

Overcoming engineering challenges of providing an
effective user interface to a large scale distributed

synthetic environment on the US Teragrid: A systems
engineering success story

Roy S. Kalawsky

Wolfson School of Mechanical, Electrical and Manufacturing Engineering,

Loughborough University, UK

r.s.kalawsky@lboro.ac.uk

tel +44 1509 635678

Copyright © 2017 by Loughborough University. Published and used by INCOSE with permission.

Abstract. Over recent years’ large scale distributed synthetic environment enterprises
have been evolving in a diverse range of scientific and engineering fields. These
computer modelling and simulation systems are increasing in scale and dimension in
order to allow scientists and engineers to explore the attributes and emergent properties
of a given system design. Within the field of computational science, the grid has been
developed to facilitate very large scale collaborative simulation enterprises. The grid is
similar to Distributed Interactive Simulation/High Level Architecture (DIS/HLA) in that it
supports interconnectivity but differs in the sense that it supports intercommunication of
large super computing resources. An important factor in the rapid adoption of the grid
has been its role in enabling access to significant supercomputing resources not usually
available at a single institution. However, the major challenge for the grid has been the
lack of an effective and ubiquitous interface to the huge computational resource (which
can comprise over 6000 CPUs distributed across the globe) at any time and from any
location. This paper describes a unique user interface built on systems engineering
principles and practices to solve the problem of delivering real-time interaction (from
lightweight computing devices such as personal digital assistants (commonly known as
tablet devices) to high end computing platforms) with simulations delivering high
resolution 3D images. The application of our work has far reaching benefits for many
sectors including: aerospace, medical informatics, engineering design, distributed
simulation and modelling.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288367862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:r.s.kalawsky@lboro.ac.uk

Introduction
Distributed synthetic environments are increasingly being used in scientific/engineering
enterprises to explore the attributes and emergent properties of complex system designs. An
important feature of a synthetic environment is its ability to allow scientists/engineers to
interactively explore the parameter space of a computer based model or simulation.
Consequently, distributed simulation tends to support one or more of the following activities:
• Data management:- linking simulation models to remote databases (Korn, Burns et

al. 1999) or real time systems (Davis 1998),

• Distribution of model/simulation: – execution of a one large simulation model
(Gabbar, Shinohara et al. 2003) or execution of many separate simulation models
across different computers (Zulch, Jonsson et al. 2002),

• Simulation distribution:- Distribution of the same simulation or multiple simulation
scenarios (Yucesan, Luo et al. 2001),

• Collaborative environments: - simulations that can be interactively steered by many
users (Liere, Mulder et al. 1997; Mulder, van Wijk et al. 1999), can also include
models or simulation software that can be shared.

• Providing access to super computing resources that may not exist at a particular
site.

Currently, military based distributed simulation systems typically conform to the High Level
Architecture (HLA) standard because it is a relatively mature modelling and simulation standard
in this domain. The HLA focuses on the implementation level and cannot readily be used to
solve problems at the conceptual level, such as validation and verification of simulation models.
At the systems level there are many situations where simulations from different domains need to
be coupled to support cross-disciplinary investigations. Moreover, as the scale and complexity of
simulation increases the demand for access to ever more powerful computing resources also
increases. To meet this need an important approach for scientific research known as e-Science
(Hey and Trefethen 2003) was developed in the UK which relies on the utilisation of complex
distributed heterogeneous resources including experimental apparatus, large scale simulation and
visualization resources. In e-Science, such resources are interconnected with a distributed
computing environment known as the grid (Foster and Kessleman 1999). The grid is ideally
suited to support computer simulations in a diverse range of scientific and engineering fields and
has the distinct advantage of harnessing the power of distributed compute and visualization
resources. For very large simulations the required computational resources frequently exceed
those available at a single institution and in order to process jobs in a reasonable timeframe
additional resources are employed that are geographically remote from the scientist undertaking
the work. In this context large grid based simulations can typically employ hundreds of
geographically distributed processing nodes over which the computation is executed (in order to
increase the scale of the simulation or reduce the overall execution time). The growing need to

process very complex models and large datasets (Avery 2002) is also driving the requirement for
ever more powerful supercomputing resources. As a result of the increased capability, workflow
strategies of the computational scientist/engineer are now tending towards submission of
concurrent jobs to the supercomputing resource, please refer to Figure 1.

Figure 1: Using computational steering techniques, the scientist is able to explore the
dynamics of a running simulation in real-time by steering its course towards a desired
parameter space. From (Coveney 2003).

