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Abstract  

When designing safety critical systems for automotive applications it is imperative that the chosen 

architecture can fulfil the designated safety goals. One significant aspect of this is proving 

architectural metrics are satisfied. 

The method developed in this thesis demonstrates, very early in the design process, that a system 

architecture can be systematically described and analysed to show that the final architectural metric 

targets for functional safety will be met. The system architecture model proposed can be used to 

explain a very complex system to other engineers / managers in an easily understood concept 

diagram, specifically tailored to examine the achievable diagnostic coverage of potential failures in 

the electrical /electronic system.  

Once the first architectural model is established, the method analyses architectural metrics in a 

quantified way, identifies potential weak areas and guides the designer towards additional 

Plausibility Cross-checks, or, in some cases, completely different architectures to improve the 

architectural metrics. The metrics can be calculated very quickly in comparison to the level of detail 

required for the final design. This permits quantified analysis of each candidate architecture allowing 

an informed decision to be made on which architecture to take through to the final design process. 

Often, multiple solutions will meet functional requirements, however, only a subset will meet 

functional safety requirements. 

The necessity to build safety into products has always been an important aspect of overall system 

design. This method allows decisions based on justifiable data, early in a project timeline to 

influence design decisions and ensure that concepts are correct. As demonstrated through examples 

this is achieved with a high level of confidence. 
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1 Introduction 

Functional safety – ‘part of the overall safety that depends on a system or equipment operating 

correctly in response to its inputs’ (BSI, 2007) has had a high profile in areas such as petrochemical 

plants, aircraft, and nuclear installations etc. for many years. This is driven by good practice within 

the industries; in turn this develops into an international standard and is ultimately incorporated 

into approval processes or, as is often the case, legal requirements. In general, any system that is 

concerned with the consequence of failure which leads to loss of life, significant property damage or 

damage to the environment can be defined as safety critical (Knight, 2002). 

As standardisation has evolved, functional safety considerations have migrated into other industries 

and it is now prominent in the automotive industry. As functionality develops, such as driver 

assistance and dynamic stability control, safety is one of the key issues for automotive development 

(Findeis & Pabst, 2006). Hybrid and electric vehicles have ever increasing electronic systems; many 

of which are safety critical (Ward, 2011) and have unique potential failure modes. Whenever a new 

system is designed, or an existing system is modified or upgraded, there is a level of risk (BSI, 2011a) 

and to deliver a system with a tolerable level of risk (acceptable to the operator / user of the system) 

rigorous processes must be adhered to. As the system complexity increases, the potential for a 

higher random hardware failure rate and additional systematic faults exists.  Vehicle manufacturers 

use software intensive distributed electronic control systems (Lanigan, 2011) which must be 

designed and proven to be safe i.e. risk has been reduced to a tolerable level. This requires a robust 

design process and complex system analysis techniques employed during system verification and 

validation. 

1.1 Research Motivation 

Evolutionary development of problem context, deviation analysis, risk assessment, determination of 

mitigation and formulation of safety requirements (Wu & Kelly, 2006) is effective in the generation 

of a well understood set of requirements and a viable architecture. The architecture design can 

apply to logical (a structural design without specific allocation to hardware or software), hardware 

(physical allocation of functionality to hardware components) or software (allocation of functions to 

software units). Safety activities are undertaken throughout the development lifecycle, however if 

the correct measures are not taken in a timely manner (MOD, 2011) then the entire project can be 

put at risk. During the design of several different systems for both off-highway vehicles and 

automobiles, it has been observed that having the architecture correct at the conceptual stage of 

the project reduces late design changes which has several associated benefits: 

• Mitigates project time delays. 
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• Ensures costs are controlled. 

• Reduces iterative design and the associated impact analysis on the safety lifecycle. 

To evaluate the final hardware design of safety critical systems in the automotive sector, up to two 

metrics (BSI, 2011e) are quantitatively assessed depending on the required Automotive Safety 

Integrity Level (ASIL) for the safety goal under consideration: 

• Architectural Metrics – Single Point Fault Metric (SPFM) and Latent Fault metric (LFM) 

• Random Hardware Failure Rates 

Of these two metrics, considerable effort has been aimed at the analysis route dealing with random 

hardware failures and how this contribute to violation of the safety target for the system.  This 

extends to Model-Based safety analysis (Joshi, 2006) using the Society of Automotive Engineers 

(SAE) Architecture Analysis and Design Language (AADL) which includes error modelling (SAE, 2011). 

This allows for modelling of errors, diagnostic coverage and allows automatic generation of fault 

trees using suitable tools. One such tool that allows for systems to be optimised for safety criticality 

and cost for example is HiP-HOPS (HiP-HOPS, 2017). The fact that the system is modelled, allows 

iterative design analysis as the system develops and rapid analysis of the new design. However, an 

important aspect for the architectural design is the architectural metric that guides the system 

architecture to ensure all failure modes can be adequately diagnosed both in terms of single point 

faults and latent faults. The architectural metrics should be analysed in addition to the probabilistic 

metric for random hardware failures (BSI, 2011e). This requires significant detailed circuit schematic 

and hardware component analysis of the final design. A description language specifically aimed at 

embedded systems is EAST-ADL ( EAST-ADL Association, 2013) which links to the AUTOSAR standard 

(AUTOSAR, 2016) . EAST-ADL allows for dependability and error modelling and is focussed on 

ISO26262 (BSI, 2011a)  and allows for omission and commission failures. 

Specific standards have been developed for the automotive industry. These encompass the entire 

development lifecycle with ten sections covering: 

1. BS ISO 26262-1, Vocabulary (BSI, 2011a) 

2. BS ISO 26262-2, Management of functional safety (BSI, 2011b) 

3. BS ISO 26262-3, Concept phase (BSI, 2011c) 

4. BS ISO 26262-4, Product development at the system level (BSI, 2011d) 

5. BS ISO 26262-5, Product development at the hardware level (BSI, 2011e) 

6. BS ISO 26262-6, Product development at the software level (BSI, 2011f) 

7. BS ISO 26262-7, Production and operation (BSI, 2011g) 
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8. BS ISO 26262-8, Supporting processes (BSI, 2011h) 

9. BS ISO 26262-9, ASIL-oriented and safety-oriented analysis (BSI, 2011) 

10. BS ISO 26262-10, Guideline (BSI, 2012) 

The above standards cover the complete product lifecycle, however the main effort on quantifying 

that the final design is correct is left until the later stages in the lifecycle and the calculations are 

performed at component level which typically requires many hundreds of components to be 

analysed in terms of their failure rate, failure modes and diagnostic coverage. 

