6 research outputs found

    Overcoming engineering challenges of providing an effective user interface to a large scale distributed synthetic environment on the US teragrid: a systems engineering success story

    Get PDF
    Over recent years’ large-scale distributed synthetic environment enterprises have been evolving in a diverse range of scientific and engineering fields. These computer modelling and simulation systems are increasing in scale and dimension in order to allow scientists and engineers to explore the attributes and emergent properties of a given system design. Within the field of computational science, the grid facilitates very large-scale collaborative simulation enterprises. The grid is similar to distributed interactive simulation/high level architecture (DIS/HLA) in that it supports interconnectivity but differs in the sense that it supports intercommunication of large super computing resources. An important factor in the rapid adoption of the grid has been its role in enabling access to significant supercomputing resources not usually available at a single institution. However, the major challenge for the grid has been the lack of an effective and ubiquitous interface to the huge computational resource (which can comprise over 6000 CPUs distributed across the globe) at any time and from any location. This paper describes a unique user interface built on systems engineering principles and practices to solve the problem of delivering real-time interaction (from lightweight computing devices such as personal digital assistants, commonly known as tablet devices, to high end computing platforms) with simulations delivering high resolution 3D images. The application of our work has far reaching benefits for many sectors including: aerospace, medical informatics, engineering design, distributed simulation, and modelling

    Discrete-event simulation: from the pioneers to the present, what next?

    Get PDF
    Discrete-event simulation is one of the most popular modelling techniques. It has developed significantly since the inception of computer simulation in the 1950s, most of this in line with developments in computing. The progress of simulation from its early days is charted with a particular focus on recent history. Specific developments in the past 15 years include visual interactive modelling, simulation optimization, virtual reality, integration with other software, simulation in the service sector, distributed simulation and the use of the worldwide web. The future is then speculated upon. Potential changes in model development, model use, the domain of application for simulation and integration with other simulation approaches are all discussed. The desirability of continuing to follow developments in computing, without significant developments in the wider methodology of simulation, is questioned

    Digital twin reference model development to prevent operators' risk in process plants

    Get PDF
    In the literature, many applications of Digital Twin methodologies in the manufacturing, construction and oil and gas sectors have been proposed, but there is still no reference model specifically developed for risk control and prevention. In this context, this work develops a Digital Twin reference model in order to define conceptual guidelines to support the implementation of Digital Twin for risk prediction and prevention. The reference model proposed in this paper is made up of four main layers (Process industry physical space, Communication system, Digital Twin and User space), while the implementation steps of the reference model have been divided into five phases (Development of the risk assessment plan, Development of the communication and control system, Development of Digital Twin tools, Tools integration in a Digital Twin perspective and models and Platform validation). During the design and implementation phases of a Digital Twin, different criticalities must be taken into consideration concerning the need for deterministic transactions, a large number of pervasive devices, and standardization issues. Practical implications of the proposed reference model regard the possibility to detect, identify and develop corrective actions that can affect the safety of operators, the reduction of maintenance and operating costs, and more general improvements of the company business by intervening both in strictly technological and organizational terms

    Simulation dynamique de dérives de procédés chimiques : application à l'analyse quantitative des risques.

    Get PDF
    Les risques sont inhérents à l’activité industrielle. Les prévoir et les maîtriser sont essentiels pour la conception et la conduite en sécurité des procédés. La réglementation des risques majeurs impose aux exploitants la réalisation d’études de sécurité quantitatives. La stratégie de maîtrise des risques repose sur la pertinence des analyses de risques. En marche dégradée, la dynamique des événements est déterminante pour quantifier les risques. Toutefois, de nos jours cette connaissance est difficilement accessible. Ce travail propose une méthodologie d’analyse de risques quantitative qui combine la méthode HAZOP, le retour d’expérience et la simulation dynamique de dérives de procédés. Elle repose sur quatre grandes étapes : La première étape est l’étude du fonctionnement normal du procédé. Pour cela, le procédé est décrit de façon détaillée. Des études complémentaires de caractérisation des produits et du milieu réactionnel sont menées si nécessaires. Ensuite, le procédé est simulé dynamiquement en fonctionnement normal. Lors de la seconde étape, parmi les dérives définies par l’HAZOP et le retour d’expérience, l’analyste discrimine celles dont les conséquences ne sont pas prévisibles et/ou nécessitent d’être quantifiées. La troisième phase fournit une quantification du risque sur la base de la simulation dynamique des scenarii retenus. Lors de la dernière étape, des mesures de maîtrise des risques sont définies et ajoutées au procédé lorsque le niveau de risque est supérieur au risque tolérable. Le risque résiduel est ensuite calculé jusqu’à l’atteinte de la cible sécurité. Le logiciel Aspen Plus Dynamics est sélectionné. Trois études de cas sont choisies pour démontrer d’une part, la faisabilité de la méthodologie et d’autre part, la diversité de son champ d’application : · la première étude de cas porte sur un réacteur semi-continu siège d’une réaction exothermique. L’oxydation du thiosulfate de sodium par le peroxyde d’hydrogène est choisie. Ce cas relativement simple permet d’illustrer la diversité des causes pouvant être simulées (erreur procédurale, défaut matériel, contamination de produits, …) et la possibilité d’étudier des dérives simultanées (perte de refroidissement du milieu et sous dimensionnement de la soupape de sécurité). · le deuxième cas concerne un réacteur semi-batch dans lequel une réaction exothermique de sulfonation est opérée. Elle est particulièrement difficile à mettre en œuvre car le risque d’emballement thermique est élevé. Cette étude montre l’intérêt de notre approche dans la définition des conditions opératoires pour la conduite en sécurité. · le troisième cas d’étude porte sur un procédé continu de fabrication du propylène glycol composé d’un réacteur et de deux colonnes de distillation en série. L’objectif est ici d’étudier la propagation de dérives le long du procédé. Sur la base du retour d’expérience, deux dérives au niveau du rebouilleur de la première colonne sont étudiées et illustrent les risques de pleurage et d’engorgement. La simulation dynamique illustre la propagation d’une dérive et ses conséquences sur la colonne suivante
    corecore