The resulting parallel workflow is intended to facilitate comparison of results between different
simulation runs rather than waiting until all jobs have been sequentially processed before an
analysis is undertaken. To address this need the UK e-Science RealityGrid project
(http://realitygrid.org) undertook computational studies at atomistic and mesoscale levels with
the goal of improving simulation productivity by enhancing the scientist/engineer’s interaction
with the underlying computational model. To demonstrate the gains in increased computational
power, RealityGrid was linked to the US TeraGrid (Catlett 2002; Pickles, Blake et al. 2004) to
employ over 6000 distributed central processing nodes. Prior to the introduction of the grid such
computing jobs would typically take days or weeks to complete. Within RealityGrid the grid has
achieved a dramatic speed increase from 26 days of continuous computing to less than 48 hours
(Fowler, Coveney et al. 2004). In this example, the scientist’s workflow involved launching an
initial application then monitoring its progress before spawning ten or more concurrent
simulations. Each spawned simulation was not quite independent but was derived from a
checkpoint part way through the previous simulation. As the simulations proceed the
scientist/engineer could monitor the convergence or otherwise of the group average. Decisions
can be taken at various intervals to terminate, extend or launch new jobs. In this application,
second or further chained simulations cpuld be launched at the same time as the first, or a short
while later. Consequently, even within a 48-hour simulation period the scientist/engineer had to
monitor their simulation – this means being able to connect to the simulation and check the
parameters of interest. Unfortunately, being tied to the desktop for a long time is a distinct
disadvantage so a solution to allow the scientist/engineer to operate away from their desk was
highly desirable. Crucially, the required complexity to control and interact with the distributed
computing/visualization environment should not be under-estimated. Output from many

computational simulations is a complex 3D visualization which raises the question of how best to
deliver and interact with the system as a remote user. Large scale computing tasks can take many
hours or even days to execute and during their execution the scientist/engineer often needs to
access the simulation to monitor and control (steer) their job. Simply letting a grid job run on
without user intervention and steering can incur expensive computer time if the result diverges
from that expected. At the moment access to these resources is achieved through reasonably
high-end desktop computers but these are impractical for access whilst away from the office or
laboratory.
To address these issues a user centered approach was adopted (Brooke, Coveney et al. 2003;
Coveney 2003; Bradley 2004; Kalawsky, O'Brien et al. 2005) to identify required system and
performance requirements. To provide a sound basis a system engineering framework was
employed to define architecture requirements and support the development of a ubiquitous
interface device that could facilitate 24-hour access to the computing resources when the
scientist/engineer are away from their desk. The user requirement also called for interactive
control of jobs as well as the provision of an interactive 3D visualization of the results as they are
computed. A trade-off analysis was undertaken involving all the stakeholders and the proposed
‘ideal’ device, from a practical viewpoint was a personal digital assistant (PDA), commonly
known today as a ‘tablet device’. Clearly such devices do not possess the computational power,
memory or visualization resources to even begin handling the simulation results. However, rather
than abandon the idea we decided to continue with the requirement in order to drive out specific
system requirements. Despite these issues we were indeed able to provide a highly effective
PDA interface to grid based simulations that meets the extremely demanding user needs in terms
of interactive visualization performance (which at first seemed impossible). The systems
engineering process was largely responsible for characterising the required system architecture
and mapping this against user needs.

Requirement for a systems engineering perspective on
complex grid based computing environments

Whilst the grid facilitates submission and scheduling of jobs over a distributed computing
environment there is an inherent degree of complexity in actually launching computational jobs
and monitoring their progression. Consequently, the grid currently remains extremely complex
and potentially unusable (Harting 2004) in terms of its configuration, infrastructure, resource
scheduling, job launching and poor user interaction. However, now that grid enabled systems are
beginning to deliver important scientific results there is an urgent requirement to ensure the grid
is user friendly (Chin and Coveney 2004). If the uptake of the grid is to extend into the wider
scientific/engineering community it must be made more accessible by providing more effective
user interfaces. In the majority of cases the scientist/engineer requires to periodically observe the
results from their jobs and interact with the simulation as it proceeds. Consequently,
visualization has become an essential tool in order to interpret large data sets generated by
scientific instruments such as telescopes, microscopes, particle accelerators, imaging machines
and distributed simulations. The underlying complexity and sheer quantity of data generated by
modern scientific visualization tools make it virtually impossible to process information
numerically. Whilst, automated data analysis and reduction can sometimes play a role in the
process, effective understanding is only achieved by human interpretation of the visualization.
It is now recognised that interactive exploration of a visualization greatly increases a researcher’s

perception and understanding of the data space (Kalawsky, O'Brien et al. 2005). Understanding
the 3D relationships in visualization imposes additional demands on the user interface because
user interaction becomes a visuo-manual activity as opposed to a text input approach. The value
of user interaction (viewpoint manipulation, feature flythrough and general object manipulation)
should not be under-estimated. Quite often with very complicated 3D renderings the information
of interest is hidden until the scientist/engineer interacts with or moves the viewpoint of the
visualization. This interaction can be regarded as two categories:
• Exploration of the 3D scene. Once a visualization data set has been produced the

scientist often wants to explore interactively the resulting visualization to observe
areas of interest. This exploration may involve operations such as image translation,
rotation or navigation through the 3D data set.