1.2 Risk 

Techniques exist to analyse a system in terms of reliability analysis, architectural metrics, process 

and audit trails etc. The process is all encompassing – from the initial idea, through design, 

production, in service operation and finally decommissioning. Traditional techniques such as 

reliability analysis, for example using fault trees or Reliability Block Diagrams (RBD’s) do not give a 

quantified route to analyse the architectural metrics in their own right. 

Whenever a system is designed there is a level of risk. As the system increases in complexity, the 

level of risk from random hardware faults and systematic faults increases. Different risk terms are 

discussed in BS ISO 26262-1 (BSI, 2011a): 

Risk –   combination of the probability of occurrence of harm (physical 

injury or damage to the health of persons) and the severity 

(estimate of the extent of harm to one or more individuals that can 

occur in a potentially hazardous situation) 

Residual Risk –   the risk remaining after the deployment of safety measures 

The industrial standard BS EN61508 part 2 (BSI, 2010) uses a similar approach: 

Risk –   combination of the probability of occurrence of harm and the 

severity of that harm 

Residual Risk –  risk remaining after protective measures have been taken 

Tolerable Risk –  risk which is accepted in a given context based on the current values 

of society 

The industrial standards tend to look at much larger applications than the automotive standards; for 

example, industrial power generation plants where, should an incident occur, there is the potential 



 

 Page 4 of 458 A.R. Williams 
 

for an increase in harm; the severity of injuries and the number of casualties that can be involved. 

There is also a subtle difference in the use of ‘safety’ and ‘protection’ when looking at residual risk. 

Often in automotive systems there is a tendency to use a common electronic controller to perform a 

control function and this has safety measures designed into it. In industrial applications, it is 

common to have a control system managing the process and an independent ‘protection’ system 

built around it, acting in a supervisory / shutdown capacity. 
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1.3 Risk Reduction 

The standards all aim to reduce risk in the system through: 

1) Lifecycle process. 

2) Hardware design. 

3) Software design. 

These are equally important, but the area that can have the greatest impact on the project, 

especially where the project delivery relies on a number of companies, departments and disciplines, 

is the overall system architecture, which then progresses into lower level detail design. 

The specific area of interest within the development lifecycle is the architecture design initiated at of 

the beginning of the process. It is imperative that the system architecture is correct at the outset as 

the whole of the software design and hardware design is based on the architecture. 

If we jump to the end of the design process and analyse the completed system in terms of hardware 

failure rates and diagnostic coverage (the ability for a system to diagnose single point and multi-

point faults) we can determine whether our system meets the original hardware risk reduction 

targets required by the safety goals and their inherited integrity level. 

In some cases, it may be possible to make a qualitative assessment of the proposed safe state. A 

safety measure may, for example, enter a safe state which limits engine torque or vehicle speed. If, 

during a detected failure, the torque or vehicle speed can be guaranteed to be limited to a reduced 

level it may be possible to reassess the hazard with a reduced severity rating or improved 

controllability rating (3.3.2.3) and show that the constrained operational sate offers an acceptable 

level of residual risk, i.e. the situation can be controlled by an average driver. If the safety measure is 

guaranteed (i.e. meets the original safety integrity target) it gives a high level of confidence that the 

risk reduction will be sufficient if the safe state can be achieved within a sufficiently short time that a 

hazardous situation does not develop. 

In the Automotive setting, risk is assessed, processed and measured through Automotive Safety 

Integrity Levels (ASIL) (BSI, 2011a). The ASIL sets a number of requirements across the product 

lifecycle including safety management processes, hardware design, software design, production, 

operation and service, and decommissioning. 
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1.4 Research Hypothesis 

 

Complex system architectures can be analysed and compared by 

quantitative methods based on architectural metric calculations 

at the signal level during the concept stage of product 

development to accurately estimate the single point and latent 

point fault metrics calculated for the final design. 

 

This thesis proposes, develops and proves a method to analyse architectures at the concept stage to 

compare a number of different proposals and determine the most suitable, in terms of: 

➢ Potential to achieve the safety targets. 

➢ Simplicity across design and verification phases. 

➢ Cost in terms of both time and componentry. 

Safety is of the highest priority, as it always should be, when dealing with systems that have the 

potential to introduce risk to users and / or bystanders. Cost is always a key factor when looking at a 

system manufactured in high volumes and compromises can be made as long as they are justified. In 

some cases, it may be decided that the cost to reduce the risk to a tolerable level is so high that it 

does not justify development of the product. As technology improves this cost balance can be re-

evaluated and innovative solutions sought that reduce the risk to a tolerable level at the target cost.  

Complexity can have a high cost impact.  Experience shows (Leveson, 2009) that simpler safety 

systems often have a lower component cost and are much easier to verify / validate and in turn, this 

drives down design cost. Complex systems always prove harder to design ‘right first time’, generally 

incur more changes as the design evolves and are inherently harder to verify and validate – this all 

tends towards longer development times with an associated increase in cost. Although the function 

may be complex, maintaining a simple safety system around the complex function can have 

significant benefits. 

Often, if the architecture is not right-first-time, then engineering changes are made or ‘safety is 

added’ into the system to diagnose failures discovered late in the process. This tends to increase 

complexity and evolving designs are unlikely to deliver an optimum solution. It is likely to take 

another design iteration to optimise for functionality, safety and cost. 
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Taking a proactive approach to functional safety in terms of a measurably safe design and just as 

importantly, the more intangible development of a good safety culture, can significantly reduce 

product recalls. The National Highway Traffic Safety Administration (NHTSA) Office of Defects 

Investigation (ODI) ‘is observing more manufacturer recalls that involve software reprogramming 

and other fixes to electronics systems. This is to be expected as software intensive electronics 

supplant more mechanical, electromechanical, and hydraulic systems’ (TRB, 2012). The cost of 

recalls, both in terms of fixing the problem and just as importantly repairing the reputation of the 

brand, should not be underestimated. Even when just considering software changes, PRQA suggest 

that costs have a ratio 1:10:100 (PRQA, 2016) ‘That is, if a defect costs one unit (for example one 

hour or one dollar) to fix in requirements and design, it costs 10 units to fix in system or acceptance 

testing and more than 100 units to fix in production. Sometimes the cost to fix a defect in production 

costs much more than 100 times the cost of fixing it in the requirements phase’. 

Although much of the work is based around automotive applications, the method developed is 

generic and can be applied to other situations such as industrial control, power generation and 

factory machinery for example. 

There are several important reasons for performing this analysis work at the concept stage: 

1) If the concept is right at the start of the project, it significantly reduces the number of design 

iterations as the project progresses. 

2) Every change that is made during the project results in time delays and increased cost. It also 

has the potential to introduce new risks through added complexity. 

