7 research outputs found

    TCP Sintok: Transmission control protocol with delay-based loss detection and contention avoidance mechanisms for mobile ad hoc networks

    Get PDF
    Mobile Ad hoc Network (MANET) consists of mobile devices that are connected to each other using a wireless channel, forming a temporary network without the aid of fixed infrastructure; in which hosts are free to move randomly as well as free to join or leave. This decentralized nature of MANET comes with new challenges that violate the design concepts of Transmission Control Protocol (TCP); the current dominant protocol of the Internet. TCP always infers packet loss as an indicator of network congestion and causes it to perform a sharp reduction to its sending rate. MANET suffers from several types of packet losses due to its mobility feature and contention on wireless channel access and these would lead to poor TCP performance. This experimental study investigates mobility and contention issues by proposing a protocol named TCP Sintok. This protocol comprises two mechanisms: Delay-based Loss Detection Mechanism (LDM), and Contention Avoidance Mechanism (CAM). LDM was introduced to determine the cause of the packet loss by monitoring the trend of end-to-end delay samples. CAM was developed to adapt the sending rate (congestion window) according to the current network condition. A series of experimental studies were conducted to validate the effectiveness of TCP Sintok in identifying the cause of packet loss and adapting the sending rate appropriately. Two variants of TCP protocol known as TCP NewReno and ADTCP were chosen to evaluate the performance of TCP Sintok through simulation. The results demonstrate that TCP Sintok improves jitter, delay and throughput as compared to the two variants. The findings have significant implication in providing reliable data transfer within MANET and supporting its deployment on mobile device communication

    Adaptive and Fuzzy Approaches for Nodes Affinity Management in Wireless Ad-Hoc Networks

    Get PDF

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    Development and evaluation of advanced traveler information system (ATIS) using vehicle-to-vehicle (V2V) communication system

    Get PDF
    This research develops and evaluates an Advanced Traveler Information System (ATIS) model using a Vehicle-to-Vehicle (V2V) communication system (referred to as the GATIS-V2V model) with the off-the-shelf microscopic simulation model, VISSIM. The GATIS-V2V model is tested on notional small traffic networks (non-signalized and signalized) and a 6X6 typical urban grid network (signalized traffic network). The GATIS-V2V model consists of three key modules: vehicle communication, on-board travel time database management, and a Dynamic Route Guidance System (DRGS). In addition, the system performance has been enhanced by applying three complementary functions: Autonomous Automatic Incident Detection (AAID), a minimum sample size algorithm, and a simple driver behavior model. To select appropriate parameter ranges for the complementary functions a sensitivity analysis has been conducted. The GATIS-V2V performance has been investigated relative to three underlying system parameters: traffic flow, communication radio range, and penetration ratio of participating vehicles. Lastly, the enhanced GATIS-V2V model is compared with the centralized traffic information system. This research found that the enhanced GATIS-V2V model outperforms the basic model in terms of travel time savings and produces more consistent and robust system output under non-recurrent traffic states (i.e., traffic incident) in the simple traffic network. This research also identified that the traffic incident detection time and driver's route choice rule are the most crucial factors influencing the system performance. As expected, as traffic flow and penetration ratio increase, the system becomes more efficient, with non-participating vehicles also benefiting from the re-routing of participating vehicles. The communication radio ranges considered were found not to significantly influence system operations in the studied traffic network. Finally, it is found that the decentralized GATIS-V2V model has similar performance to the centralized model even under low flow, short radio range, and low penetration ratio cases. This implies that a dynamic infrastructure-based traffic information system could replace a fixed infrastructure-based traffic information system, allowing for considerable savings in fixed costs and ready expansion of the system off of the main network corridors.Ph.D.Committee Chair: Hunter, Michael; Committee Member: Fujimoto, Richard; Committee Member: Guensler, Randall; Committee Member: Leonard, John; Committee Member: Meyer, Michae

    Experimental evaluation of TCP performance in multi-hop wireless ad hoc networks

    No full text
    This paper presents experimental measurements of TCP bulk data transfer performance in a multi-hop wireless ad hoc network environment. The first part of the paper studies how TCP throughput is affected by AODV routing, user mobility, and the number of hops traversed in the network. The second part of the paper studies the effectiveness of rate-based pacing (RBP) of TCP packets in improving TCP throughput. Contrary to prior simulation results in the networking literature, our measurement results show no performance advantages for RBP TCP in our experimental scenarios. 1

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore