large for our purposes, and two variables

for each j-th contact, z
(j)
c and z

(j)
nc , whose values are either 0 or 1. We then write the conditions as

0 ≤ f (j)
n ≤ Hz(j)

c

−Hz(j)
nc ≤ ġ(j)

n (q,v+) + ε ġ
(j)
n (q,v) ≤ Hz(j)

nc

z
(j)
c + z

(j)
nc ≤ 1,

(5)
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where variables z
(j)
c and z

(j)
nc are not part of the problem’s solution, but are introduced to keep track of active

contacts. This means that the third equation from Eqs. (5) will not be part of our formulation; the values

of z
(j)
c and z

(j)
nc are, instead, imposed by monitoring g

(j)
n (q) and ġ

(j)
n (q,v) and setting

(
z

(j)
c

z
(j)
nc

)
=



(
0
1

)
if g

(j)
n (q) > 0

∨
ġ

(j)
n (q,v) > 0

(
1
0

)
if g

(j)
n (q) ≤ 0

∧
ġ

(j)
n (q,v) ≤ 0

(6)

In this manner the appropriate constraint from Eqs. (5) is toggled.
Restitution conditions are incompatible with conditions that impose gap closure when contact force is190

present, i.e. 0 ≤ f
(j)
n ⊥ g(j)

n (q) ≥ 0; the first conditions are, in fact, the differentiated form of the latter
[37]. We therefore tolerate a small interpenetration between body and environment (gn(q) < 0). However,
interpenetration can be reduced by using a smaller time step h in the time discretization, as it will be shown
in Sect. 3.5.

To write Eqs. (5) for all Nc contacts on the body, we can exploit the fact that matrix N(q), which maps
normal contact forces into their contribution to the wrench at the COM, can be transposed to obtain a map

from object’s velocity v to the separation velocities ġ
(j)
n for all contacts. In so doing, we obtain

0 ≤ σn ≤ Hzc

−Hznc ≤ N(q)T (v+ + εv) ≤ Hznc,
(7)

where zc = ( z
(1)
c · · · z

(Nc)
c ) ∈ RNc and znc = ( z

(1)
nc · · · z

(Nc)
nc ) ∈ RNc . Their components are,195

again, imposed as in Eq. (6).

3.3. Friction

Frictional forces are regulated by the Maximum Dissipation Principle [40]. This principle states that the

feasible set of tangential contact forces f
(j)
t is the one that maximizes the rate of energy dissipation. Using

the tangential basis T(q) to consider the effects of all frictional forces on the COM, the power dissipated by

ng
-


tg
-


[ ]t-

[ ]t

[ ]t+

fn

ng
tg

tg
+


ng
+



Figure 3: Effect of Eqs. (4), activated for a posture q associated with g
(j)
n (q) = 0. A contact point approaching the environment

with normal velocity ġ
(j)
n (q,v) is subject to an inversion of its motion caused by a contact force f

(j)
n . After the impact, its

normal velocity becomes ġ
(j)
n (q,v+) = −εġ(j)n (q,v).

7



( )
n

jf

( )
t

jf

( )
c

jf

( )jQ

(a) Friction cone in 3D

( )
n

jf

( )
1

jd

( )
2

jd
( )
3

jd( )
4

jd( )
5

jd( )
6

jd
( )
7

jd
( )
8

jd
( )
9

jd ( )
10

jd
( )
11

jd
( )
12

jd
( )jQ

(b) Friction pyramid in 3D

( )
n

jf

( )jQ

( )jd−
( )jd+

(c) Friction pyramid in 2D

Figure 4: Approximation of the 3D friction cone (Figure 4(a)) as a 3D pyramid (Figure 4(b)) with positive spanning unit

vectors ~dl, with l = 1, . . . , p. In Figure 4(c), exact description of the friction cone in 2D by the two positive spanning unit

vectors ~d+ and ~d−.

friction on the body can be written as Wdiss = −vTT(q)σt. Since the objective is to maximize dissipation,
we search for the tangential forces that solve the minimum problem

min
σt

vTT(q)σt

s.t. Φ(f
(j)
t ) ≤ µf (j)

n ∀j
(8)

where Φ(f
(j)
t ) is a friction law that describes the set of feasible tangential forces and µ is the coefficient of

friction.
In order to solve the Constrained Optimization Problem (8), we introduce a vector of Lagrangian multi-

pliers λ = (λ(1) · · · λ(Nc))T ∈ RNc , and the Lagrangian:

L(σt,λ) = vTT(q)σt +

Nc∑
j=1

λ(j)
(

Φ(f
(j)
t )− µf (j)

n

)
The solution must then satisfy the Karush-Kuhn-Tucker conditions (KKT) [41]:

∂L(σt,λ)
∂σt

= T(q)Tv +
Nc∑
j=1

λ(j) ∂Φ(f
(j)
t )

∂σt
= 0

λ ≥ 0

µf
(j)
n − Φ(f

(j)
t ) ≥ 0, ∀j

λ(j)
(
µf

(j)
n − Φ(f

(j)
t )
)

= 0, ∀j

(9)

3.4. Friction law and its discretization200

The set of feasible frictional forces will be given by the Coulomb’s friction law which, considering the

general case of 3D contact and the tangential force vector f
(j)
t ∈ R3, takes the form Φ(f

(j)
t ) = ‖f (j)

t ‖2. By

substituting the above law in Eqs. (8) and (9), we bound the j-th contact force f (j)
c = f

(j)
t + f

(j)
n n(j) to lie

inside the friction cone as shown in Figure 4, and to be described by ‖f (j)
t ‖2 ≤ µf

(j)
n .

Since the friction cone introduces a strong non-linearity [37], an approximated form is usually employed

instead. The tangent plane for each contact will be spanned by p unit vectors ~d
(j)
l ∈ R3, with l = 1, . . . , p,

originating from the contact point Q(j), so that the cone is substituted with a pyramid, as in Figure 4.
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Contact force f (j)
c is then defined as the positive vector sum

f (j)
c = f (j)

n n(j) +

p∑
l=1

f
(j)
t,l

~d
(j)
l , f

(j)
t,l ≥ 0,

and the friction law becomes Φ(f
(j)
t ) =

∑p
l=1 f

(j)
t,l . We build a tangential basis Tl(q)(j) for each direction

vector ~d
(j)
l relative to the j-th contact, and then juxtapose the contributions from all the p directions. By so

doing, we obtain T̃(q)(j) = (T1(q)(j) · · · Tp(q)(j)), which is the discretized equivalent of basis T(q)(j) for

the tangential forces acting on each contact point Q(j). The global tangential basis T̃(q), which incorporates
the contributions from all the Nc contacts on the body, is then obtained as:

T̃(q) = (T̃(q)(1) · · · T̃(q)(Nc))

which has the same form of T(q) in Eq. (3).205

For a 2D contact, the friction pyramid is an exact description of the friction cone which is reduced to a

triangle with two opposite direction vectors ~d
(j)
l (l = 1, 2), as in Figure 4. We name these vectors ~d

(j)
+ and

~d
(j)
− and the associated tangential forces f

(j)
t,+ and f

(j)
t,−. The dimensions of the newly obtained matrices are,

in this case, Tl(q)(j) ∈ R3×1, T̃(q)(j) ∈ R3×2 and T̃(q) ∈ R3×2Nc .
By writing the KKT conditions in Eq. (9) for all Nc contacts on the body, and employing the newly210

obtained friction pyramid for 2D contacts, we obtain the set of equations that will model friction in our
formulation

λ ≥ 0 (10)

σ̃t ≥ 0 (11)

µσn −ET σ̃t ≥ 0 (12)

λT
(
µσn −ET σ̃t

)
= 0 (13)

T̃(q)
T
v + Eλ ≥ 0 (14)

σ̃Tt

(
T̃(q)

T
v + Eλ

)
= 0 (15)

where σ̃t = ( f
(1)
t,+ f

(1)
t,− · · · f

(Nc)
t,+ f

(Nc)
t,− )T ∈ R2Nc is the vector where all the components of the tangen-

tial forces are stacked, E := diag(e, . . . , e) ∈ RpNc×Nc is a diagonal block matrix with e = (1 · · · 1)T ∈ Rp,
and Eq. (15) is the direct consequence of prescribing non-negativity for all the terms in σ̃t (Eq. (11)).215

Conditions in Eqs. (10)–(15) can be written more compactly in the form of complementarity conditions

as 0 ≤ λ⊥
(
µσn −ET σ̃t

)
≥ 0 and 0 ≤ σ̃t⊥

(
T̃(q)

T
v + Eλ

)
≥ 0.

3.5. Time-stepping scheme

To setup a simulation model for an object in dynamic contact with a 2D environment, we collect Eqs. (1),
(7) and (10)–(15) and apply a discretization scheme based on the Implicit Euler method [33]. Therefore, we220

approximate derivatives as v = dq/dt ⇒ vk+1 = (qk+1 − qk)/h, where superscripts k and k+ 1 denote two
subsequent time instants and h is the time interval h = tk+1 − tk. This formulation requires the use of force

integrals instead of instantaneous forces, which we obtain as cn =
∫ tk+1

tk
σn dt and ct =

∫ tk+1

tk
σ̃t dt.

The time-stepping scheme resulting from the discretization is then given by the dynamic and kinematic
reconstruction equations

M(vk+1 − vk) + hK(qk,vk)vk = G̃(qk)ck+1 + h
[
fkext −∇V(qk)

]
, (16)

hvk+1 − qk+1 + qk = 0, (17)
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by the complementarity and inequality equations

0 ≤ λk+1⊥
(
µ ck+1

n −ET ck+1
t

)
≥ 0,

0 ≤ ck+1
t ⊥

(
T̃(qk)

T
vk+1 + Eλk+1

)
≥ 0,

(18)

and by the additional inequality equations

ck+1
n ≥0,

Hzk+1
c − ck+1

n ≥0,

N(q)T
(
vk+1 + εvk

)
≥−Hzk+1

nc ,

N(q)T
(
vk+1 + εvk

)
≤+Hzk+1

nc .

(19)

Here, G̃(qk) = (N(qk) T̃(qk)) ∈ R3×(1+pNc) is the generalized grasp matrix for the discretized case.
The active contacts are monitored via the discretized form of condition (6), by evaluating qk and vk, and225

building vectors zk+1
c = (z

(1) k+1
c · · · z(Nc) k+1

c ) ∈ RNc and zk+1
nc = (z

(1) k+1
nc · · · z(Nc) k+1

nc ) ∈ RNc accordingly.

3.6. The NLP formulation and its solution in CasADi

The simulation problem described by the discretized conditions in Sect. 3.5 is framed as a nonlinear
optimization program (NLP). Taking inspiration from [42], the nonlinearity of the complementarity conditions
is partially tamed by building the objective function as the squared norm of a vector obtained by stacking230

the two equalities of the friction conditions, i.e. Eqs. (13) and (15). The problem to be solved is then

min
qk+1,vk+1,

ck+1
n ,ck+1

t ,

λk+1

∥∥∥∥∥(ck+1
t )T

(
T̃(qk)

T
vk+1 + Eλk+1

)
(λk+1)T

(
µ ck+1

n −ET ck+1
t

) ∥∥∥∥∥
2

2

subject to: M(vk+1 − vk) + hK(qk,vk) = G̃(qk)ck+1 + h
[
−∇V(qk) + fkext

]
qk+1 − qk − hvk+1 = 0

0 ≤ ck+1
t

0 ≤ λk+1

0 ≤ T̃(qk)
T
vk+1 + Eλk+1

0 ≤ µ ck+1
n −ET ck+1

t

0 ≤ ck+1
n ≤ Hzk+1

c

N(qk)T
(
vk+1 + εvk

)
≥ −Hzk+1

nc

N(qk)T
(
vk+1 + εvk

)
≤ Hzk+1

nc

(20)

Using qk and vk from the k-th step, the NLP in Eq. (20) is solved to find the optimization variables at the
(k + 1)-th step.

For the numerical solution of the problem we used CasADi [43], a general purpose simulation and optimiza-
tion suite which provides several tools to efficiently formulate and solve large-scale optimization problems.235

For the program at hand, an Interior Point solver is used, namely IPOPT [44], already interfaced through
CasADi.

4. Simulation results

Since the formulation in Eqs. (20) will be employed to generate ground truth values (in simulation) related
to motion with contacts, it is first tested in some conditions chosen to capture the key aspects of contact240
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dynamics. The aim is to verify: (i) the correct generation of normal forces integrals, both for impulsive
and prolonged contact, (ii) that the effects of friction are coherent with the expectations deriving from the
observation of true objects in sliding motion, and (iii) that the dissipation of energy, when contact occurs,
has a realistic correlation with the type of contact, i.e. continuous for prolonged contact and discontinuous
for impulsive contact.245

All simulations are run in a condition of single point contact. This is due to issues regarding the use
of the restitution constraints from Sect. 3.2, namely the fact that they impose the normal velocity for each
contact point after the impact. If more than one point of the object has its normal velocity imposed at the
same time, the problem is over-constrained, unless all the velocities are compatible with a rigid-body motion,
which is usually not the case. This issue, which is addressed in other works such as [37], is only present in250

the simulation. When we introduce the identification formulation, the need for the restitution constraints is
dropped, and so is the requirement for single point contact.

After introducing the test case scenario, i.e. an elliptical object falling in a 2D environment and its
geometry, we run simulations in some selected conditions.

First, the values of normal contact impulses are compared with those computed by hand in the simple255

case of an ellipse falling from a still condition, so to verify their correctness.
Then, a comparison is made with a formulation that exploits, instead of restitution conditions in Eqs. (4),

the direct complementarity between normal contact force integral and normal gap 0 ≤ cn⊥ gn(q) ≥ 0. Such
formulation is referred to as Impulse-Gap Complementarity (IGC), whereas our formulation will be called
Impulse Restitution Complementarity (IRC). The use of IGC is very common in robotics when dealing260

with contacts, and this formulation is also the one the authors in [30] (see also references therein) rely on to
generate simulations that are then used to validate their identification program. Interestingly, the comparison
between IRC and IGC highlights some critical differences that make IRC a more realistic representation of
contact dynamics. Some critical aspects of the IGC have already been discussed in [37], the most crucial
being that the values of contact impulses are a random function of the time step h, and that the contact265

tends to generally mimic a perfectly inelastic behavior. For the above reason, when comparing our result
with the IGC, we set ε = 0 in the IRC. The above-mentioned aspects are discussed in Sect. 4.2.