3) Often there is less detail (conceptual information only) and so the system is easier to 

understand by different disciplines; electrical, electronic, hydraulic, stability dynamics, 

service engineers, production engineers, hardware engineers, software engineers, design 

group managers etc. This promotes cross-discipline discussion which often identifies 

potential hazards and mitigation options not always identified by pure systems engineers. 
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2 Functional Safety and the Background to Architectural Analysis 

Functional safety is defined in BS ISO 26262-1 (BSI, 2011a) as the ‘absence of unreasonable risk due 

to hazards caused by malfunctioning behaviour of the electric and / or electronic system’. The 

system scope for functional safety extends from the input(s), such as physical measurements made 

by the system through the control function, typically an Electronic Control Unit (ECU), to the 

output(s) such as actuators. 

Functional safety standards have been in existence for many years. Initially quite generic in their 

approach but over time becoming increasingly sector specific. 

2.1 Functional Safety Overview 

2.1.1 Functional Safety Standards 

Table 1 provides a chronological overview (applicable date at first issue) of functional safety 

standards that pre-dated the release of BS ISO 26262. Where multiple parts exist, only the first part 

has been referenced for brevity. Dates refer to the original source. For example, a standard first 

published by the International Organization for Standardization (ISO) e.g. ISO xxx, (where ‘xxx’ is the 

standard number) then adopted as a European Norm (EN) e.g. EN ISO xxx and then issued as a 

British Standard (BS) e.g. BS EN ISO xxx will show the year the original ISO xxx standard was 

published.  

For older references, the websites that show the history of the standard have been provided as 

many of these publications are now withdrawn from circulation. 

Table 1: A Chronological List of Functional Safety Standards 

Date Standard Title 

1965 EN 60204-1 Electrical Equipment of industrial machines – Part 1: Specification for 

general requirements (IEC, 1965) 

1990 VDE 0801 Principles for using Computers in Safety Related Systems (DIN VDE, 

1990) 

1991 EN 292-1 Safety of machinery – Basic concepts, general principles for design 

(DIN, 1991) 

1992 DO-178B Software Considerations in Airborne Systems and Equipment 

Certification (RTCA, 1992) 

1994 DIN V 19250 Control Technology; Fundamental Safety Aspects for Measurement and 

Control Equipment (DIN, 1994) 

1996 ISA 84.00.01 Application of Safety Instrumented Systems (SIS) for Process Industries 
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Date Standard Title 

(ISA, 1996) 

1997 BS EN 954-1 Safety of Machinery – Safety related parts of control systems (BSI, 

1997) 

1998 IEC 61508-1 Functional safety of electrical/electronic/programmable electronic 

safety related systems Part1: General Requirements (IEC, 1998) 

1999 EN 50126 Railway Applications – The specification and demonstration of 

dependability, Reliability, Availability, Maintainability and Safety 

(RAMS) (CENELEC, 1999) 

2000 DO-254 Design Assurance Guidance for Airborne Electronic Hardware (RTCA, 

2000) 

2001 BS EN 50128 Railway Applications- Software for railway control and protection 

Systems (BSI, 2001) 

2002 IEC 61513 Nuclear power plants – Instrumentation and control for systems 

important to safety – General requirements for systems (IEC, 2001) 

2003 EN 50129 Railway Applications – Safety Related Electronic Systems for signalling 

(BSI, 2003) 

2003 IEC 61511 -1 Functional safety - Safety instrumented systems for the process 

industry sector - Part 1: Framework, definitions, system, hardware and 

software requirements (IEC, 2003) 

2005 IEC 62061 Safety of machinery – Functional safety of safety-related electrical, 

electronic and programmable electronics control systems (IEC, 2005) 

2006 ISO 13849-1 Safety of machinery - Safety-related parts of control systems. Part 1: 

General principles for design (ISO, 2006) 

2008 ISO 15998 Earth-moving machinery — Machine-control systems (MCS) using 

electronic components — Performance criteria and tests for functional 

safety (ISO, 2008) 

2010 ISO 25119-1 Tractors and machinery for agriculture and forestry — Safety-related 

parts of control systems — Part 1: General principles for design and 

development (ISO, 2010) 

2011 ISO 26262-1 Road vehicles - Functional Safety Part 1: Vocabulary (BSI, 2011a) 

 

In addition, legislation has also played its part in encouraging design for functional safety. One such 

example is the Machinery Directive (European Parliment, 2006) which is legally binding. This uses 
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standards such as BS EN ISO 13849 (BSI, 2015) as a route to demonstrate compliance. With a 

planned edition 2 release of BS ISO 26262 in 2018 (BSI, 2016) which is currently in the final draft 

format (FDIS) process, the scope is changing to include trucks, buses and motorcycles. There will also 

be a section added for the application of BS ISO 26262 to semiconductors (ISO/DIS 26262-11, 2016). 

This means there may be functional safety guidelines for some aspects (the drive line) of a 

commercial vehicle and legal requirements for functional safety on the machinery mounted onto the 

vehicle. Typical examples being a cement mixing lorry or a refuse truck. This adds requirement 

complexity at the interface between the two systems. 

As detailed above there are many standards on the subject of functional safety. Standards such as BS 

EN ISO 13849-1 (BSI, 2015) are prescriptive in their approach to architectures, BS EN 61508-1 (BSI, 

2010a) is aimed at safety shutdown systems and others, such as BS IS0 26262-2 (BSI, 2011b) 

targeted at automotive control systems, are more open to interpretation and design flexibility. 

These standards aim to reduce the level of residual risk in a product by: 

1) Following a process minimises any systematic errors that may be introduced through the 

design process. 

2) Reducing random hardware failures through appropriate choice of components. 

3) Implementing an architecture that provides sufficient diagnostic coverage to detect failures 

and allows a system to enter and remain, in a safe state. 

Following the approaches in the standards adds a considerable amount of engineering effort and 

process management to the product design phases and the subsequent maintenance phases after 

product introduction to the market. This additional effort is justified by the increase in the levels of 

safety achieved in a product and the consequent reduction in the amount of risk the general public is 

exposed to. In some cases, companies find that the process improvements result in efficiencies in 

the design process that reduce overall project timelines and save costs. 

An important aspect is that the system being considered is correctly defined. This means that it 

is completely defined in terms of the requirements that must be satisfied. The requirements 

must be correct and unambiguous as most errors in operational software relate to requirements 

(Leveson, 2009).  

2.1.2 A Safe Product 

 ‘Safe’ (Oxford Dictionaries, 2017) means 

 ‘Protected from or not exposed to danger or risk’.  
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When looking at who is protected in the automotive setting consideration is given to the driver, 

passengers, other drivers / passengers and bystanders. To prevent them from being exposed to 

danger, the system must be designed to reduce the level of risk to an acceptable level. 

