232,978 research outputs found

    The effectiveness of feature selection method in solar power prediction

    Full text link
    This paper empirically shows that the effect of applying selected feature subsets on machine learning techniques significantly improves the accuracy for solar power prediction. Experiments are performed using five well-known wrapper feature selection methods to obtain the solar power prediction accuracy of machine learning techniques with selected feature subsets. For all the experiments, the machine learning techniques, namely, least median square (LMS), multilayer perceptron (MLP), and support vector machine (SVM), are used. Afterwards, these results are compared with the solar power prediction accuracy of those same machine leaning techniques (i.e., LMS, MLP, and SVM) but without applying feature selection methods (WAFS). Experiments are carried out using reliable and real life historical meteorological data. The comparison between the results clearly shows that LMS, MLP, and SVM provide better prediction accuracy (i.e., reduced MAE and MASE) with selected feature subsets than without selected feature subsets. Experimental results of this paper facilitate to make a concrete verdict that providing more attention and effort towards the feature subset selection aspect (e.g., selected feature subsets on prediction accuracy which is investigated in this paper) can significantly contribute to improve the accuracy of solar power prediction

    Effective Features and Machine Learning Methods for Document Classification

    Get PDF
    Document classification has been involved in a variety of applications, such as phishing and fraud detection, news categorisation, and information retrieval. This thesis aims to provide novel solutions to several important problems presented by document classification. First, an improved Principal Components Analysis (PCA), based on similarity and correlation criteria instead of covariance, is proposed, which aims to capture low-dimensional feature subset that facilitates improved performance in text classification. The experimental results have demonstrated the advantages and usefulness of the proposed method for text classification in high-dimensional feature space in terms of the number of features required to achieve the best classification accuracy. Second, two hybrid feature-subset selection methods are proposed based on the combination (via either union or intersection) of the results of both supervised (in one method) and unsupervised (in the other method) filter approaches prior to the use of a wrapper, leading to low-dimensional feature subset that can achieve both high classification accuracy and good interpretability, and spend less processing time than most current methods. The experimental results have demonstrated the effectiveness of the proposed methods for feature subset selection in high-dimensional feature space in terms of the number of selected features and the processing time spent to achieve the best classification accuracy. Third, a class-specific (supervised) pre-trained approach based on a sparse autoencoder is proposed for acquiring low-dimensional interesting structure of relevant features, which can be used for high-performance document classification. The experimental results have demonstrated the merit of this proposed method for document classification in high-dimensional feature space, in terms of the limited number of features required to achieve good classification accuracy. Finally, deep classifier structures associated with a stacked autoencoder (SAE) for higher-level feature extraction are investigated, aiming to overcome the difficulties experienced in training deep neural networks with limited training data in high-dimensional feature space, such as overfitting and vanishing/exploding gradients. This investigation has resulted in a three-stage learning algorithm for training deep neural networks. In comparison with support vector machines (SVMs) combined with SAE and Deep Multilayer Perceptron (DMLP) with random weight initialisation, the experimental results have shown the advantages and effectiveness of the proposed three-stage learning algorithm

    Comparing Features Extraction Methods for Person Authentication Using EEG Signals

    Get PDF
    This chapter presents a comparison and analysis of six feature extraction methods which were often cited in the literature, namely wavelet packet decomposition (WPD), Hjorth parameter, mean, coherence, cross-correlation and mutual information for the purpose of person authentication using EEG signals. The experimental dataset consists of a selection of 5 lateral and 5 midline EEG channels extracted from the raw data published in UCI repository. The experiments were designed to assess the capability of the feature extraction methods in authenticating different users. Besides, the correlation-based feature selection (CFS) method was also proposed to identify the significant feature subset and enhance the authentication performance of the features vector. The performance measurement was based on the accuracy and area under ROC curve (AUC) values using the fuzzy-rough nearest neighbour (FRNN) classifier proposed previously in our earlier work. The results show that all the six feature extraction methods are promising. However, WPD will induce large vector set when the selected EEG channels increases. Thus, the feature selection process is important to reduce the features set before combining the significant features with the other small feature vectors set

    Unionization method for changing opinion in sentiment classification using machine learning

    Get PDF
    Sentiment classification aims to determine whether an opinionated text expresses a positive, negative or neutral opinion. Most existing sentiment classification approaches have focused on supervised text classification techniques. One critical problem of sentiment classification is that a text collection may contain tens or hundreds of thousands of features, i.e. high dimensionality, which can be solved by dimension reduction approach. Nonetheless, although feature selection as a dimension reduction method can reduce feature space to provide a reduced feature subset, the size of the subset commonly requires further reduction. In this research, a novel dimension reduction approach called feature unionization is proposed to construct a more reduced feature subset. This approach works based on the combination of several features to create a more informative single feature. Another challenge of sentiment classification is the handling of concept drift problem in the learning step. Users’ opinions are changed due to evolution of target entities over time. However, the existing sentiment classification approaches do not consider the evolution of users’ opinions. They assume that instances are independent, identically distributed and generated from a stationary distribution, even though they are generated from a stream distribution. In this study, a stream sentiment classification method is proposed to deal with changing opinion and imbalanced data distribution using ensemble learning and instance selection methods. In relation to the concept drift problem, another important issue is the handling of feature drift in the sentiment classification. To handle feature drift, relevant features need to be detected to update classifiers. Since proposed feature unionization method is very effective to construct more relevant features, it is further used to handle feature drift. Thus, a method to deal with concept and feature drifts for stream sentiment classification was proposed. The effectiveness of the feature unionization method was compared with the feature selection method over fourteen publicly available datasets in sentiment classification domain using three typical classifiers. The experimental results showed the proposed approach is more effective than current feature selection approaches. In addition, the experimental results showed the effectiveness of the proposed stream sentiment classification method in comparison to static sentiment classification. The experiments conducted on four datasets, have successfully shown that the proposed algorithm achieved better results and proving the effectiveness of the proposed method