The focus is then moved to the IRC alone. Here, the effects of friction (Sect. 4.3) and energy restitution
(Sect. 4.4) are isolated, so to verify whether the respective motion and energy dissipation are realistic.

The simulations are run on an ellipse with semi-axes a = 1.5 m and b = 1 m, mass m = 10 kg and270

moment of inertia J = 2 kg m2.

4.1. Test case scenario

Having selected an ellipse as our test object, we can explicitly show the geometric quantities that will be
used in the simulation.

With reference to Figure 5, we attach a local frame {Sl} = {G;xl, yl} to the ellipse, centered in its COM
G and aligned with its semi-axes a and b. The ellipse’s boundary is then described by its local parametric
equations {

xl(β) = ρ(β)cβ
yl(β) = ρ(β)sβ ,

where ρ(β) is the local ellipse’s radius

ρ(β) =
ab√

b2c2β + a2s2
β

,

β is the parametric coordinate and where the shorthand notation c(·) = cos(·) and s(·) = sin(·) has been275

introduced. The coordinates of point G in the global frame {S} = {O;x, y} and the orientation of the ellipse

are stacked in the configuration vector q = (x y θ)
T

, introduced in Sect. 3.1.
We model the environment as a single line segment, with a starting point P0 = (x0, y0) and forming an

angle α (α < 0 in Figure 5) with respect to the horizontal direction x. The signed distance l(β) between a
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Figure 5: Definition of the normal gap gn. For a given object configuration q = (x y θ)T , once the angle β? corresponding to
the minimum of generic distance l(β) is computed, the normal gap gn can be evaluated as gn(q) = l(β?).

point Q on the ellipse’s boundary and its projection QE on the environment is computed as the yp component,
with respect to the auxiliary frame {Sp} = {P0;xp, yp}, of vector QQE as follows

l(β) = (y − y0)cα − (x− x0)sα + ρ(β)s(β+θ−α). (21)

Extremizing l(β) by computing where ∂l(β)
∂β = 0, we find the two angles β1 and β2 such that

tanβ1 = tanβ2 =

(
b

a

)2
1

tan(θ − α)
.

The sought for angle β?, which actually minimizes l(β), can then be selected as follows

β? = arg min [l(β1), l(β2)] .

For the given configuration q, the normal gap gn(q) used in our formulation is then calculated as l(β?).
Finally, by finding the position of the contact point Q with respect to the center of mass G

GQ =

(
ρ(β?)c(θ+β?)

ρ(β?)c(θ+β?)

)
,

and properly transforming it in the global frame {S}, we are in a position to build the needed wrench bases

N(q) ∈ R3×1 and T̃(q) ∈ R3×2, whose expressions are

N(q) =

(
n

k · (GQ× n)

)

T̃(q) =

(
~d+

~d−

k ·
(
GQ× ~d+

)
k ·
(
GQ× ~d−

) ) ,
where n is the normal unit vector of the frame attached to contact point Q (see Sect. 3.1), ~d+ and ~d− are280

the direction unit vectors of the 2D friction pyramid introduced in Sect. 3.4 and k is a unit vector that is
perpendicular to the x− y plane (k = ~d+× n = −(~d−× n)).
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Figure 6: Peak values of the impulse cn, in function of the time step h used for the discretization, found with the IRC
formulation (blue line) and with the IGC formulation (red line) for the case of ellipse falling from an altitude of 10 m with
perfectly inelastic contact (for h = 1, 2, 5 ms the shape of cn is also plotted in Figure 7). The IRC shows convergence when
reducing h and a tendency to always give a good approximation of the true cn, whereas the IGC yields random values of peak
cn, with no apparent convergence for smaller h.

4.2. Normal contact impulse

The first tests are aimed at comparing the values of normal contact impulses generated with the IRC
and with the IGC. Firstly, we simulate an ellipse falling from a still condition with orientation θ0 = 0, with285

initial height y0 = 10 m.
In this special case, the true value of the contact impulse, used to validate the simulated results, can

be easily computed by hand. For a perfectly inelastic contact, the contact point of an ellipse with minor
semi-axis b impacts the ground with a velocity ġ−n = −

√
2g∆y, with ∆y = y0 − b, coming to a complete

stop, i.e. ġ+
n = 0. The impulse associated with this motion is computable as

cn =

∫ ġ+n

ġ−n

m dv = m
(
ġ+

n − ġ−n
)

= m
√

2g (y0 − b) ' 133 Ns, (22)

where m is the mass of the ellipse and g is the absolute value of the acceleration of gravity. Considering
cn = 133 Ns as the true value, we run simulations for both the IRC and the IGC formulations for different
time steps h.

The contact impulse trend, as a function of time step h, is depicted in Figure 6. The value, timing and290

extension of the contact impulse is shown in Figure 7.
With reference to Figure 7, two main differences are evident: (i) IRC always concentrates the impulse in

a single time instant, while IGC distributes the total impulse across two instants (ii) the IRC always yields
a good approximation of the true impulse, even for very coarse h, whereas the IGC gives random values for
the simulated impulse as h varies.295

From the values of the peak impulse computed with different time steps h in Figure 6, it is clear that
the impulse computed with the IRC has approximately the same value for every h, converging to the true
impulse as h → 0. On the other hand, IGC presents a random peak value for cn, unrelated to h, which
confirms Stewart’s statement: “This does not work: the resulting discretization behaves as if it had a random
coefficient of restitution when impacts occur”, see [37, p.19]).300

A second comparison is presented in the case of non zero initial velocities of the object, simulating the
case of a thrown ellipse, and keeping the contact inelastic (ε = 0 in the IRC). The initial conditions for this
example are q0 = (0 5 m 0)T , v0 = (10 m/s −3 m/s −8 rad/s)T .

The ellipse’s resulting motion, which is similar for the IRC and the IGC, is shown in Figure 9. Figure 9(a)
presents a time lapse of the complete motion of the ellipse, while Figure 9(b) shows a detail of the first two305
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Figure 7: Normal impulse cn generated by the IRC formulation (Figure 7(a)) and by the IGC formulation (Figure 7(b)), for
varying time step h, in case of ellipse falling from an altitude of 10 m and subject to perfectly inelastic contact. The true value
of cn, computed by hand with Eq. (22), is |cn| ' 133 N s. The results show that the IRC formulation always concentrates the
impulse in a single time instant (t = 78 ms for h = 1 ms and for h = 2 ms, t = 80 ms for h = 5 ms), while the IGC splits the
total impulse that stops the fall of the object into two time instants. Furthermore, the values of cn found with the IRC are
always a good approximation of the real value, whereas those yielded by IGC are random.

impacts. A video of this simulation is available at [45]. Focusing on the results for the normal impulses
relative to the first contact, both for the IRC (Figure 10(a)) and for the IGC (Figure 10(b)), is it possible to
come to conclusions similar to Figure 7, as in the case of the ellipse falling horizontally. The IRC concentrates
the contact impulse in a single instant, with approximately the same value, even for different h, whereas
the IGC yields random values for cn, again distributed across two time instants, with corresponding impact310

values that do not show any meaningful trend.
Figure 8 shows that the peak of the impulse for the IRC seems to approach a fixed value (' 86.5 Ns),

while the IGC shows non-convergent behaviour of the peak cn as a function of the time discretization h.

4.3. Friction

Due to the poor physical plausibility of the IGC concerning the normal impact representation, we consider315

it a very unreliable contact model and we omit its analysis for what concerns frictional effects. Therefore,
the following analysis are referred only to the IRC model.

The special case of sliding contact allows for the isolation of the effects of friction alone.
In this case, we consider an ellipse, already in tangent contact with the environment, with initial conditions

q0 = (0 1 m 0)T , v0 = (15 m/s 0 m/s 0 rad/s)T , such that horizontal component vx = 15 m/s is the only320

initial velocity. Given the above initial conditions, the first part of the motion is characterized by sliding
contact. The simulated ellipse trajectories, for different values of the coefficient of friction in the range
µ ∈ [0.3, 0.8], are shown in Figure 11. This figure indeed shows a realistic behaviour of the ellipse undergoing
frictional contact. Indeed, this does not constitute a proof of the correctness of the model. However, for a
general motion like this, since we do not have a ground truth (analytic) trajectory to compare with, only325

qualitative considerations based on experience are made.
In the first part of the trajectory, the clockwise moment of the frictional force causes a rotational accel-

eration to the object. For low values of the coefficient of friction, i.e. µ < 0.4, the object starts oscillating
while sliding and never loses contact with the ground. On the contrary, for high values of the coefficient of
friction, i.e. µ ≥ 0.4, enough rotational momentum is gained due to the impulsive nature of the normal force330

and the object takes a leap. A video of these simulations is available at [45].
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Figure 12 shows a plot of the total mechanical energy of the ellipse in the first part of the motion, i.e.
in the time range t ∈ [0, 1] s, for varying µ. It is interesting to observe that the energy dissipation presents
a strictly decreasing smooth trend for µ ∈ [0, 0.3), as expected for a purely sliding contact with gn(q) = 0.
For higher values of the friction coefficient, e.g. in the range µ ∈ [0.4, 1.0], the curve presents a steeper slope335

in the first portion connected with a “kink” to a second constant part representing the ballistic motion of
the ellipse (gn(q) > 0), when no energy is dissipated. Of course, when friction is absent (µ = 0), the energy
is conserved to its initial value also during sliding.

4.4. Restitution

In this section we highlight how the IRC formulation handles the energy restitution after an impact. It340

is worth stressing that this feature cannot be modelled with formulations adopting direct force-gap comple-
mentarity, like the IGC, as discussed in Sect. 4.2.

To this aim, different trajectories of an ellipse thrown with the same initial conditions: q0 = (0 5 m 0)T ,
v0 = (10 m/s −3 m/s −8 rad/s)T are simulated for different values of the restitution coefficient ε at contact.
Figure 13 shows the time lapses of the resulting motions, for ε ∈ [0, 1.0]. Again, the motion is coherent345

with experience, as the ellipse bounces progressively higher for increasing ε. A video of these simulations is
available at [45].

The trend of the ellipse’s total mechanical energy is depicted in Figure 14. The energy dissipation
is now discontinuous, as the ellipse instantaneously loses a fraction of energy at each impact encoded by
the restitution coefficient ε. Of course, the higher ε the smaller the loss of energy at every impact until,350

for ε = 1, the impact produces no loss of energy, i.e. a total energy restitution, thus keeping the total
mechanical energy constant. It is also worth observing that, due to the instantaneous nature of the impact,
the impulsive tangential impact ckt , resulting from the impulsive normal impact ckn, has no time interval
to dissipate energy through the frictional mechanism: this explains why no other dissipation mechanism is
revealed from Figure 14.355

5. Identification model

In this section we propose an algorithm that aims to identify the inertial properties of an object undergoing
unscheduled contacts with a fixed environment.
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Figure 8: Peak values of the impulse cn, in function of the time step h used for the discretization, found with the IRC
formulation (blue line) and with the IGC formulation (red line) for the case of thrown ellipse with perfectly inelastic contact
(for h = 1, 2, 5ms the form of cn is also plotted in Figure 10). The IRC shows convergence when reducing h and a tendency to
always give approximately the same peak value of cn, whereas the IGC yields random values of peak cn, whit no semblance of
convergence for smaller h.
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Figure 9: In Figure 9(a), the motion of a thrown ellipse is shown, simulated with the IRC formulation for the case of perfectly
inelastic contact (ε = 0). The IGC yields a similar motion, the differences between the two formulations being mainly in the
contact impulses (Figs. 10(a) and 10(b)), and in the impossibility, for the IGC, to vary the restitution of energy at contact (see
Sect. 4.4). In Figure 9(b), a detail of the motion, capturing the first two impacts of the ellipse with the ground. The blue line
follows the trajectory of the ellipse’s COM, while the red dashed line shows the trajectory of a reference point of the ellipse, so
to better visualize the rotation of the object.
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(b) IGC formulation

Figure 10: Normal impulse cn generated by the IRC formulation (Figure 10(a)) and by the IGC formulation (Figure 10(b)),
for varying time step h, in case of ellipse thrown with initial conditions q0 = (0 5 m 0)T , v0 = (10 m/s −3 m/s −8 rad/s)T

and subject to perfectly inelastic contact. The results show that the IRC formulation always concentrates the impulse into a
single time instant (t = 13 ms for h = 1 ms, t = 12 ms for h = 2 ms and t = 15 ms for h = 5 ms), while the IGC splits the total
impulse into two time instants. Although a real value for the normal impulse has not been computed, the values of cn found
with the IRC are always approximately the same (|cn| ' 86.5Ns), supposedly close to the real one. Again, the IGC formulation
yields random values of cn.
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Figure 11: Simulated motion of an ellipse starting with a sliding motion, obtained with the IRC formulation, for different
values of the friction coefficient µ. The blue line follows the trajectory of the ellipse’s COM, while the red dashed line shows
the trajectory of a reference point of the ellipse, so to better visualize the rotation of the object. Such motion is useful to verify
if the effects of friction in the presented simulation are the same to be expected from the sliding motion of a real ellipse. Is
is clearly shown that, as in real cases, the friction force has a progressively bigger effect on the motion, as it accelerates the
rotation of the object and, for µ ≥ 0.4, causes the ellipse to separate from the ground, due to a sufficient gain of rotational
momentum.
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Figure 12: Total mechanical energy of a simulated ellipse starting from a sliding condition. The time lapses of the different
trajectories obtained for various values of the coefficient of friction µ ∈ [0.3, 0.8] are shown in Figure 11. All simulations are
performed with the IRC formulation. This figure shows how friction produces a continuous loss of total mechanical energy,
with a steeper curve for higher coefficients of friction µ. The constant portion of the curve represents the ballistic motion of the
ellipse. In the case of no friction (µ = 0), the energy is clearly conserved during the whole motion. Such a behaviour concerning
energy dissipation is another evidence of the realism of our simulator.
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Figure 13: Simulated motion of an ellipse thrown from the height of 5m, with non zero initial velocity (v 6= 0), obtained with
the IRC formulation, for different values of the restitution coefficient ε. The blue line follows the trajectory of the ellipse’s
COM, while the red dashed line traces the trajectory of a reference point of the ellipse, as an aid visualize the rotational motion
of the object. Such motion highlights the effects of energy restitution in our simulator, as the impacts on the ground produce
higher bounces of the ellipse for increasing values of ε.
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Figure 14: Total energy of different simulations of the same ellipse bouncing on the ground. Each line refers to a different
restitution coefficient (for the cases ε = 0, 0.2, 0.4, 0.6, 0.8, 1, the associated trajectories, computed with the IRC formulation,
are depicted in Figure 13). The simulations are devised so that no sliding (dynamic friction) occurs, ensuring that the only
source of energy dissipation is the restitution coefficient ε. The impulsive contacts generated in this kind of motions produce
sudden drops in the energy, which occur in the instant of the impact. The effects of increasing ε are clearly to produce less
decrease in the total energy, until, for ε = 1, the energy is conserved throughout the motion, as it is completely restituted to
the object at every impact.
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More in details, we setup a nonlinear optimization program (NLP) that takes as inputs the measured
trajectories of an object and the geometry of both the object and the environment. Then, by properly fitting360

those trajectories with the simulated trajectory of a virtual object, the program estimates: (i) the sequence
of object’s states and contact impulses, (ii) its inertial properties, and (iii) the unknown coefficient of friction
at the estimated contact points.