When looking at machinery, the Health and Safety Executive (HSE, 2004) summarise functional 

safety as ‘the safety that depends on the correct function of components or systems’. When we 

consider an operator working on a machine in a factory (BSI, 2015) then safety tends to look at 

protective measures such as guarding in terms of shields or light curtains, emergency stop buttons 

positioned around the machine and shut down systems that put the machine into a safe state if 

either a malfunction is detected or a protection barrier is breached. 

In the automotive environment, risk estimation is typically more complex than a factory machine, 

generally the system is a lot more dynamic and there is also a driver who is an integral part of the 

control systems. 

Security is another aspect that is increasingly discussed in the automotive arena and has significant 

importance when looking at connected vehicles. It specifically tackles the aspects of unauthorised or 

malicious attacks. Security may be violated allowing changes to the system which affect safety (The 

IET, 2015). Security is handled through different standards but any affects that may result in safety 

issues are directly covered by the proposed method. Ward (Ward, 2016) discusses how security and 

safety can be aligned and introduces the complexity challenges related to increases in scales and 

diversity of electronics. This aligns with the need to ensure correct conceptual design. 

2.1.3 Risk 

The standards discuss reducing risk to an acceptable level. This is rather qualitative and as a 

guideline to interpretation the following (Table 2) from BS 18004 (BSI, 2008) can be used. 

Table 2: A simple risk estimator 

Likelihood of 

harm 

Severity of harm 

Slight harm Moderate harm Extreme harm 

Very unlikely Very low risk Very low risk High risk 

Unlikely Very low risk Medium risk Very high risk 

Likely Low risk High risk Very high risk 

Very likely Low risk Very high risk Very high risk 
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Although open to interpretation and the application of different scales to the likelihood and severity, 

the table still offers guidance in terms of the scale from very low risk to very high risk. In terms of 

where the ‘acceptable level’ is set, largely depends on the area of application. 

BS ISO 26262-3 (BSI, 2011c) provides all the necessary classification levels. Comparing the tables 

allows a simple comparison to be made between very low risk and Quality Measures (QM) and Very 

high risk (ASIL D). It is sufficient to understand that if a hazard has a very high level of risk (ASIL D) 

then this is not acceptable to the general public and so the level of risk must be reduced to an 

acceptable (tolerable) level. 

The risk for any hazard can be classified through Hazard Analysis and Risk Assessment (HARA) and a 

safety goal developed that describes how the risk will be mitigated, see for example BS ISO 26262 

part 3 (BSI, 2011c). An appropriate industry specific standard or guideline can be applied to define a 

design process and measurable targets to provide the risk reduction necessary in order to achieve an 

acceptable level of risk. This can be seen in Figure 1, where, as an example the hazard has been 

analysed as ASIL ‘C’. When the analysis is performed, it is likely that the risk will be reduced below 

the target tolerable risk to a point defined as the residual risk.  

 

 

Figure 1: Risk Reduction (Adapted from Brewerton (Brewerton, 2011)) 
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Reducing the risk lower than the tolerable risk level implies that, in practice, the design achieves a 

greater risk reduction than originally required. An initial assumption may be that the design is over-

engineered and possibly introduces additional cost that is not required. This is a fine engineering 

balance and a mature life cycle process, or long product history, would be required to reduce the 

risk to exactly the tolerable risk target. This target is always exceeded which ultimately gives 

engineers a margin on the accuracy and robustness of the proof. 

Risk reduction applies to each safety goal and in most designs, there will be multiple safety goals all 

of which must be satisfied. The design may even have conflicting safety goals, for example one 

safety goal may result in a design with a safe state that disconnects the battery in an Electric Vehicle. 

A conflicting safety goal may be to maintain torque at a level demanded by the driver. Disconnecting 

the battery would not allow torque to be maintained. In this example the disconnection of the 

battery is likely to have a higher ASIL and so take priority over the lower ASIL target.  The proposed 

method allows the architectures to be analysed that can meet both safety goals in terms of 

architectural metrics. Additional work (outside of architectural metric calculations) would be 

required to understand if the probability of random hardware failure metrics could also be satisfied 

(BSI, 2011e). 

2.1.4 Process Management 

To deliver a safe product there are many processes that must be completed. Generally, all standards 

follow the standard ‘V’ model, an example of which can be seen in BS ISO 26262 part 1 Figure 1 (BSI, 

2011b). In practice, for a complete system design there tends to be a number of smaller designs, 

each with their own lifecycle running in series for small projects, or in parallel for larger, more 

complex projects. A more realistic approach to the system lifecycle based on the authors experience 

can be seen in Figure 2. 
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Design Test

Design Test Design Test

Design Test

 

Figure 2: Practical ‘V’ Lifecycle Model 

There are many key elements in the lifecycle which output specific work packages at each stage. 

These work packages provide documentary evidence that work has been completed and offer 

convenient points for verification and validation that tasks have been performed correctly, both in 

terms of engineering correctness, the level of rigour applied and process management. 

Validation proves that the product meets the needs of the stakeholders at the vehicle level and 

verification evaluates whether the product or design meets the requirements. Typically, 

requirements can be defined at the system, hardware or software level and cover functional, 

functional safety and legislative aspects of the design. 

2.1.5 Design Verification 

An approach discussed by Ceunot et al (Cuenot P, 2014) uses modelling techniques to close the gap 

between safety design and safety verification. This looks at malfunctions and how they propagate 

over the architecture. The approach of function blocks for hardware architectural blocks and 

software functions is beneficial in describing the system but it requires a detailed level of knowledge 

of the system i.e. the approach requires tight coupling to the system model. Once this is known then 

verification can be accomplished by automated testing from the model. The approach of using a 

modelling approach is consistent with good design practice in that the system design is closely tied 

(traceable) to the final implementation. 
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What is required is a method to gain confidence (a quantitative analysis) earlier in the system design 

(at concept) that leads into the approach used by Ceunot et al (Cuenot P, 2014). 

A useful example of typical development and verification processes used in the Automotive industry 

is given by Varadarajan et al (Varadarajan A, 2016) where a model is developed and simulated using 

Simulink (from  Mathworks (Mathworks, 2017)) to show both typical outputs and outputs from the 

control system in the case of different fault injection scenarios. This is quite typical and is useful in 

evaluating the detection of faults in the function, but it does not offer a route to evaluation of the 

hardware or the level of safety integrity that can be achieved in the final design. 