    A flowering-time gene network model for association analysis in Arabidopsis thaliana

    Get PDF
    In our project we want to determine a set of single nucleotide polymorphisms (SNPs), which have a major effect on the flowering time of Arabidopsis thaliana. Instead of performing a genome-wide association study on all SNPs in the genome of Arabidopsis thaliana, we examine the subset of SNPs from the flowering-time gene network model. We are interested in how the results of the association study vary when using only the ascertained subset of SNPs from the flowering network model, and when additionally using the information encoded by the structure of the network model. The network model is compiled from the literature by manual analysis and contains genes which have been found to affect the flowering time of Arabidopsis thaliana [Far+08; KW07]. The genes in this model are annotated with the SNPs that are located in these genes, or in near proximity to them. In a baseline comparison between the subset of SNPs from the graph and the set of all SNPs, we omit the structural information and calculate the correlation between the individual SNPs and the flowering time phenotype by use of statistical methods. Through this we can determine the subset of SNPs with the highest correlation to the flowering time. In order to further refine this subset, we include the additional information provided by the network structure by conducting a graph-based feature pre-selection. In the further course of this project we want to validate and examine the resulting set of SNPs and their corresponding genes with experimental methods

    A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare

    Get PDF
    © 2020, Springer-Verlag London Ltd., part of Springer Nature. Genetic algorithm (GA) is a nature-inspired algorithm to produce best possible solution by selecting the fittest individual from a pool of possible solutions. Like most of the optimization techniques, the GA can also stuck in the local optima, producing a suboptimal solution. This work presents a novel metaheuristic optimizer named as the binary chaotic genetic algorithm (BCGA) to improve the GA performance. The chaotic maps are applied to the initial population, and the reproduction operations follow. To demonstrate its utility, the proposed BCGA is applied to a feature selection task from an affective database, namely AMIGOS (A Dataset for Affect, Personality and Mood Research on Individuals and Groups) and two healthcare datasets having large feature space. Performance of the BCGA is compared with the traditional GA and two state-of-the-art feature selection methods. The comparison is made based on classification accuracy and the number of selected features. Experimental results suggest promising capability of BCGA to find the optimal subset of features that achieves better fitness values. The obtained results also suggest that the chaotic maps, especially sinusoidal chaotic map, perform better as compared to other maps in enhancing the performance of raw GA. The proposed approach obtains, on average, a fitness value twice as better than the one achieved through the raw GA in the identification of the seven classes of emotions

    Two-stage hybrid feature selection algorithms for diagnosing erythemato-squamous diseases

    Get PDF
    This paper proposes two-stage hybrid feature selection algorithms to build the stable and efficient diagnostic models where a new accuracy measure is introduced to assess the models. The two-stage hybrid algorithms adopt Support Vector Machines (SVM) as a classification tool, and the extended Sequential Forward Search (SFS), Sequential Forward Floating Search (SFFS), and Sequential Backward Floating Search (SBFS), respectively, as search strategies, and the generalized F-score (GF) to evaluate the importance of each feature. The new accuracy measure is used as the criterion to evaluated the performance of a temporary SVM to direct the feature selection algorithms. These hybrid methods combine the advantages of filters and wrappers to select the optimal feature subset from the original feature set to build the stable and efficient classifiers. To get the stable, statistical and optimal classifiers, we conduct 10-fold cross validation experiments in the first stage; then we merge the 10 selected feature subsets of the 10-cross validation experiments, respectively, as the new full feature set to do feature selection in the second stage for each algorithm. We repeat the each hybrid feature selection algorithm in the second stage on the one fold that has got the best result in the first stage. Experimental results show that our proposed two-stage hybrid feature selection algorithms can construct efficient diagnostic models which have got better accuracy than that built by the corresponding hybrid feature selection algorithms without the second stage feature selection procedures. Furthermore our methods have got better classification accuracy when compared with the available algorithms for diagnosing erythemato-squamous diseases

    Embedding Feature Selection for Large-scale Hierarchical Classification

    Full text link
    Large-scale Hierarchical Classification (HC) involves datasets consisting of thousands of classes and millions of training instances with high-dimensional features posing several big data challenges. Feature selection that aims to select the subset of discriminant features is an effective strategy to deal with large-scale HC problem. It speeds up the training process, reduces the prediction time and minimizes the memory requirements by compressing the total size of learned model weight vectors. Majority of the studies have also shown feature selection to be competent and successful in improving the classification accuracy by removing irrelevant features. In this work, we investigate various filter-based feature selection methods for dimensionality reduction to solve the large-scale HC problem. Our experimental evaluation on text and image datasets with varying distribution of features, classes and instances shows upto 3x order of speed-up on massive datasets and upto 45% less memory requirements for storing the weight vectors of learned model without any significant loss (improvement for some datasets) in the classification accuracy. Source Code: https://cs.gmu.edu/~mlbio/featureselection.Comment: IEEE International Conference on Big Data (IEEE BigData 2016
    • …
    corecore