It is worth remarking that we improve upon the approach presented in [30], in the following aspects:
(i) we do not take the measured postures as ground truth values, as they may be noisy and may violate365

complementarity conditions. Rather, we find smooth posture estimates that intrinsically verify contact con-
straints while minimizing the misfit with respect to the measured ones in the least-squares sense. Moreover,
(ii) we remove the assumption of perfect knowledge of the friction coefficient and we concurrently provide
an estimate for it as a by-product of our estimation procedure.

Since the formulation presented in Sect. 3 reproduces the trajectories of an object undergoing impulsive370

contacts with a good level of realism, all computable quantities obtained from our simulations are used as
ground-truth levels in the validation stage of our identification program.

5.1. NLP formulation for the identification program

Our identification program builds upon the formulation presented in Sect. 3.5, with the exception that
the restitution conditions typical of the IRC model in Eqs. (19) are now replaced with the complementarity
conditions

ck+1
n ≥ 0

gn(qk) ≥ 0

(ck+1
n )Tgn(qk) = 0,

(23)

typical of the IGC model, where gn(qk) = ( g
(1)
n (qk) · · · g

(Nc)
n (qk) )T are the normal gap values for pose

qk at time tk. Since here we are adopting the IGC model, to a distract reader, this choice may appear in375

contradiction to the need for the IRC model presented and verified in Sec. 4. Actually, no contradiction exists.
In fact, while in the simulation process, adopting the IGC model would lead to inexact simulation results,
in the estimation process employing the IGC contact model to fit measured object motions is acceptable
since the information on the velocity change caused by a normal impulse, and the specific contribution of
the restitution coefficient ε, are already encoded in the object’s observed motion and should not emerge from380

the contact model. On the contrary, avoiding to include the above conditions properly along with Eqs. (19)
in the simulation process, would ruin physical consistency of both simulated trajectories and impact values,
as documented in Sect. 4. Furthermore, as highlighted in [37], the restitution coefficient for real contacts is
a function of many factors, such as the orientation of the objects making contact. Assuming a single value
of ε for all the contacts would then over-constrain the identification problem, without adding benefits to the385

physical consistency of the motion.
The current admissible use of the simple complementarity conditions between normal impulse and normal

gap suffices in this stage to avoid unphysical interpenetration between the object and the environment.
As anticipated, since the measured trajectories are usually affected by measurement noise, we do not

consider them as ground-truth values, but we rather fit them with simulated trajectory by minimizing the
squared-norm of a residual vector, whose i-th component is defined as follows

χi = qi − qim ∈ R3, (24)

where qim is the measured (noisy) trajectory and qi its smooth estimate at time instant ti. Depending on
the equipment used to capture the motion and its maximum frame rate, we will have only Nm measured390

postures q0
m, . . . , q

Nm−1
m available in the time window of interest, as shown in Figure 15. However, in order

for the simulated trajectory to accurately capture the impact sequence and reproduce a realistic bouncing
motion, we use a time discretization h in our program so to have, in the recorded time window, a number
N of time instants much larger that the available measurements Nm, i.e. N � Nm.

The selection and pairing of the available estimated postures qi with the correspondent measurement qim395

is performed according to the following procedure. Let two subsequent measurements be available after an
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Figure 15: A qualitative example of a best-fit trajectory qk, with k = 1, . . . , N − 1, obtained as a result of the identification
performed on a series of captured postures qi

m, with i = 1, . . . , Nm − 1.
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Figure 16: Additional time instants are added between two subsequent captured ones ti, ti+1, with i = 1, . . . , Nm − 1, in order
to reach the desired time step for the discretization used in the identification program.

interval ∆t, and let the maximum time step compatible with an accurate simulation be h̄. We divide the
time interval in a number ns of sub-intervals ns = d∆t/h̄e, such that the aligned time step is h = ∆t/ns,
where h ≤ h̄, thus obtaining a finer discretization. Being t0 and tNm−1 the time instants corresponding
to the first and the last measured postures q0

m and qNm−1
m , respectively, the identification time window is400

T = tNm−1 − t0. The actual number of intervals is therefore N = ns(Nm − 1) and the time step is also given
by h = T/N.

In order to align the Nm measured postures to the N + 1 simulated postures at time instants tk, with
k = 0, . . . , N , coming from the newly obtained time discretization, Eq. (24) is ultimately written only for a
subset Nm of the total N + 1:

χi = q
N

Nm−1 ·i − qim = qns·i − qim ∈ R3, (25)

for i = 0, . . . , Nm − 1. The resulting pairing of time instants is shown in Figure 16.
In order to formulate the NLP we introduce, for each time interval

[
tk, tk+1

]
, a vector comprised by the

equalities (complementarities) in Eqs. (18), and Eq. (23):

Γk =

(ck+1
t )T

(
T̃(qk)

T
vk+1 + Eλk+1

)
(λk+1)T

(
µ ck+1

n −ET ck+1
t

)
(ck+1

n )Tgn(qk)

 ∈ R3. (26)

Then, by employing Eq. (25) and the previously defined Γk, we introduce the following two residual vectors

χ =

 χ0

...
χNm−1

 ∈ R3Nm ; Γ =

 Γ0

...
ΓN−1

 ∈ R3N .