• Exploration of the visualization parameters. Parameter exploration through
manipulation of the initial control parameters allows the researcher to explore 'what
if?' scenarios and helps reveal otherwise occluded data and relationships.

The inherent complexity of the grid based infrastructure can make it difficult to identify
the key drivers for the system design. In order to help characterise the system in terms
of performance and overall architecture a systems engineering framework was adopted.
In addition, a number of perspectives for the development needed to be addressed:

• The application scientist/engineer - who’s role is to engage in scientific
exploration

• The computer scientist - who is concerned with the development of scientific
exploration tools to facilitate the application scientist.

• The user interface designer - who’s role is to advise on the design of the
interactive user interface.

At the start of the Reality Grid project it was apparent that the end users, computer scientists,
user interface designers and system developers each had a different understanding of what was
required. Therefore, it was important to employ a consistent approach to the derivation of an
architectural framework for the visualization system. Rather than invent a new approach to the
systems architecture definition a decision was taken to employ the US Department of Defense
Architecture Framework (DoDAF) (DoD 2004) as the basis for the specification and
development of the systems architecture. Even though this was designed for military applications
it has been found to be useful for other non military activities. Only a subset of the full DoDAF
viewset was applicable to the RealityGrid project. In summary the views shown in Table 1 were
created.

Applicable
Viewset

Framework Framework Product
Name

Description

All Views AV-1 Overview and
Summary

Scope, purpose, intended users

All Views AV-2 Integrated dictionary Definitions of all terms used
Operational
View

OV-1 High level
Operational Concept
Graphic

High level visual/textual representation of
operational concept.

Operational
View

OV-2 Operational Node
Connectivity
Description

Operational nodes, connectivity and
information exchange between nodes.

Operational
View

OV-3 Operational
Information
Exchange Matrix

Information exchanged between nodes.

Operational
View

OV-5 Operational Activity
Model

Operational activities, relationships between
activities, inputs and outputs.

Systems
View

SV-1 Systems Interface
Description

Identification of system nodes, systems, and
interconnectivity between nodes.

Systems
View

SV-2 Systems
Communications
Description

System nodes, system items and related
communications.

Systems
View

SV-3 Systems –Systems
Matrix

Relationship between systems.

Systems
View

SV-4 Systems
Functionality
Description

Functions performed by systems

Systems
View

SV-10a Systems Rules
Model

System constraints on functionality

Systems
View

SV-10b Systems State
Transition
Description

System response to events

Technical
View

TV-1 Technical Standards
Profile

Relevant standards that apply to system

Table 1: System Architecture Products (N.B. System also refers to a computational component)

RealityGrid was not a military based project but the use of DoDAF really helped structure and
articulate the overall system requirements within a clearly defined framework. This process
made it easy to derive actual system needs and communicate these to the implementation teams.
In order to capture and refine user interface requirements a human factors audit was also
employed to understand current practice and provide a detailed context sensitive basis of how
RealityGrid scientists undertake their research. The audit was structured to capture the following
information: Scientific application details, Technical environment, Task characteristics, User
environment, Physical environment, User types and Special factors. Consequently, to derive an
optimal design it was necessary to consider many inter-related factors such as:

• Understanding of how the users utilise their tool sets

• Consideration of what people are good and bad at

• Identifying what might improve the way people do things currently

• Listening to what users want

• Involving the end users in the design process

• Employing tried and tested user-based techniques during the design process

• Understanding of the limitations of the human physical and cognitive system

From the outset the systems engineering methodology ensured the resulting system
was fit for purpose and easy to use. An iterative approach to the design of the user
interface design activity was followed. The purpose of the iterative review was to verify
the workflow employed by the scientist/engineer with a view to identifying key usability
issues. A further particularly challenging aspect for the usability case was the need to
consider a wide range of applications. Within RealityGrid a number of different scientific
tools were being used and they each presented a different interface to the user.
Unfortunately, the scientist was very reluctant to consider changes to the ‘look and feel’
of their familiar user interface. This reluctance was based on the user’s familiarity with
the tool and also the fact that many applications were proprietary and the underlying
interface was fixed by the application. Whilst it could be argued that these tools do not
necessarily represent an ideal user interface the design of these interfaces have
evolved during the development of the individual tools. Ideally, what was required was a
form of consistent user interface that maps across all the RealityGrid applications and is
still recognizable by the scientist. An additional challenge was that the software tools
used by the scientists were not necessarily compatible with each other. This potentially
makes the job of designing a consistent interface very difficult. A key requirement to
emerge from the human factors audit was the need for a user interface that facilitates
access to the computational resources at any time and from any location.

