3 research outputs found

    Experimental Exploration of Compact Convolutional Neural Network Architectures for Non-temporal Real-time Fire Detection

    Get PDF
    In this work we explore different Convolutional Neural Network (CNN) architectures and their variants for non-temporal binary fire detection and localization in video or still imagery. We consider the performance of experimentally defined, reduced complexity deep CNN architectures for this task and evaluate the effects of different optimization and normalization techniques applied to different CNN architectures (spanning the Inception, ResNet and EfficientNet architectural concepts). Contrary to contemporary trends in the field, our work illustrates a maximum overall accuracy of 0.96 for full frame binary fire detection and 0.94 for superpixel localization using an experimentally defined reduced CNN architecture based on the concept of InceptionV4. We notably achieve a lower false positive rate of 0.06 compared to prior work in the field presenting an efficient, robust and real-time solution for fire region detection

    Experimental exploration of compact convolutional neural network architectures for non-temporal real-time fire detection.

    Get PDF
    In this work we explore different Convolutional Neural Network (CNN) architectures and their variants for non-temporal binary fire detection and localization in video or still imagery. We consider the performance of experimentally defined, reduced complexity deep CNN architectures for this task and evaluate the effects of different optimization and normalization techniques applied to different CNN architectures (spanning the Inception, ResNet and EfficientNet architectural concepts). Contrary to contemporary trends in the field, our work illustrates a maximum overall accuracy of 0.96 for full frame binary fire detection and 0.94 for superpixel localization using an experimentally defined reduced CNN architecture based on the concept of InceptionV4. We notably achieve a lower false positive rate of 0.06 compared to prior work in the field presenting an efficient, robust and real-time solution for fire region detection

    Image Classification of Marine-Terminating Outlet Glaciers using Deep Learning Methods

    Get PDF
    A wealth of research has focused on elucidating the key controls on mass loss from the Greenland and Antarctic ice sheets in response to climate forcing, specifically in relation to the drivers of marine-terminating outlet glacier change. Despite the burgeoning availability of medium resolution satellite data, the manual methods traditionally used to monitor change of marine-terminating outlet glaciers from satellite imagery are time-consuming and can be subjective, especially where a mélange of icebergs and sea-ice exists at the terminus. To address this, recent advances in deep learning applied to image processing have created a new frontier in the field of automated delineation of glacier termini. However, at this stage, there remains a paucity of research on the use of deep learning for pixel-level semantic image classification of outlet glacier environments. This project develops and tests a two-phase deep learning approach based on a well-established convolutional neural network (CNN) called VGG16 for automated classification of Sentinel-2 satellite images. The novel workflow, termed CNN-Supervised Classification (CSC), was originally developed for fluvial settings but is adapted here to produce multi-class outputs for test imagery of glacial environments containing marine-terminating outlet glaciers in eastern Greenland. Results show mean F1 scores up to 95% for in-sample test imagery and 93% for out-of-sample test imagery, with significant improvements over traditional pixel-based methods such as band ratio techniques. This demonstrates the robustness of the deep learning workflow for automated classification despite the complex characteristics of the imagery. Future research could focus on the integration of deep learning classification workflows with platforms such as Google Earth Engine (GEE), to classify imagery more efficiently and produce datasets for a range of glacial applications without the need for substantial prior experience in coding or deep learning
    corecore