By the metric on the residuals defined via the two weighting matrices Wχ := diag(w1
χ, . . . , w

3Nm
χ ) ∈

R3Nm×3Nm and WΓ := diag(w1
Γ, . . . , w

3N
Γ ) ∈ R3N×3N , the NLP for the identification problem takes the form405
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of the following least-squares minimization:

min
m,J,µ,qk,vk,

ck+1
n ,ck+1

t ,λk+1

χTWχχ+ ΓTWΓΓ

subject to: M(vk+1 − vk) + hK(qk,vk) = G̃(qk)ck+1 + h
[
−∇V(qk) + fkext

]
qk+1 − qk − hvk+1 = 0

0 ≤ ck+1
n

0 ≤ gn(qk)

0 ≤ ck+1
t

0 ≤ T̃(qk)
T
vk+1 + Eλk+1

0 ≤ λk+1

0 ≤ µ ck+1
n −ET ck+1

t

for k = 0, . . . , N − 1

(27)

The NLP in Eq. (27) takes as inputs only the measured postures qim in a certain time window, with
i = 0, . . . , Nm − 1, and the geometry of the object-environment system. As a result of the optimization,
it yields the best-fit trajectory qk, the contact impulses ck+1

n and ck+1
t , with k = 0, . . . , N − 1, and concur-

rently it estimates the coefficient of friction µ at contact and the object’s mass m and moment of inertia J .410

The problem is solved, again, by using CasADi interfaced to the interior point solver IPOPT.
It should be mentioned that, since we do not impose the equality in Eqs. (23) as a hard constraint, but

rather add it to the objective function in Eq. (27), its residual will not be exactly zero. The main motivation
for this choice is to speed up convergence and handle LICQ deficiency when solving MPECs (mathematical
programs with equilibrium constraints) using interior-point methods, as discussed in [46]. As a consequence,415

the gap does not need to be perfectly closed in order to generate force, and a contact impulse will often be
distributed over more than a single time interval. This aspect is highlighted in Sect. 6.1, where simulated
impulses are directly compared to the identified ones. However, since our primary objective is to identify the
object’s inertia, we can accept a slightly rougher estimate of the contact impulses, as long as the reconstructed
trajectory is sufficiently close to the captured one. A critical issue is setting matrices WΓ and Wχ with420

appropriate values of the weights. Since setting weights is, itself, a fairly open and quite hard problem in
general optimization, we chose not to address it in this work. We cannot, therefore, recommend specific
strategies; instead, we chose to adopt a general trial and error approach, where a set of weights is deemed
acceptable when: (i) the time-continuous approximation of the identified posture qk, with k = 0, . . . , N − 1,
is continuous in all the observed time window, and differentiable everywhere except where contact occurs425

— here, there will inevitably be a cusp — (ii) the time-continuous approximation of the identified velocity
vk, with k = 0, . . . , N − 1, is both continuous and differentiable when the object is in free flight, being
discontinuous only when contact occurs, since its normal component might change direction in the presence
of an impulse.

The two afore-mentioned conditions are used as indicators of a physically consistent trajectory connected430

to a reasonable choice of the weights.

5.2. Identifiability analysis

In this section we sketch an identifiability analysis to motivate the use of a reconstructed trajectory q
instead of a measured one qm, the latter being generally affected by measurement noise.

In the first part, we reduce the system’s dynamics into a linear form which is easier to analyze. We then435

search for the set of identifiable parameters. In the third part we discuss the degradation of the identification
results due to measurement noise, and motivate the benefical effects of the introduction of a reconstructed
trajectory. Lastly, we make observations on the informativeness of a captured trajectory.
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5.2.1. Linear form of the dynamics

Since the inertia of a free-flying object is trivially unidentifiable, we limit our analysis to the informative440

part of the motion, i.e. the time intervals in which contact occurs, and study the case of single contact.
Let the subset of intervals in which contact is active be formed by a number NI of elements over the total

N. The following analysis is also applicable in case of multiple contacts, as long as the considered subset
only contains instants with a single active contact. Let us also assume we employ directly the measured
trajectory in Eq. (27), under the hypothesis that the number of samples is sufficient. In this manner, the445

object’s postures qk are known ∀k, and velocities vk are easily computable with qk+1 − qk − hvk+1 = 0.
Therefore, gn(qk) and λk are fixed as well. The only unknown variables are then the object’s mass m and
moment of inertia J , the contact impulses ckn and ckt and the coefficient of friction µ.

Under the above hypotheses an analysis of the dynamic equations will be sufficient, since treating ckn and
ckt as unbounded does not affect the qualitative results. For a single time interval [tk, tk+1], we can write
Eq. (16) in the absence of external forces (fkext = 0) as a linear system:

 ∆vkx 0
∆vky − h g 0

0 ∆ωk

∣∣∣∣∣∣
−nkx −tkx
−nky −tky
−ρkn −ρkt




m
J
ck+1
n

∆ck+1
t

 =

0
0
0

 (28)

where ∆(·)k = (·)k+1 − (·)k, (nkx, n
k
y) and (tkx, t

k
y) are the components of nk and tk in the global frame,

ρkn = k · (GQk×nk) and ρkt = k · (GQk× tk), ∆ck+1
t = ck+1

t,+ − ck+1
t,+ is the net value of the tangential contact450

force and g is the gravitational acceleration, which is the only cause of conservative forces acting on our
system — it appears multiplied by the time step h.

If we partition the coefficient matrix in Eq. (28) into two sub-matrices:

Yk =

 ∆vkx 0
∆vky − h g 0

0 ∆ωk

 , −Gk =

−nkx −tkx
−nky −tky
−ρkn −ρkt

 ,

that is, a sub-matrix Yk which is relative to the object’s inertia and a sub-matrix Gk which is the grasp
matrix at instant k, we can build the global dynamic matrix for a number NI of time intervals, as follows

ANI =


Y1

Y2

...
YNI

∣∣∣∣∣∣∣∣∣
−G1 0 · · · 0

0 −G2 . . .
...

...
. . .

. . . 0
0 · · · 0 −GNI

 ∈ R3NI×(2+2NI) (29)

Denoting with wNI
= (m J c1n ∆c1t · · · cNI

n ∆cNI
t )T ∈ R2+2NI the vector containing the unknown

identification variables, the object’s dynamics is described by the following homogeneous system of equations

ANI
wNI

= 0 (30)

The possibility of estimating vector wNI
is then reduced to the analysis of matrix ANI

.

5.2.2. Identifiable set

With the dynamics in the linear form of Eq. (30), we can search for the set of identifiable parameters by455

observing that, in order for Eq. (30) to have a solution w̄NI
6= 0, matrix ANI

must be rank-deficient.
We start by considering a single time interval, in which the object’s dynamics is described by Eq. (28).

Matrix Ak = (Yk| −Gk) ∈ R3×4 has a one-dimensional null space, therefore Eq. (28) has infinite solutions.
We can, therefore, only solve for the ratio J

m thus obtaining

J

m
=
k ·
(
GQk × ~ak

)
∆ωk

, (31)
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where ~ak =
(
∆vkx ∆vky − h g

)T
.

Eq. (31), which is simply the dynamic rotational equilibrium for a rigid body in 2D, written with respect
to the contact point Qk, has important implications for our analysis. In fact, since m and J are constant
properties of the object, Eq. (31) must have the same value for all k = 0, . . . , NI − 1, for the motion to be
physically consistent. If this is the case, it is possible to choose a reference step, e.g. k = 0, and write:

k ·
(
GQk × ~ak

)
∆ωk

=
k ·
(
GQ0 × ~a0

)
∆ω0

, ∀ k (32)

Eq. (32) may be considered as a physical consistency condition, that should be verified ∀k whenever qk and
vk are representative of a real motion.

By applying conditions Eq. (32) to impose physical consistency to the global coefficient matrix ANI460

∀k, no matter how many time intervals NI are considered, ANI gains a one-dimensional null space. The
homogeneous problem of Eq. (30) has then infinite solutions, in the form wNI

= s τNI
, where s is a scalar

and τNI
∈ R(2+2NI) is the base vector of the null space associated with the coefficient matrix ANI

.
In order to find a scaled solution, one of the components of wNI

must be imposed, e.g. the object’s mass
m. In this manner, we can write the sought for solution as

w̄NI
= m τ̄NI

,

where τ̄NI =
(

1 J
m

c1n
m

∆c1t
m · · · c

NI
n

m
∆c

NI
t

m

)T
.