Usability and Computational Steering
Usability is extremely context dependent (Newman W. M. and Taylor A. S. 1999)

and largely determined by the interaction between users, tools and the problem domain.
Improving the usability of e-Science enterprises is regarded as important (Harting
2004). The focus for our e-Science research has focussed on the need to facilitate
improved computational steering and visualization. Computational steering has
emerged as an iterative process (Mulder, van Wijk et al. 1999) to solve the limitations in
earlier file based scripted job control systems by offering a direct, real-time user
interaction mechanism. A computational steering system requires the scientist/engineer
to define a series of independent variables to be manipulated during the execution of a
given simulation. As the simulation proceeds the resulting dependent variables
representing the state of the simulation, as well as the results of interest are displayed

to the scientist. The scientist/engineer then fine tunes (steers) the computational model
whilst it is running, observing results and changing input parameters until the desired
results are obtained, or have reached the point where no further iteration is required
(Leech 1996). The scientist/engineer is an important part of the feedback loop because
they are in control of the parameter space being searched. The ability to control and
manipulate steering parameters effectively and interactively is a major contributor to the
usability of the system. Figure 2 illustrates the interactive elements within a typical
computational steering system.

Figure 2: Manual computational steering system

A set of steering libraries have been developed that can be integrated with an application code
(Brooke, Coveney et al. 2003). The steering libraries allows the user’s simulation to be
distributed over a grid architecture as shown in Figure 3 which shows what is involved for codes
to be instrumented for computational steering through the publicly released RealityGrid Steering
Library and Toolkit. A steering client user interface can be used to remotely discover and steer
individual RealityGrid components on the grid, (Refer to Figure 4) through a lightweight Web
Service middle tier. An important feature of the libraries is that they support dynamic connection
to the steering services meaning that the user can connect and disconnect to their simulation as it
executes, allowing the user to run several jobs simultaneously and switch between them. Whilst
this technique improves usability there is still an onus on the user to use their desktop steering
client to frequently monitor critical simulation parameters to ensure everything is running as
required.

Figure 3: Simple RealityGrid Steering (Right) (Brooke, Coveney et al. 2003)). The
RealityGrid Steerer provides a visual front-end to all of the Grid-based computational

steering (Left).

Computational steering will remain partially supervised (until automatic goal orientated systems
become available) where the output of the simulations must be checked on a regular basis for
continued valid output. The job submission and resource management systems do not always
guarantee a particular time-slot when the scientist’s job is run. Invariably, other jobs with a
higher priority seem to jump the queue. This means the scientist has to connect and disconnect
regularly with the simulations in order to inspect the developing results. Unfortunately, this ties
the scientist down to their desktop computer and is not very productive, especially if jobs take
hours or days to execute.

Figure 4: RealityGrid Lightweight Visualization provides a set of Grid-enabled software
components and middleware

The RealityGrid Steering Library and Toolkit enables each grid component (typically a
simulation but potentially a visualization) to be remotely steered through a lightweight Web
Service middle tier, by means of a steering client user interface. Computational steering is
achieved by exposing a set of pre-registered internal simulation code parameters over the grid.
Once exposed, these parameters can be adjusted through the remote user interface and updated
inside the grid-based application in real-time. Usable grid infrastructure and middleware is
fundamental to the successful adoption of e-Science technology for scientific computing.

Lightweight remote visualization
The importance of remote visualization was first recognised by (Parulkar 1991) who noted the
increasing reliance on the visualization of data by the scientific and engineering communities.
Interactive scientific visualization requires a consistent, low-latency representation of the
visualization and high band-width computation. Latency is a problem when analysing and
interacting with large datasets and rendering 3-D structures, especially where the scientist is
required to interactively manipulate the steering parameters of the computation. Early

approaches to remote visualization relied on a client-server paradigm. The distributed nature of
grid resources and indeterminate network performance can introduce serious human computer
interaction issues as discussed earlier in this paper. Various techniques are available to reduce
these time delays by compressing data sent over the network, thus leading to a reduction in
network bandwidth. Unfortunately, this is not always commensurate with a guaranteed decrease
in time delay or latency. Given the desirability to support interactive exploration it is considered
good practice to separate the visualization rendering stage from the main compute loop because
this will not tie down the visualization system response time (during an interactive session) to the
long execution time of the computation. If the user does not have local high-end visualization
systems, it is then feasible to employ a remote visualization or distributed system. It is a
reasonable assumption that any operation on a data stream has the potential to add a delay into
the overall system pipeline, or possibly worse, to introduce a degree of distortion into the
original dataset. The real question is how to trade off frame rate versus compression loss.
Various techniques exist for supporting distributed visualization and specialised hardware has
become available in terms of the processing that can be performed within dedicated hardware
and this has led to a novel technique of remotely generating a compressed image and
transmitting this to a user over a network. However, particular care has to be exercised in the use
of data compression for images. There are both lossy and lossless compression techniques, the
lossy compression techniques are ideal for low latency situations because of their low network
bandwidth overhead requirements, but they should only be used where image compression can
be tolerated.
An important user interaction issue is the effect of time delay between user input and the
corresponding output from the computation. Depending on overall grid architecture the
interaction time delay can be anything from fractions of a second to several minutes, or in
extreme cases several hours. General advice regarding what constitutes an ideal response time in
an interactive system has largely been the same for the past three decades (Card and Mackinlay
1991), (Miller 1968). For a truly responsive computational steering system (in usability terms) it
is necessary to be able to update visualization viewpoints at a rate of at least 0.1s (10Hz).
Unfortunately, it is impractical to expect all parts of the grid to be capable of updating at this
rate. Indeed, in the case of extremely large scale computation a single iteration may still take
many hours to execute. However, this does not imply that all parts of the computation need to be
tied to this long lead time. By separating the visualization from the computation loop it is
possible to increase the responsiveness of the user’s interaction. However, the iteration rate of
the visualization machine then becomes an important factor in the usability of the system. As
soon as the visualization is separated from the main computation, and the user is allowed to
interactively manipulate parameters which affect the final visualization, a number of important
user interface requirements need to be considered. Depending on the nature of the task, close
coupled interaction with the intermediate data set can be very useful, (if not essential) in
understanding whether the computation needs to continue.
As an alternative to presenting high quality rendered images whilst performing interactive tasks
such as navigation and image rotation it is feasible to render an image which is much simpler or
has reduced quality. This means the image is purposely degraded to a point where sufficient
visual cues remain and are adequate for the user to navigate around the dataset. As soon as the
user interacts less with the visualization and finds the point of interest, the visualization is
progressively rendered at a much higher level of fidelity or with no compression. This technique
has the advantage of minimising network bandwidth with increased frame rate during periods of