Lanigan et al (Lanigan P, 2010) further discuss fault injection, directly into the memory, or by 

manipulating data structures of an AUTOSAR (AUTOSAR, 2016) based application. For this, a running 

application would be required; however, at an earlier stage in verification, data over 

communications networks can be simulated and monitored. This provides a good basis for early 

testing of Plausibility Cross Checks (PCcs), possibly on a prototype ECU to prove diagnostic coverage 

(3.6.2) prior to having a system available for full validation. It is important to build on any lessons 

learned during this process as it allows PCcs to be improved and the associated requirements to be 

updated for use in future applications of the PCc. Once verified and validated the PCc can be re-used 

later ensuring continuous improvement and often improved safety integrity. The disadvantage of 

using a prototyping ECU is that many PCcs rely on specific hardware blocks in the microcontroller 

and ECU. If these are not available in the prototype ECU, confidence levels that the final 

implementation will achieve the same results will be reduced. 

Formal methods (RTCA, 2011) can be used for verification. This requires the formalisation of the 

system design into a mathematical language (Cimatti A, 2010). This raises the problem that there is 

no precise definition of a correct requirement, but a formal approach can check that there are “no 

contradictions”, they are not too strict to “forbid desired behaviours” nor too weak to “allow 

undesired behaviours”. This level of rigour and formalisation is difficult to apply very early on with 

just a concept. The challenge at the concept stage is to evaluate architectures and gain confidence 

that when detail is added to requirements that the correct architecture is developed into a ‘correct’ 

set of requirements. This means that sufficient analysis has been performed to increase confidence 

that the system described will meet the defined item. 

2.1.6 Fault Tolerance 

Architectures can be defined in many ways. BS EN 61508 Part 2 (BSI, 2010) uses a method 

comprising of fault tolerance and safe fail fractions. Fault tolerance looks at the number of faults 

that can cause a loss of the safety function. BS ISO 26262 Part 5 (BSI, 2011e) looks at Single Point 
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Fault Metrics. Isermann et al (Isermann R, 2002) look at a fault tolerant design method. This tends to 

offer a system with higher levels of redundancy than those designed for automotive applications. 

The automotive approach for achieving functional safety adopts an additional measure referred to 

as Latent Fault metric that aims to ensure fault tolerance. This makes it an important attribute to 

consider at the concept stage of design. 

2.1.7 As Low as Reasonably Practicable 

In the UK, there is another principle that must be applied. This is termed ‘As Low as Reasonably 

Practicable’ (ALARP). 

ALARP requires that the design is assessed to determine if risk can be reduced even further and is 

the way that the UK Health and Safety Executive (BSI, 2008) determines whether the risk is: 

1) Very Low – risks are acceptable. 

2) Low – no additional controls are necessary unless they can be implemented at low cost (in 

terms of time, money and effort). 

3) Medium – consideration must be given as to whether the risks can be lowered, but the costs 

should be considered. 

4) High – substantial effort should be made to reduce the risk. Considerable resources may be 

required to mitigate the risk. 

5) Unacceptable - substantial improvements in risk control are necessary. The work activity 

should be halted until risk controls are implemented. 

Since 1974 the HSE has produced guidelines for managing risk at work, a report, ‘Reducing Risks, 

Protecting People’ (R2P2) (HSE, 2001) refers to the use of a qualification such as ALARP. It is one of 

the methods employed by the UK HSE to assess any legal obligations for reducing risk. This results in 

good engineering practice whereby possible risk reduction is examined against the cost / trouble of 

implementation - which includes component cost, development cost and resource time. A 

judgement should be made, for example if spending £1 on a battery management system that costs 

£2000, can increase diagnostic coverage, allow a fault to be detected and an accident prevented 

which affects a few members of the public then this would need to be seriously considered and a 

very good justification outlined if it were not to be implemented. If, however, the only way to 

achieve a risk reduction was to use a triple redundant battery management system which would 

more than triple the cost of the product and it may only prevent a few minor accidents over the life 

of the product then the designers may be justified in not implementing the additional risk mitigation. 

Each case would have to be individually assessed on its own merits. 
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2.2 Model Based Design and Analysis. 

Unified Modelling Language (UML) (OMG UML, 2015) is ideally targeted at software architecture 

design and as such does not fit exactly with the system description proposed in this method. UML, is, 

however very useful in understanding activities, data flows, timing and state machines when 

considering how plausibility checks may be incorporated in the software architecture at a later stage 

in the design process. To analyse plausibility checks it is necessary to simultaneously understand the 

possible hardware and software implementation.  

The Systems Modelling Language (SysML) (OMG SysML, 2015) is dialect of the Unified Modelling 

Language (UML) for systems engineering applications. It is a general-purpose language used in 

Model Based Systems Engineering (MBSE) for modelling systems and more complex ‘systems of 

systems’ and provides analysis, design, verification and validation support. SysML offers advantages 

over UML and is useful earlier in the design process when understanding the overall system, i.e. 

before the software architecture design. The model can describe high level user interactions and the 

models can typically be run in a simulation mode allowing the system function and operation to be 

analysed, refined, and ultimately a complete set of requirements elicited. The model can be derived 

including malfunctions and associated diagnostics but quantifying the diagnostic capability is not 

possible at present. Generally, the tools ‘enable you to visualize complex requirements and maintain 

design consistency’ (IBM, 2017). 

Hecht et al (Hecht, 2015) developed a method for automated generation of Failure Modes and Effect 

Analysis from SysML models. Although originally applied to complex aircraft systems, a similar 

approach can be applied to automotive systems. A relatively high perspective is taken in terms of 

failure modes when compared to the detailed level required for architectural metric calculations. It 

also concentrates on the physical elements e.g. sensors and actuators whereas the method 

proposed in this thesis achieves a higher level of detail by examining the signals from the sensors to 

the actuators and includes the intermediate logical path. The technical paper suggests next steps to 

address the issues of completeness of the failure behavioural models. 

Sharvia and Papadopoulos (Sharvia, 2011) use Model Based Safety Analysis (MBSA), more 

specifically, compositional safety analysis, as a route to mitigating the problems associated with 

failure mode and effect analysis (FMEA) and fault tree analysis (FTA) as manual process. They also 

discuss disadvantages associated with performing analysis late in the lifecycle which misses the 

opportunity to influence early system design. This aligns with the authors thoughts on ensuring that 

the concept is correct, i.e. architectures are compared, and the most appropriate architecture taken 

through to final detailed design. The tool developed, (HiP-HOPS, 2017), Hierarchically Performed 
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Hazard Origin and Propagation Studies (HiP-HOPS) is a big step forward in automatic synthesis of 

fault trees and failure modes and effects analyses, however, at present it does not perform 

architectural metric calculations.  This is the only tool known to decompose the system to an optimal 

solution. The optimal solution will depend upon the objectives set in the tool but may consider 

safety criticality and cost for example. 

