11,451 research outputs found

    Transparent Location Fingerprinting for Wireless Services

    Get PDF
    Detecting the user location is crucial in a wireless environment, not only for the choice of first-hop communication partners, but also for many auxiliary purposes: Quality of Service (availability of information in the right place for reduced congestion/delay, establishment of the optimal path), energy consumption, automated insertion of location-dependent info into a web query issued by a user (for example a tourist asking informations about a monument or a restaurant, a fireman approaching a disaster area). The technique we propose in our investigation tries to meet two main goals: transparency to the network and independence from the environment. A user entering an environment (for instance a wireless-networked building) shall be able to use his own portable equipment to build a personal map of the environment without the system even noticing it. Preliminary tests allow us to detect position on a map with an average uncertainty of two meters when using information gathered from three IEEE802.11 access points in an indoor environment composed of many rooms on a 625sqm area. Performance is expected to improve when more access points will be exploited in the test area. Implementation of the same techniques on Bluetooth are also being studied

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    corecore