high user interactivity. This visualization technique is known as ‘adaptive rendering’ and is
based on a very similar approach that has already been successfully applied to virtual
environments (Funkhouser and Sequin 1993), (Watson 1998). In grid based environments,
different algorithms are required to control the degree of adaptivity in order to maintain an
adequate level of accuracy in the display during interaction and when viewing the image from a
static viewpoint. These and other more sophisticated rendering techniques are able to make a
significant contribution to reducing network bandwidth whilst providing an appropriate level of
image fidelity during interaction.

The case for a lightweight computational steering and
visualization system

The DoDAF architectural views allowed the application scientists to express their
requirements in a format that was easy for them and which were highly readable by the
computer scientists/system developers. Analysis of the data from the RealityGrid
systems engineering process identified the following requirements for a lightweight user
interface for grid applications:

• Remote access to grid based resources at any time and from any location

• Wireless connectivity

• Intuitive interaction – with minimal learning

• Consistent user interface between standard desktop scientific applications

• Connectivity with standard (proprietary) and bespoke computation grid enabled
applications

• High resolution, highly interactive 3D visualization

• Ability to graph data as it is computed

• Ability to interactively steer a computation through a set of user selectable input
parameters

• Collaborative visualization – shared visualization with other users

• Minimum latency during interaction

Therefore, to extend the established computational steering capabilities of RealityGrid and other

grid based applications, a lightweight visualization environment was created to provide a set of
grid-enabled software components and middleware. These were designed to allow high-end
visualization applications to run over a lightweight software-based middle tier. The basis of
lightweight visualization was to facilitate efficient and collaborative remote user access to high-
end visualization on the grid. The resulting system can be hosted on a PDA, tablet, mobile
phone, laptop or desktop computer and comprises four Grid-enabled components (Refer to
Figure 5):

a) A Lightweight Visualization Module (LViz Module) is embedded within a
visualization code to expose an external means of accessing the internal visualization
functionality.

b) The Lightweight Visualization Server (LViz Server) manages remote client
connections, communicates client interaction commands to the visualization and serves
the remote client with visually rendered image data.

c) The Lightweight Visualization Web Service (LViz Server) provides resource
discovery capabilities and helps the client to establish a direct connection to a
visualization application on the grid.

d) The client or user interface through its interaction with the LViz WS configures
itself to provide a lightweight extension of the visualization application’s indigenous user
interface. This approach to providing tailor-configured user interfaces has enabled
RealityGrid Lightweight Visualization to provide a wealth of visualization functionality
through the many bespoke and commercial visualization applications that are currently
deployed in RealityGrid.

Implementation of the RealityGrid PDA client
The RealityGrid PDA Client has been designed as an intuitive visual front-end,

enabling the user to discover their applications on the RealityGrid, steer their
simulations in real-time and interact with high-end visualizations as if the
supercomputing applications were running locally. The RealityGrid PDA Client provides
convenient, remote, handheld access to the three primary aspects of RealityGrid
supercomputing functionality:

Resource discovery enables the scientist to find experiment software
components on the grid and bind the remote user interface to the grid applications in
order to support real-time interaction. The actual location of a RealityGrid application
remains transparent to the user throughout the resource discovery process. The
RealityGrid PDA Client’s first task at start-up is to contact a user-specified RealityGrid
Registry and retrieve its contained list of all currently deployed and active jobs on the
grid. Through the PDA interface the user is then able to select an individual job to

interact with. The RealityGrid PDA Client will then establish a remote connection or
‘attach’ to the job over the grid and display the appropriate computational steering or
visualization interface, depending on the type of job selected.