It is therefore impossible to identify both object’s mass m and moment of inertia J separately: in absence465

of known external forces we need to impose the value of an element of wNI
, i.e. we can only find the ratio

between J and m.

5.2.3. Effect of the measurement noise

As a result from Sect. 5.2.2, Eq. (32) is a physical consistency condition that must hold if the trajectory
is that of a real object. Since measured trajectories are generally affected by noise, treating them as true470

values in the identification formulation would most likely result in the violation of the physical consistency
condition. In particular, if Eq. (32) does not hold, matrix ANI will not be rank-deficient and the only possible
solution to Eq. (30) will be w̄NI = 0, which is clearly a nonsense. This is where the introduction of the error
term Eq. (24) proves useful. It gives some measure of freedom to the identification problem, allowing qk to
adapt to the constraints while staying close to the observed motion qm. As a result, a certain measure of475

noise is tolerated, i.e. Eq. (32) is satisfied and the represented motion is physically consistent.

5.3. Non-informative trajectories

One last observation can be made on the informative content of the observed trajectories. The analysis
presented in the previous sections was made by assuming an informative trajectory, without anomalous
drops in the rank of matrix ANI

in Eq. (30). There are, of course, trajectories which do not yield enough480

information to efficiently estimate vector wNI
.

As an example, by looking at the dynamics written for a single time interval (Eq. (28)), we can im-
mediately realize that a motion without angular acceleration (∆ωk = 0), would result in the impossibility
of identifying the moment of inertia J , as the second column of the coefficient matrix would become a
zero-vector. Analogously, if the linear accelerations are such that the first column of the coefficient matrix485

becomes a zero-vector, it is impossible to identify the object’s mass m.
Since our identification covers a time window with a relatively high number NI of intervals, the problem

is only relevant if the above-mentioned accelerations are absent for the entire observed window, which is a
very unlikely situation for a randomly thrown object.
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6. Identification results490

A double validation of the identification program is performed by using as measured poses of a falling
elliptical object both experimental and simulated trajectories, the latter obtained with the IRC formulation
illustrated in Sect. 3.6.

Due to the lack of simulated data for multi-point contact, we are still limiting the study to the single
point contact case. However, it is worth noting that Eq. (27) does not require this limitation. Indeed,495

as it was pointed out in Sect. 4, the problem with multi-point contact presents itself with the restitution
constraints, which are not part of the identification formulation. We find reasonable to expect that, in the
case of multiple contacts happening at the same time, the NLP solution will redistribute contact impulses
in order to make the identified motion compatible with the captured one. However, since we did not explore
this issue deeply, we chose not to embrace this scenario nor to discuss it further.500

In the first part of this section, a variety of simulated trajectories for different values of the friction
coefficient µ are identified in order to outline a general trend on the capabilities of the identification program.
In the second part, our experimental setup for throwing a real elliptical object and recording videos of
its trajectories is described. Then, some identification results for experimentally recorded trajectories are
presented and discussed.505

The elliptical object built for the experiments is laser cut from plywood and has the major and minor
semi-axes of length, respectively, a = 50 mm and b = 25 mm. Its mass is m = 64 g, while its moment of
inertia with respect to the COM, computed by knowing the geometry and the properties of the material,
is J = 4, 84 · 104 g mm2. The moment of inertia to mass ratio is then J

m ' 756 mm2: this value will be
considered our ground truth when evaluating the performances of our identification program. The simulated510

motions will be generated by employing the same object’s geometry and inertia.

6.1. Simulated trajectories

In order to mimic a real and, therefore noisy, capturing process made with a camera, the ideal trajectories
obtained with the simulation program are modified in two ways: (i) a gaussian noise with a standard deviation
of 1 mm is added to the simulated trajectory, so to reproduce the effect on the object position and orientation515

of the error due to the resolution of the camera; (ii) the data from the simulation program are reduced from
240 samples per seconds to 200, 120, 60, 30 samples per second, in order to simulate the effect of having
different camera frame rates (fps - frames per second).

To outline a trend of the capabilities of the identification program, a generic throw of the ellipse is simu-

lated. In this case the initial conditions are q0 =
(
0 m 0.1 m −0.785 rad

)T
, v0 =

(
3 m/s −5 m/s 0 rad/s

)T
.520

Since ε, µ and fps are expected to play a major role in defining the captured trajectory, we find it useful
to study how they affect the quality of the identification. From several tests it was quite evident that, given
a pre-defined time window, the effect of ε is merely to reduce the number of contact instants, as it increases
the object’s time of flight. It is then set at ε = 0.2: a value that gives fairly rich trajectories, containing
both bounces and sliding motions.525

With this value fixed, one test for each combination of µ and fps was made, after adding gaussian noise
to the simulated trajectories. The resulting identified J

m inertia ratios presented an error with respect to the
ground truth which is reported, for each test, in Table 6.1.

The results show that the identification is more accurate (smaller percentage error) for: (i) bigger values
of µ: this probably because higher tangential (frictional) impulses cause the motion to be dynamically richer530

(especially rotation-wise) and thus more informative; (ii) higher fps: this because as the number of points to
fit with the simulated trajectory increases, the identification program is given less freedom to create outliers
in between measured points, as shown in Figure 17.

As an example, the identified contact impulses for the case µ = 0.2, ε = 0.2 and 240 fps along with the
ground truth (simulated) values are shown in Figure 18. A video of the identification results in this case is535

available at [45].
The difference between simulated and identified impulses are due to the issues related to satisfying the

equality constraints (in Eqs. (23)) in the least-squares sense by adding them in the objective function of the
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µ 30 fps 60 fps 120 fps 200 fps 240 fps

0,1 –72% –60% –53% –48% –37%
0,2 // –16% –5% +0% –2%
0,3 –8% +12% +4% +2% –11%
0,4 –21% –19% –4% –3% –6%
0,5 –3% +3% +1% –1% +1%
0,6 +31% +11% +0% +5% –6%
0,7 +0% –6% +5% +5% +3%
0,8 +27% +2% +8% +6% +7%
0,9 +24% +1% +1% +7% +1%

Table 1: Percentage errors of the identified J
m

ratio with respect to the real value of 756 mm2, for varying µ and for different
simulated camera frames per second (fps).
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COM trajectory 0.2;  0 )( .2ε µ= =

identified
captured (30 )fps

identified
captured (60 )fps

identified
captured (120 )fps

Figure 17: Identified trajectory of the COM, obtained by down-sampling the simulated one to 30, 60, 120 fps and adding
artificial noise with a standard deviation of 1 mm, for the case ε = 0.2, µ = 0.2. As the frame-rate increases, the program has
more “anchoring” points to comply with and therefore the identified trajectory becomes closer to the real one. Results suggest
that a camera with 120 fps is often sufficient for a satisfactory identification of the motion, and Table 6.1 shows how the inertia
ratio J

m
is correctly identified as well.
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Figure 18: Normal impulse cn and tangential impulse ct identified from the simulated motion with ε = 0.2 and µ = 0.2,
downsampled at 240 fps and with added artificial noise with a standard deviation of 1 mm. Results are compared with the
simulated impulses (black, dashed line).

