443 research outputs found

    Experimental identification of non-pointlike dark-matter candidates

    Get PDF
    We show that direct dark matter detection experiments can distinguish between pointlike and non-pointlike dark-matter candidates. The shape of the nuclear recoil energy spectrum from pointlike dark-matter particles, e.g., neutralinos, is determined by the velocity distribution of dark matter in the galactic halo and by nuclear form factors. In contrast, typical cross sections of non-pointlike dark matter, for example, Q-balls, have a new form factor, which decreases rapidly with the recoil energy. Therefore, a signal from non-pointlike dark matter is expected to peak near the experimental threshold and to fall off rapidly at higher energies. Although the width of the signal is practically independent of the dark matter velocity dispersion, its height is expected to exhibit an annual modulation due to the changes in the dark matter flux.Comment: 4 pages; minor changes, references adde

    Brane-world dark matter

    Get PDF
    We show that, in the context of brane-world scenarios with low tension τ=f4\tau=f^4, massive brane fluctuations are natural dark matter candidates. We calculate the present abundances for both hot(warm) and cold branons in terms of the branon mass MM and the tension scale ff. The results are compared with the current experimental bounds on these parameters. We also study the prospects for their detection in direct search experiments and comment on their characteristic signals in the indirect ones.Comment: 4 pages, 2 figures, REVTeX 4. Updated figures, new comments and references included. Final version to appear in Phys. Rev. Let

    Constraints on the parity-violating couplings of a new gauge boson

    Get PDF
    High-energy particle physics experiments allow for the possible existence of a new light, very weakly coupled, neutral gauge boson (the U boson). This one permits for light (spin-1/2 or spin-0) particles to be acceptable Dark Matter candidates, by inducing sufficient (stronger than weak) annihilation cross sections into e+e-. They could be responsible for the bright 511 keV gamma ray line observed by INTEGRAL from the galactic bulge. Such a new interaction may have important consequences, especially at lower energies. Parity-violation atomic-physics experiments provide strong constraints on such a U boson, if its couplings to quarks and electrons violate parity. With the constraints coming from an unobserved axionlike behaviour of this particle, they privilegiate a pure vector coupling of the U boson to quarks and leptons, unless the corresponding symmetry is broken sufficiently above the electroweak scale.Comment: 6 page

    Large-Mass Ultra-Low Noise Germanium Detectors: Performance and Applications in Neutrino and Astroparticle Physics

    Get PDF
    A new type of radiation detector, a p-type modified electrode germanium diode, is presented. The prototype displays, for the first time, a combination of features (mass, energy threshold and background expectation) required for a measurement of coherent neutrino-nucleus scattering in a nuclear reactor experiment. The device hybridizes the mass and energy resolution of a conventional HPGe coaxial gamma spectrometer with the low electronic noise and threshold of a small x-ray semiconductor detector, also displaying an intrinsic ability to distinguish multiple from single-site particle interactions. The present performance of the prototype and possible further improvements are discussed, as well as other applications for this new type of device in neutrino and astroparticle physics (double-beta decay, neutrino magnetic moment and WIMP searches).Comment: submitted to Phys. Rev.

    Generalized Analysis of Weakly-Interacting Massive Particle Searches

    Get PDF
    We perform a generalized analysis of data from WIMP search experiments for point-like WIMPs of arbitrary spin and general Lorenz-invariant WIMP-nucleus interaction. We show that in the non-relativistic limit only spin-independent (SI) and spin-dependent (SD) WIMP-nucleon interactions survive, which can be parameterized by only five independent parameters. We explore this five-dimensional parameter space to determine whether the annual modulation observed in the DAMA experiment can be consistent with all other experiments. The pure SI interaction is ruled out except for very small region of parameter space with the WIMP mass close to 50 GeV and the ratio of the WIMP-neutron to WIMP-proton SI couplings 0.77fn/fp0.75-0.77\le f_n/f_p\le -0.75. For the predominantly SD interaction, we find an upper limit to the WIMP mass of about 18 GeV, which can only be weakened if the constraint stemming from null searches for energetic neutrinos from WIMP annihilation the Sun is evaded. None of the regions of the parameter space that can reconcile all WIMP search results can be easily accommodated in the minimal supersymmetric extension of the standard model.Comment: 27 pages, 3 figure

    Standard Model tests with trapped radioactive atoms

    Full text link
    We review the use of laser cooling and trapping for Standard Model tests, focusing on trapping of radioactive isotopes. Experiments with neutral atoms trapped with modern laser cooling techniques are testing several basic predictions of electroweak unification. For nuclear β\beta decay, demonstrated trap techniques include neutrino momentum measurements from beta-recoil coincidences, along with methods to produce highly polarized samples. These techniques have set the best general constraints on non-Standard Model scalar interactions in the first generation of particles. They also have the promise to test whether parity symmetry is maximally violated, to search for tensor interactions, and to search for new sources of time reversal violation. There are also possibilites for exotic particle searches. Measurements of the strength of the weak neutral current can be assisted by precision atomic experiments using traps of small numbers of radioactive atoms, and sensitivity to possible time-reversal violating electric dipole moments can be improved.Comment: 45 pages, 17 figures, v3 includes clarifying referee comments, especially in beta decay section, and updated figure

    Determining the Mass of Dark Matter Particles with Direct Detection Experiments

    Full text link
    In this article I review two data analysis methods for determining the mass (and eventually the spin-independent cross section on nucleons) of Weakly Interacting Massive Particles with positive signals from direct Dark Matter detection experiments: a maximum likelihood analysis with only one experiment and a model-independent method requiring at least two experiments. Uncertainties and caveats of these methods will also be discussed.Comment: 24 pages, 10 figures, 1 reference added, typos fixed, published version, to appear in the NJP Focus Issue on "Dark Matter and Particle Physics

    Magnetic monopoles revisited: Models and searches at colliders and in the Cosmos

    Full text link
    In this review, we discuss recent developments in both the theory and the experimental searches of magnetic monopoles in past, current and future colliders and in the Cosmos. The theoretical models include, apart from the standard Grand Unified Theories, extensions of the Standard Model that admit magnetic monopole solutions with finite energy and masses that can be as light as a few TeV. Specifically, we discuss, among other scenarios, modified Cho-Maison monopoles and magnetic monopoles in (string-inspired, higher derivative) Born-Infeld extensions of the hypercharge sector of the Standard Model. We also outline the conditions for which effective field theories describing the interaction of monopoles with photons are valid and can be used for result interpretation in monopole production at colliders. The experimental part of the review focuses on, past and present, cosmic and collider searches, including the latest bounds on monopole masses and magnetic charges by the ATLAS and MoEDAL experiments at the LHC, as well as prospects for future searches.Comment: 82 pages, 21 figures, invited review; more references and discussions added; to appear in International Journal of Modern Physics
    corecore