Real-time computational steering is supported by a built-in computational steering interface
(Refer to Figure 5). RealityGrid computational steering functionality remains within a constant
subset between each individual simulation code. Thus the client’s computational steering
interface has been developed as a generic front-end to each separate RealityGrid simulation. The
computational steering interface of the RealityGrid PDA Client has been developed to
specifically provide the same level of usability plus all the facilities that the user can access on
their desktop or laptop computer through the established RealityGrid Steerer application (Refer
to Figure 3).
Whilst attached to a running simulation the RealityGrid PDA Client updates its user interface
with fresh simulation parameter data (Refer to Figure 5), which is requested and retrieved from
the SWS at an interval of once every second. This received data can also be plotted, as it is
received, in a 2D line graph (Refer to Figure 5). The tasks of retrieving parameter data, updating
the user interface and graph plotting are all each processed separately by the RealityGrid PDA
Client using multiple threads. The use of multithreading in the RealityGrid PDA Client has
enabled the computational steering interface to remain active and responsive to the user at all
times, whilst constantly updating simulation parameter data from the grid in the background.
The user remotely steers a simulation by entering new parameter values into an input dialog,
which is displayed within the RealityGrid PDA Client interface. The inputted new parameter
values are then despatched to the SWS where the appropriate action is then taken on the grid to
update the relevant parameters within simulation. Once the required steering activity has been
instigated within the simulation it is reflected back within the PDA interface, through a client-
requested parameter update, almost instantaneously.

Figure 5. The computational steering interface of the RealityGrid PDA Client

Visualization is an accompaniment to computational steering. The most innovative feature of
the RealityGrid PDA Client is its ability to provide remote handheld user access to the high-end
3D visualization capabilities of RealityGrid (Refer to Figure 6). RealityGrid provides grid-based
hosting support for a wide range of existing or established scientific visualization codes. The
RealityGrid PDA Client has initially been developed to provide a remote handheld interface to
the RealityGrid-instrumented VMD application (Refer to Figures 6 and 7). The client’s user
interface is automatically configured to the indigenous VMD user interface when the user
attaches the client to an instance of the VMD visualization application on the grid. The
RealityGrid PDA Client’s configurable visualization interface has been specifically designed and
implemented to provide the same user services and level of user interaction as that of the
integrated VMD font-end (Refer to Figure 7), or any other supported visualization code, creating
a sense of continuity for the user on their remote PDA interface.

The RealityGrid PDA Client remotely controls a visualization application on the grid by
remotely issuing text-based commands to the LViz Server, derived from captured user
interactions in the interface. Commands are executed within the visualization code by the
embedded LViz Module, which is also responsible for capturing two-dimensional rendered
visualization image sequences. Rendered images are encoded and served back to the client over a
connecting TCP/IP socket. The RealityGrid PDA Client incorporates a generic interface,
allowing the user to remotely configure the image encoder settings of the LViz Server. This
facility has been implemented in the RealityGrid Lightweight Visualization architecture to
enable the user to apply varying levels of image compression, in order to adapt the client for use
on low or medium bandwidth wireless networks with higher levels of image compression
yielding increased image serving throughput on slower networks. Rendered frames are encoded
by the LViz Server using a combination of the Portable Network Graphics (PNG) and the Joint
Photographic Experts Group (JPEG) compression algorithms, providing a means for the user to
view visualized data on the PDA in both lossless and lossy formats.

Figure 6: The RealityGrid PDA Client is able to configure itself to provide remote user access
and interaction for the VMD visualization application on the Grid.

When designing the visualization interface for the RealityGrid PDA Client, it was essential to
provide the user with a real sense of engagement with their visualization application and not
leave them feeling remote or disconnected from it in any way when using the PDA. Traditional
user interaction with scientific visualization (on a desktop or laptop computer) typically involves
the user dragging the mouse cursor across the display, and the visualization viewpoint (or model)
subsequently responds by rotating, panning, zooming (in or out) or translating. A key objective
for the RealityGrid PDA Client was to present an impression that the visualization was running
locally on the handheld device, in much the same way as it would be on a desktop system (either
locally or through a remote user interface). To help achieve this desired effect, the RealityGrid
PDA Client implements a user interaction mechanism derived from the conventional desktop
interaction model.
The user interacts remotely with visualization through the RealityGrid PDA Client by dragging
their PDA stylus either horizontally or vertically across the display screen. The client captures
the stylus movement and transmits an appropriate interaction message over the grid to the
visualization using one of three pre-defined and user specifiable interaction modes: rotate, scale
or translate. The RealityGrid PDA Client also provides two additional user-specifiable modes for
capturing the movement of the stylus. These are incremental and terminal. The incremental
capture mode despatches continuous interaction instructions as the stylus is gradually moved
across the display. In contrast, the terminal capture mode waits until the user has completed a full
movement, signified by the stylus being lifted away from the display screen, before despatching
a single instruction for the whole movement to be executed in one cycle. Incorporating different
modes of input capture as with image encoding, has enabled the user to adapt the performance of
the RealityGrid PDA Client to remain responsive to changeable wireless network conditions.