NLP in Eq. (27), with a penalty approach. Even when the simulated impulse is concentrated in a single
time instant, in fact, the identified one is spread over more instants, since the penalty approach does not540

force the gap to be perfectly zero. The resulting motion, however, is sufficiently close to the simulated one,
as shown in Figure 17, and the ratio J

m is estimated correctly.
Since the presented formulation has the peculiar feature of also identifying the coefficient of friction µ, it

is worth discussing such aspect as well. Referring to the cases presented in Table 6.1, specifically the ones
where inertia is identified within an acceptable confidence level, i.e. for 0.2 ≤ µ ≤ 0.9, the mean values545

of µ found with the identification formulation follow the trend shown in Figure 19. Such results suggest
that beyond a certain threshold, in this case µ = 0.6, the motion of the object becomes of pure rolling,
and therefore the absence of sliding hides the effect of the coefficient of friction. When this happens, the
identified µ assumes the minimum possible value capable of ensuring pure rolling.

6.2. Real trajectories550

In order to test our identification program on a real falling object, we built the experimental setup shown
in Figure 20. An elliptical object laser cut from plywood with two holes housing two magnets is constrained
to move between two sheets of Polymethyl-Methacrylate (PMMA). This enforces a ballistic 2D motion of
the ellipse in the vertical plane, as shown in Figure 20(a). The object can bounce on a wooden bar with
adjustable slope, also placed in between the sheets of PMMA.555

The ellipse is brought to the desired initial conditions by a simple planar robot (Figure 20(b)), specifically
built with low cost components, that ensures the movement of its end-effector in the horizontal and vertical
directions. The end-effector, shown in Figure 21, drags the object via two electromagnets, mounted on a
rotating head actuated by a servo-motor, and releases it when the desired position is reached, letting it fall
on the wooden bar.560

The videos of the experiments are shot with a GoPro Hero 4+ camera and then processed with a MATLAB

algorithm using the Computer Vision System Toolbox. The main functions implemented in the algorithm
aim to: (i) correct the fish-eye distortion caused by the standard GoPro lenses, (ii) calibrate the distance
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Figure 19: Mean values of the coefficient of friction µ identified from the cases presented in Table 6.1, plotted with respect to
the real values, used in the simulation program. The identification seems to give good results until, for µ ' 0.6, the object no
longer slides; from this point on, the identified µ is the minimum possible for the object to ensure rolling without sliding.

(a) (b)

Figure 20: Experimental set-up used to constrain an ellipse to follow a planar motion. The ellipse falls between two sheets of
PMMA, bouncing on a wooden bar with adjustable slope (Figure 20(a)), after being released by a planar robot (Figure 20(b))
which brings it at its initial conditions via the end-effector shown in Figure 21. The motion is captured with a camera and
processed with a MATLAB algorithm to extract the geometry of the system and the ellipse’s posture.
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Figure 21: End-effector of the planar robot that drags the ellipse. Two electromagnets (EMs) are fixed on a wooden platform,
which is rotated by a servo motor to reach a desired orientation of the object. During the dragging phase the magnetic field of
the EMs is set to the same of the ellipse’s magnets; when the object must be released, the EMs’ field is inverted.

in the experimental setup with respect to video dimensions in pixels, through an appropriate calibration
process, and (iii) track the positions of desired entities — in our case simple black circles of the magnets in565

the ellipse — which are then used to reconstruct the pose of the object.
The back of the structure is covered with white sheets of paper to increase the contrast with the circles

and ensure they can be automatically recognized. A total of 8 circles is sufficient: four to define the limits
of the workspace and scale the measured quantities, two for the ground segment and two for tracking the
pose of the ellipse.570

From the computer vision algorithm applied on the video of the experiment, we are able to reconstruct
the geometry of the system and the motion of the ellipse, as shown in Figure 22(a). The postures coming
from the MATLAB algorithm are then passed as input to the identification NLP as a simple ASCII file.

As an example, Figure 22(a) shows the time lapse of the identified motion of an ellipse falling for a vertical
distance of approximately 20 cm before landing on a bar with a slope of−0.247 rad, with an initial orientation575

of 0.5 rad. The captured positions of the COM are shown in Figure 22(b), along with the reconstructed
trajectory obtained with the identification program in Eq. (27). The identification performed on this motion
yields an inertia ratio of J

m ' 778 mm2, with an error of 2.9% over the real value (' 756 mm2), while the
identified coefficient of friction is µ ' 0.3, considered to be a plausible value, as the wood-wood coefficient of
friction found in literature is in the range µ = 0.25− 0.5 (see, e.g. [47]). A video of the identification results580

on this experiment is available at [45].
The resulting impulses are shown in Figure 23. Although exact values are not available in the real case, it

is possible to notice that the identified impulses are comparable to those identified on simulated trajectories
(see Sect. 6.1, Figure 18), and that the contact sequence is coherent with the motion shown in Figure 22.
The difference lies in the real contacts being “less impulsive”, as the wooden bar slightly bends when hit by585

the object, thus favouring impulses that are smoother then those obtainable with ideal rigid-body contacts.
By performing other tests with different initial conditions, the identification program was able to find a

mean value of the inertia ratio J
m ' 668 mm2, with a Root Mean Square Error (RMSE) of 19% throughout

all the tests, and a mean value of the coefficient of friction is µ ' 0.34, still coherent with the range of values
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(a)

COM trajectory

captured with camera (240 )fps
identified

(b)

Figure 22: In Figure 22(a), last frame of the motion of the elliptical object, caught at 240 fps with a GoPro Hero 4+ camera.
The time lapse with yellow contours is the identified motion obtained with the formulation in Eq. (27); the green line follows
the identified trajectory of the COM. In Figure 22(b), captured trajectory of the COM at 240 fps, processed via our computer
vision algorithm (blue circles) and the resulting identified trajectory (green line).
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Figure 23: Normal impulse cn and tangential impulse ct identified from the real motion shown in Figure 22.
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found in literature.590

7. Conclusion

This work has addressed the problem of simultaneous state estimation and inertial and frictional pa-
rameter identification for planar rigid-bodies subject to unscheduled frictional impacts. After presenting
the mathematics behind the simulation model, a NLP was formulated to solve the problem of simulating
the motion of an object undergoing unscheduled contacts in a 2D environment. A thorough evaluation was595

made on the plausibility of the simulation results. Since our model proved sufficiently realistic, it was used
as a generator of ground-truth values for estimating the performances of an identification NLP, whose goal
was to estimate the states and inertial and frictional parameters of objects captured with a camera. The
identification program was tested on a low cost experimental setup, yielding good results both in the state
estimation and in the identification of the inertia ratio J

m , and the coefficient of friction at contact, even if600

this latter aspect was not our primary goal.
However, there are a number of open issues that need investigation, as well as improvements to extend

the use of our approach. Firstly, a rigorous study on the appropriate weight assignment for the identification
NLP in Eq. (27) is recommended, in order to improve the generality of the algorithm. Solving this issue
would allow for the possibility of increasing the number of experiments that could be performed in order to605

validate with more accuracy the identification program.
Then, the case of multiple simultaneous contacts and complex object shapes should be studied, so to

broaden the applicability of the presented formulation.
Lastly, an extension to the 3D case would be desirable, although it would require more sophisticated

computer vision algorithms for the estimation of the interactions between the object and the environment.610
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