2 research outputs found

    From Safety Analysis to Experimental Validation by Fault Injection—Case of Automotive Embedded Systems

    Get PDF
    En raison de la complexité croissante des systèmes automobiles embarqués, la sûreté de fonctionnement est devenue un enjeu majeur de l’industrie automobile. Cet intérêt croissant s’est traduit par la sortie en 2011 de la norme ISO 26262 sur la sécurité fonctionnelle. Les défis auxquelles sont confrontés les acteurs du domaine sont donc les suivants : d’une part, la conception de systèmes sûrs, et d’autre part, la conformité aux exigences de la norme ISO 26262. Notre approche se base sur l’application systématique de l’injection de fautes pour la vérification et la validation des exigences de sécurité, tout au long du cycle de développement, des phases de conception jusqu’à l’implémentation. L’injection de fautes nous permet en particulier de vérifier que les mécanismes de tolérance aux fautes sont efficaces et que les exigences non-fonctionnelles sont respectées. L’injection de faute est une technique de vérification très ancienne. Cependant, son rôle lors de la phase de conception et ses complémentarités avec la validation expérimentale, méritent d’être étudiés. Notre approche s’appuie sur l’application du modèle FARM (Fautes, Activations, Relevés et Mesures) tout au long du processus de développement. Les analyses de sûreté sont le point de départ de notre approche, avec l'identification des mécanismes de tolérance aux fautes et des exigences non-fonctionnelles, et se terminent par la validation de ces mécanismes par les expériences classiques d'injection de fautes. Enfin, nous montrons que notre approche peut être intégrée dans le processus de développement des systèmes embarqués automobiles décrits dans la norme ISO 26262. Les contributions de la thèse sont illustrées sur l’étude de cas d’un système d’éclairage avant d’une automobile. ABSTRACT : Due to the rising complexity of automotive Electric/Electronic embedded systems, Functional Safety becomes a main issue in the automotive industry. This issue has been formalized by the introduction of the ISO 26262 standard for functional safety in 2011. The challenges are, on the one hand to design safe systems based on a systematic verification and validation approach, and on the other hand, the fulfilment of the requirements of the ISO 26262 standard. Following ISO 26262 recommendations, our approach, based on fault injection, aims at verifying fault tolerance mechanisms and non-functional requirements at all steps of the development cycle, from early design phases down to implementation. Fault injection is a verification technique that has been investigated for a long time. However, the role of fault injection during design phase and its complementarities with the experimental validation of the target have not been explored. In this work, we investigate a fault injection continuum, from system design validation to experiments on implemented targets. The proposed approach considers the safety analyses as a starting point, with the identification of safety mechanisms and safety requirements, and goes down to the validation of the implementation of safety mechanisms through fault injection experiments. The whole approach is based on a key fault injection framework, called FARM (Fault, Activation, Readouts and Measures). We show that this approach can be integrated in the development process of the automotive embedded systems described in the ISO 26262 standard. Our approach is illustrated on an automotive case study: a Front-Light system

    Quantification of plausibility cross-checks in safety related control system architecture design for automotive applications

    Get PDF
    When designing safety critical systems for automotive applications it is imperative that the chosen architecture can fulfil the designated safety goals. One significant aspect of this is proving architectural metrics are satisfied. The method developed in this thesis demonstrates, very early in the design process, that a system architecture can be systematically described and analysed to show that the final architectural metric targets for functional safety will be met. The system architecture model proposed can be used to explain a very complex system to other engineers / managers in an easily understood concept diagram, specifically tailored to examine the achievable diagnostic coverage of potential failures in the electrical /electronic system. Once the first architectural model is established, the method analyses architectural metrics in a quantified way, identifies potential weak areas and guides the designer towards additional Plausibility Cross-checks, or, in some cases, completely different architectures to improve the architectural metrics. The metrics can be calculated very quickly in comparison to the level of detail required for the final design. This permits quantified analysis of each candidate architecture allowing an informed decision to be made on which architecture to take through to the final design process. Often, multiple solutions will meet functional requirements, however, only a subset will meet functional safety requirements. The necessity to build safety into products has always been an important aspect of overall system design. This method allows decisions based on justifiable data, early in a project timeline to influence design decisions and ensure that concepts are correct. As demonstrated through examples this is achieved with a high level of confidence
    corecore