Figure 7. The RealityGrid PDA Client visualization interface has been specifically designed to
provide the same user services as the integrated VMD front-end

Concluding Remarks
In an attempt to make the grid an easier tool for scientists/engineers to use on an

everyday basis we developed a grid-enabled steering and visualization lightweight
client. The underpinning systems engineering architecture framework helped identify
key requirements from different perspectives and in a form understandable by the end
users and system developers alike. The use of DoDAF and UML has helped to
articulate real system needs and expected system performance in addition to definition
of the functionality of the user interface. Prior to this the system developers had difficulty
in relating the implementation to the context of use. This approach has led to a system
that now seriously competes with the desktop system in terms of performance and
which exceeds it in terms of operation anywhere and at any location. The systems
engineering approach we have followed has enabled us to fully understand the
stakeholder requirements for a ubiquitous user interface. It is important to note that the
systems architecture framework acted as a platform independent blueprint for the PDA
client and server systems.

The concept of using a PDA to interact with a series of jobs across a
supercomputing resource at first may seem strange, but when scientists/engineers
realise they can use these devices to connect to their computation wherever there is a
wireless (or cellular phone) network the idea becomes very compelling. The PDA’s
lightweight and compact design has made it an ideal candidate to deliver the much
needed flexibility and convenience to the grid-based user interaction experience;
offering scientists a significantly increased mobility advantage over the laptop PC, by
the way in which the device can be easily transported ‘hands free’ tucked inside a coat
or trouser pocket, or elsewhere carried discreetly about one’s person. Although the PDA
has been developed for computational science applications there is no reason why the
same infrastructure cannot be employed elsewhere. We have successfully
demonstrated an interface to a medical scanner thereby providing the healthcare
consultant and surgeon with a very useful time saving device.

To qualify the effectiveness of a PDA-based user interface on the grid: the roaming
computational steering client that was initially developed as part of the RealityGrid
project (and upon which the research described in this paper has been founded)
provided scientists with a highly usable handheld facility to monitor and computationally
steer (fine tune) their high-end computational simulations, in real-time, from virtually any
location at any time of day (or night). Our original concerns about not being able to
provide a low latency interactive visualization have been unfounded. The use of user
interfaces that conform to those used in specific applications has made it
straightforward for new users to adapt to the PDA solution. This means that users can
operate in a familiar environment. Finally, our approach has been to solve the user

interface problem for the PDA, the methods used also map directly onto any other
platform thus making the system truly ubiquitous. Others have tried and failed to
produce real-time 3D visualizations on low power PDA devices. In addition, our
approach is fully scalable from the PDA through desktop computers to high end
computing resources. However, we believe that the systems engineering approach we
have followed has enabled us to gain a much greater insight into the aspects of the
system design that are crucial to the successful realisation of our concept. Finally, we
have recently successfully applied the same approach to the implementation of a PDA
based medical visualization system (Project supported by The Loughborough University
/ University Hospitals of Leicester NHS Trust Medical Research Council Interdisciplinary
Bridging Award.) leading to first prize in Da Vinci Health Technology Innovation awards for
developments in 3D medical visualisation.

.

Acknowledgements
The author would like to thank the dedicated teams of application and computer
scientists within the RealityGrid project (University College London, University of
Manchester, University of Oxford, Loughborough University, Edinburgh Parallel
Computing Centre and Imperial College). Special thanks also go to Simon Nee and Ian
Holmes (both formally of Loughborough University) for their contribution towards early
developmental research on the RealityGrid PDA Client as well as to Andrew Porter of
Manchester Computing for his invaluable assistance regarding the RealityGrid
computational steering framework. This work was carried out under grant GR/R67699
from the EPSRC and within the RealityGrid project.

References
Avery, P. (2002). "Data Grids: a new computational infrastructure for data-intensive science."

Philosophical Transactions: Mathematical, Physical and Engineering Sciences 360(1795): 1191 -
1209.

Bradley, D. (2004). RealityGrid - Real Science on computational Grids.” e-Science 2004: The Working
Grid.

Brooke, J. M., P. V. Coveney, et al. (2003). Computational Steering in RealityGrid. Proceedings of the UK
e-Science All Hands Meeting, Nottingham.

Card, S. K., Robertson, G. G., and J. D. Mackinlay (1991). The information visualizer: An information
workspace. Proc. ACM CHI'91 Conf, New Orleans, LA.

Catlett, C. (2002). The Philosophy of TeraGrid:Building an Open, Extensible, Distributed TeraScale
Facility. 2nd IEEE International Symposium on Cluster Computing and the Grid, IEEE Computer
Society.