An extension to the Hip-HOPS tool has been developed by Azevedo et al (Azevedo LdS, 2014) that 

performs automatic ASIL decomposition. To allow decomposition within the tool it replaces the ASIL 

classification with simple integer algebra ‘QM = 0, A = 1, B = 2, C = 3, D = 4’ and uses this, along with 

the rules in BS ISO 26262 Part 9 clause 5.4.10 (BSI, 2011). This allows for efficient allocation of ASIL’s 

in the most cost-effective way. 

It is possible to define the model using an Architecture Description Language ( EAST-ADL Association, 

2013). This would allow the model to be described as per the specification but unless the complete 

hardware design down to component level was defined it would not allow for the specific 

architectural metrics for final designs to be calculated. 

Mian et al (Mian, 2019) discusses the analysis of hazardous dependencies and the difficulty in 

detecting these in complex system. This is supported by the use of AADL and tools such as HiP-HOPS 

(HiP-HOPS, 2017). This is critical when considering whether failures are independent. 

2.3 Reliability Analysis. 

Often automotive design and development must cope with legacy elements and a pre-existing 

vehicle architecture (Astruc J-M, 2010). Astruc et al also discuss options based on failures of a sensor 

or an actuator. These can be increased reliability, failure detection within the system or redundancy. 

Increased reliability, although beneficial, does not contribute to diagnostic coverage and hence adds 

no value to the architectural metrics. The other two options discussed to increase diagnostics 

(redundancy through a comparison system or voting systems) are beneficial to the architectural 

metrics. This makes the importance of concept analysis critical and the benefits of being able to 

quantify different architectures even more desirable. One area not covered in the paper is common 

cause failures (CCF) which must be addressed when considering the system architecture. Having a 

single event or root cause that may result in the failure of two or more elements in the system (BSI, 

2011a) must be considered when determining that elements are independent of one another. 

A proposed method for software analysis (Leitner-Fischer & Leue, 2011) also has potential for 

hardware analysis. This proposal looks at the probabilistic method for random hardware failures but 

does not mention the analysis of architectural metrics. This has benefits in that a modelling method 
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is used with the QuantUM extension and so can theoretically be applied in a concept design but 

does not yet cover the architectural methods proposed in this thesis.  

2.4 Re-Use and Proven in Use. 

There is a tendency to reuse hardware and software in automotive applications, as in most 

industries, to amortise costs and increase efficiency in development / reduce time cycle to market 

etc. As discussed by Rupanov et al (Rupanov V, 2012), this increases re-use but limits system level 

analysis. To compensate for the limited analysis, new methods are proposed for systematic 

evaluation of design alternatives. This leads to a metamodel that includes failure modes, safety 

mechanisms, component details and failure effects. This approach requires a significant amount of 

detail and is useful at system design and hardware / software design stages but has limited 

application at the concept stage. 

Standards, for example BS ISO 26262 part 1 (BSI, 2011a) do allow for ‘Proven in Use’ arguments 

based on previous designs, however it is difficult to collect the data in a sufficiently accurate way in 

the automotive setting to use this argument with confidence. 

2.5 Tools for Automotive System Design 

An approach specifically tailored to electrical and electronic (EE) architecture modelling is discussed 

by Hillenbrand et al (Hillenbrand M, 2010). This uses a layered architecture approach using a tool 

called PREEVision from Vector Informatik GmbH (www.Vector.com). It provides an efficient method 

to describe a logical architecture with traceable mapping to requirements. Since the publication of 

this paper, the tool has evolved considerably and now includes features such as FTA and FMEA. This 

requires the input of failure rate data for the analysis to be performed and is only possible once 

designing down to the lower levels of granularity, i.e. the hardware layer in the model. It does not 

offer the SPFM and LFM analysis required at the concept stage. The paper also describes the layered 

architecture for software as employed in the Automotive Open System Architecture model 

(AUTOSAR) which is described fully by the organisation that facilities this open approach (AUTOSAR, 

2016). Although not directly applicable in designing a concept, the importance of aligning the 

concept architecture with the intended solution is very significant in structuring the overall system 

solution. Considering the structure of the project, which includes tools and workflows, can mitigate 

many integration problems later in the project, this reduces the number of changes and so improves 

overall safety and project efficiency. For example, knowing that the software architecture will use 

AUTOSAR in the final implementation (as is increasingly the preferred approach for larger 

automotive OEMs) leads towards a function / interface based method with a predefined tool set and 

workflow. 

http://www.vector.com/
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At present there are no other tools that support the Electrical / Electronic / Network full lifecycle 

design with built in functional safety analysis. There are other products that contribute to particular 

aspects of BS ISO 26262 such as Hip-HOPS discussed earlier, Mentor Safe from Mentor Graphics 

(Mentor Graphics, 2016), (www.mentor.com), offers a number of tools or certification documents 

for tools to support tool qualification and Medini Analyze from ANSYS medina Technologies AG 

(ANSYS medini Technologies AG, 2016) which offers a number of tool options for the safety lifecycle.  

2.6 Microcontroller Options 

ECUs normally contain a microcontroller for logical processing of algorithms. This highly integrated 

semiconductor implementation is often very complex compared to the rest of the electronics in the 

ECU. This means that many of the faults that occur in the system can be attributed to the 

microcontroller internal arithmetic units, registers, memory and peripherals. To diagnose these 

internal failures many diagnostic functions are required supported by internal hardware blocks. To 

cope with random hardware failures a typical solution in the automotive industry is to use a 

microcontroller based on a lockstep design. This is two identical cores running in Lockstep i.e. 

running identical code and the second core providing a cycle by cycle check on the main core. This is 

discussed in greater detail by Mariani et al (Mariani R, 2007). 

Generally, the manufacturers will supply significant data to support reliability and architectural 

metric calculations. These calculations are only normally performed at the final design stage when all 

the peripherals to be used are known and the diagnostic functions have been implemented. This 

detailed information is normally made available under a non-disclosure agreement (NDA) by the 

device vendor. 

2.7 Safety Perception. 

Another key point is how customers perceive safety. In a survey (ELVA Consortium, 2013) it was 

noted that when considering electric vehicles customers were less willing to compromise on safety, 

interior space and cost in favour of range than they were to compromise on fast charge, climate 

comfort and performance. Although cost is critical to manufacturers and drives profit margins, the 

customer is prepared to pay for safety and it is something they are less likely to compromise; they 

expect the product to be safe. This report is more targeted at passive safety and advanced driver 

assistance systems but the fact that safety is the least likely measure to be compromised is very 

interesting from the functional safety engineering point of view which can often been seem as 

adding ‘unnecessary’ cost. To satisfy both customer and manufacturer requirements, safety is a 

critical aspect that must be delivered and should be as cost effective as possible i.e. designed into 

the product from the concept. 

http://www.mentor.com/
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2.8 The Problem 

There has always been a need to design a safe product and be able to prove, through supporting 

documentary evidence that the product is safe. The difficulty arose from trying to achieve this in a 

relatively small electronic engineering department with limited resource while all the time, the 

burden of proof increased through a desire to follow applicable guidance.  

When in a large corporation designing a product with a very high volume, significant resource can be 

allocated to design, documentation, verification and validation as this cost can be amortised over a 

very large number of piece-parts and so have minimal cost implications to the cost per item. 

A very small company designing low volume product may be disadvantaged by the fact that: 

1) There may not be sufficient independent resource to allocate to the functional safety tasks 

in the same way that a much larger corporation can. 

2) The product volume may be so low that the cost of implementing the functional safety 

process in the same way as a larger corporation may mean that the piece-part cost becomes 

so high that it is not worth designing it. 

This really poses the problem; how to make use of the available resource to design safe products, 

meeting functional safety standards with the required level of integrity in the documentary evidence 

in a cost-effective way? 

The obvious answer is to ensure that the design is ‘right first time’ thus ensuring that effort is only 

expended once rather than entering an iterative design cycle. Iterations generally invoke 

modifications late in the process to improve the design to the point where the safety case supports 

the original design targets for functional safety. However, the detailed analysis and proof can only be 

done once the product design is complete. It is important to remember, as discussed by Habli et al, 

that the argument is supported by evidence in the safety case (Habli I, 2010). This evidence 

gathering process can start at the concept stage and any approach that traces detection methods 

(plausibility checks as developed in the proposed method) from the concept through to the 

implementation will help to support the safety case. 

Currently, architecture analysis tends to be covered by achieved failure rates. Sinha (Sinha, 2011), 

compares several architecture alternatives through reliability analysis. This is a valid route but relies 

on base failure rate data to be accurate to perform the comparison. This means that either the data 

must be available within the company through historic data gathering or made available by 

suppliers. Often suppliers are reluctant to provide this data early on in a project unless there is 
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confidence that the support effort involved will lead to future orders. For the comparison to be valid 

it also relies on different manufactures providing data that is calculated using the same assumptions 

to ensure a direct comparison can be made. 

To date there has been little emphasis on predicting the project outcome in terms of achievable 

safety integrity levels related to diagnostic coverage at the beginning of the project based on 

quantifiable architectural metrics. The difficulty arises in having a high level of confidence that the 

proposed architecture will satisfy all of the design targets for architectural metrics once it has been 

through the design process; the method must be robust and applicable to different functional safety 

sectors not just automotive. 

For the reliability analysis to be correct (i.e. provide the failure rate for a specific safety goal under 

consideration), the failure rate and failure mode distribution data for each component must be 

known. At the concept stage, the component selection decision is yet to be made and so this 

method can only be applied at the end of the design. 

Even when a company has been manufacturing products for many years it can still be difficult to 

obtain reliability data from the field. Smith (Smith, 2005) discusses several limitations found in 

industrial applications such as: 

1) Motivation – will a field service engineer record all relevant data if time is short? 

2) Cost – failure reporting is expensive and time consuming. 

3) Recording of non – failures. Has the fault been correctly diagnosed or were multiple parts 

changed and faults incorrectly reported when some parts were working correctly. 

The work by Smith was in the context of industrial systems where components can be very 

expensive, and failure may cause loss of production which often enforces strict maintenance and 

replacement schedules. In the automotive environment correct reporting / fault analysis is even 

more difficult especially when customers themselves can change parts and no records are kept. 

As failure rate metrics are difficult to analyse at the concept stage, it raises the question as to what 

other attributes are considered necessary to meet functional safety requirements that can be 

analysed at the concept stage. 

2.9 Architectural Metrics. 

One area that is critical, is the architecture of the system. A correct architecture ensures all the 

critical sensors, inputs, processing, outputs and actuators are able to deliver the required system 
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functionality. It also ensures that mechanisms exist to ensure any failures in the system can be 

detected and that if necessary the system can enter and maintain a safe state. 

Architecture analysis using earlier references to diagnostic coverage (Smith, 2004) have, over time, 

been replaced by terms such as Safe Fail Fraction (SFF) (BSI, 2010a) and Single Point Fault Metric 

(SPFM) (BSI, 2011a) depending on the standard being used. The aim being to calculate the 

percentage of the sum of the safe failures and dangerous failures that are detected, as a fraction of 

the total number of failures. This metric allows an assessment to be made and the standards give 

metric targets based on the level of functional safety (risk reduction) to be achieved by the system. 

BS ISO 26262 part 5 (BSI, 2011e) recommends the SPFM calculation is performed for ASIL B and is a 

requirement for ASIL C and ASIL D. It also recommends the LFM calculation is performed for ASIL B 

and ASIL C and a requirement for ASIL D.BS EN 61508 part 2  (BSI, 2010) takes a more stringent 

approach in that the SFF is always calculated and stipulates that the maximum SIL that can be 

claimed is determined by the SFF for the element and the hardware fault tolerance. This questions 

whether the approach in BS ISO26262 part 5 (BSI, 2011e) is sufficiently rigorous if the SPFM 

calculation is only required for safety goals with ASIL C and ASIL D targets. In terms of getting the 

design right first time and efficiently comparing architectures early in the design process then the 

author recommends calculation of SPFM for all safety goals at the concept stage. 

BS EN ISO 13849 part 1 (BSI, 2015) relating to machinery controls also looks at diagnostic coverage. 

The approach (Hauke, M et al, 2008) is similar to that used in BS EN 61508 part 1 (BSI, 2010a) and BS 

ISO 26262 part 1 (BSI, 2011a) and is again used for self-test and monitoring but in this case refers 

back to the older term Diagnostic Coverage (DC). The preferred method for validation BS EN ISO 

13849 part 2 (BSI, 2012) is to use a reasoned conservative estimate of the DC directly on the block or 

component followed by calculation of the DCavg by means of an averaging formula. Estimations for 

Diagnostic Coverage for functions and modules are given in BS ISO 13849 part 1 Annex E (BSI, 2015) 

The approach in BS EN ISO 13849 part 1 (BSI, 2015) is a more prescriptive approach where the 

architecture is defined based on the level of risk reduction required. This tends to work for 

machinery, where, typically, the safety system is a separate system to the control system. For 

example, it may be a switch on a finger guard or belt cover or a light curtain to prevent operators 

accessing moving parts of the machine. The prescriptive approach does not lend itself to more 

integrated systems such as automotive control systems where a more flexible approach is required 

to include the safety functions within the control system itself. 
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The reason behind the SPFM and LFM is to understand the fault coverage that has been achieved. In 

an automotive system, it can be argued that in terms of running a car for the average person, service 

and repair costs form a considerable proportion of overall lifetime costs. If all faults were correctly 

detected within the Electronic Control Units (ECUs), then diagnosis by service technicians would be 

more accurate and faster with associated reduced labour costs and increased availability for the 

owner. This also reduces warranty returns to OEMs and a significant reduction in ‘no fault found’ 

cases where a part has been incorrectly replaced. Faulty parts, returned with a correctly diagnosed 

fault leads to improved warranty data accuracy, detailed root cause analysis leads to improvement 

in design and it also allows failure rate data to be recorded for use in future architectural metric 

calculations and fault tree analysis.  