Chin, J. and P. V. Coveney (2004). Towards tractable toolkits for the Grid: a plea for lightweight, usable
middleware.

Coveney, P. V. (2003). Computational Steering on Grids - A Survey of RealityGrid. Proceedings of the
Second Annual RealityGrid Workshop, University College London, UK.

Davis, W. J. (1998). On-line Simulation: Need and Evolving Research Requirements. Handbook of
Simulation: Principles, Methodology, Advances, Applications, and Practice. J. Banks, John Wiley:
465-516.

DoD, A. F. W. G. (2004). DoD Architecture Framework Version 1.0. 1, 2: 87.

Foster, I. and C. Kessleman (1999). The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann Publishers.

Fowler, P. W., P. V. Coveney, et al. (2004). Exact calculation of peptide-protein binding energies by
steered thermodynamic integration

using high performance computing grids. EPSRC e-Science All Hands Meeting, Nottingham.

Funkhouser, T. A. and C. H. Sequin (1993). Adaptive display algorithms for interactive frame rates during
visualization of complex virtual environments. Computer Graphics (SIGGRAPH '93), Los Angeles,
CA.

Gabbar, H., S. Shinohara, et al. (2003). "Experiment on Distributed Dynamic Simulation for Safety Design
of Chemical Plants." Simulation Modeling Practice and Theory 11(2): 109-123.

Harting, J., Venturoli, M., Coveney, P.V. (2004). "Large-scale grid-enabled lattice Boltzmann simulations
of complex fluid flow in porous media and under shear." Philosophical Transactions:
Mathematical, Physical and Engineering Sciences 362(1821): 1471-2962.

Hey, T. and A. E. Trefethen (2003). The Data Deluge: An e-Science perspective. Grid Computing -
Making the Global Infrastructure a Reality. F. Berman, G. Fox and A. J. G. Hey, Wiley.

Kalawsky, R. S., J. O'Brien, et al. (2005). "Improving scientists interaction with complex computational-
visualisation environments based on a distributed grid infrastructure." Phil. Trans. R. Soc. Lond. A
363(1833): 1867-1884.

Korn, S., G. R. Burns, et al. (1999). "The Application of Multiparadigm Simulation Techniques to
Manufacturing Processes." International Journal of Advanced Manufacturing Technology 15(12).

Leech, J., Prins, J.F., Hermans, J. (1996). "SMD: Visual steering of molecular dynamics for

protein design." IEEE Computational Science & Engineering 3(4): 38–45.

Liere, R. v., J. D. Mulder, et al. (1997). "Computational steering." Future Generation Computer Systems
12(5): 441-450.

Miller, R. B. (1968). Response time in man-computer conversational transactions. Proc. AFIPS Fall Joint
Computer Conference.

Mulder, J. D., J. J. van Wijk, et al. (1999). "A survey of computational steering environments." Future
Generation Computer Systems 15(1): 119 – 129.

Newman W. M. and Taylor A. S. (1999). Towards a Methodology employing Critical Parameters to
deliver Performance Improvements in Interactive Systems. Interact ‘99 Conf.

Parulkar, G. M., Bowie, J., Braun, H. Guerin, R., Stevenson, D. (1991). Remote visualization: challenges
and opportunities. Proceedings of the 2nd conference on Visualization '91, San Diego, California,
IEEE Computer Society Press.

Pickles, S. M., R. J. Blake, et al. (2004). The TeraGyroid Experiment. Workshop on Case Studies on Grid
Applications - held in conjunction with GGF10, Berlin, Germany.

Watson, B., Walker, N., Ribarsky, W.R., Spaulding, V. (1998). "The effects of variation in system
responsiveness on user performance in virtual environments." Human Factors 40(3): 403-414.

Yucesan, E., Y.-C. Luo, et al. (2001). "Distributed Web-based Simulation Experiments for Optimization."
Simulation Practice and Theory 9(1): 73-90.

Zulch, G., U. Jonsson, et al. (2002). "Hierarchical Simulation of Complex Production Systems by Coupling
Models." International Journal of Production Economics 77(1): 39-51.

BIOGRAPHY
Professor Roy S. Kalawsky Ph.D, M.Sc., B.Sc., C.Eng, FIET, FRSA is Director of the
Advanced VR Research Centre at Loughborough University. Before joining Loughborough
University in 1995 he worked for BAE Systems and was responsible for Advanced Cockpit
Research across the Military Aircraft Division. In 1993, he received the Royal Aeronautical
Society medal for developing the UK’s first virtual cockpit. Kalawsky joined BAE Systems in
1978 as a systems engineer and researched advanced cockpits for fast jet aircraft.

	Introduction
	Requirement for a systems engineering perspective on complex grid based computing environments
	Usability and Computational Steering
	Lightweight remote visualization
	The case for a lightweight computational steering and visualization system
	Implementation of the RealityGrid PDA client
	Concluding Remarks
	Acknowledgements
	References
	BIOGRAPHY