Calculation of the architectural metrics have a number of benefits: 

a. Improved diligence and rigour. 

b. Architectural comparison of systems in a quantifiable way which may aid cost / 

complexity / decomposition optimisation. 

c. Service diagnosis efficiency. 

The author has not identified any disadvantages. Whenever this approach is taken (especially at the 

conceptual design phase) product improvements are identified which always advance the safety 

case. The effort and associated cost of doing the architectural metric calculations, even for lower 

ASIL targets, are eliminated in the longer term due to faster iterations during the concept stage 

where changes can easily be managed. 

2.10 Fault Detection and Shutdown Avoidance 

There are numerous ways to avoid different failures. One route is through redundant channels. This 

can be 2 or 3 sensors which may be identical or dissimilar (i.e. measure the system physical 

parameter but utilising different techniques or different manufacturers). Dissimilar sensors will 

increase fault tolerance as there is a lower likelihood of the same type of failure (Common Cause 

Failure (CCF)) affecting two or more sensors in the same way. Using a voting system on the sensors 

may allow the system to avoid shutdown and continue operation by relying on two sensors giving a 

similar value when the third is considered at fault by providing an erroneous signal. 

Some techniques (Patton, 1989) utilise functionally redundant Fault Detection and Fault Isolation 

(FDI) to reduce reliance on redundant channels. These utilise various signal processing techniques to 

detect faults. This is often a cheaper solution to redundant sensors, reduces system complexity and 

is often employed in automotive control systems. They allow a cross check to be made between 
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estimated values based on other physical parameters and actual measurements. A number of the 

FDI techniques discussed by Patton are referenced in the standards on functional safety in terms of 

the types of faults that need to be detected e.g. sensor value under or over range. Different 

techniques can be used to improve diagnostic coverage (3.7.2.8). 

Reliability and different types of redundancy are discussed by (Smith, 2005). Redundancy can be split 

into two different types – active and standby. Active implies that the system can function with the 

loss of one of the redundant channels. In standby redundancy, a failure is detected and the system 

switches from the failed channel to the redundant channel. In the context of high capital cost 

equipment, utilising redundant channels is common practice. In some cases, for example, it would 

allow a sensor to be removed for routine maintenance without the lost revenue associated with 

having to interrupt the manufacturing process. 

In the automotive setting, redundant channels are much less likely even though there is an obvious 

commitment to safety and reliability, especially considering the volume of vehicles that are 

produced and the associated cost of a product recall. A more cost-effective approach is to support a 

limp-home mode whereby the system detects a fault and allows the vehicle to continue with 

reduced performance (limp-home) to allow the vehicle to be driven to a safe location for further 

investigation / repair. Limp-home would still be considered safe as long as the proposed system 

architecture can reliably detect the fault, transition to a safe mode of operation and remain in this 

safe mode. 

2.11 Considerations when dealing with Architectural Metrics 

Many factors (Lundteigen & Rausand, 2006) may influence the results of architectural metric 

calculations. They include increasing the safe failures by inclusion on non-essential function failures 

and the fact that the metrics may be calculated using different assumptions. This agrees with a note 

in BS ISO 26262 part 5 clause 8.5.7 (BSI, 2011e) that states that if sufficient care is not taken the 

architectural metrics can be biased towards components with the highest failure rates i.e. 

connectors and wires rather than components such as capacitors and resistors. This may require a 

separate analysis to ensure that the bias is not significant resulting in an incorrect result. 

Both play a significant role, especially when comparing architectures. The techniques discussed later 

(3.7.3.1) account for these possible deficiencies in the calculations.  

2.12 Methodology 

From the previous discussion the methodology proposed is to maintain a close relationship to the 

standards to ensure that the concept calculations lead into the final analysis without modification. A 
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number of presentations were made at symposiums for peer review of the hypothesis. This 

generated an interest in the topic which later (as the method progressed) led to additional concept 

projects in India, Norway and the UK to examine different systems in a similar manner to the 

approach taken with the Fuel Cell system (4.4). 

The decision was made to ensure data, where available, was collected from reputable sources i.e. 

component manufacturers to limit any errors between the PCc Quantification and the final design 

analysis. Where possible mature data 3.7.3.1 would be used as this would align concept data to the 

data used in the full analysis.  

3 Method Proposed. 

The proposed method ensures that the main verification loop shown in the Practical ‘V’ Lifecycle 

Model (Figure 2) does not become iterative due to problems discovered late in the design program. 

It achieves this through a much simpler, more efficient, iterative process at the Safety Concept / 

Architecture Design / System Design phase of Figure 2. The method and how it fits into the above 

lifecycle can be seen in Figure 3. The method concentrates on architectural metrics and so the final 

design will still have to comply with the other aspects of the applied standard (ISO26262 for 

example). 
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Item Definition

Hazard Analysis

Detailed Safety Concept

Architecture Design

System Design

Hardware & Software

Verification

Design Metrics

Architectural 
Analysis

      

                              Method

VerificationConcept Design Metrics

PCc Analysis

 

Figure 3: Area of Interest for the Proposed Method  

The area of interest for the proposed method is firmly established within the concept phase. The red 

arrows (Figure 3) indicate the iterative process generally seen at present. The green arrows show the 

much tighter iteration performed in the concept stage which is designed to significantly reduce or 

eliminate the costlier iteration (red loop). This allows the concept to progress from basic 

functionality to improved concepts with better architectural metrics in a very short period. In the 

method, the hardware and software implementation stages are replaced with Plausibility Cross-

check (PCc) Analysis, i.e. a theoretical design concentrating on architecture rather than design 

execution. 

3.1 Introduction 

To be successful, the proposed method needs to deliver four main outcomes (3.2). The method 

takes a number of design targets (3.3), describes the system (3.5), considers possible faults (3.6), 
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analyses a number of solution proposals in order to satisfy the design targets (3.7) and selects the 

most suitable candidate for continued development (3.8). Importantly, this is all possible at the 

concept stage. 

3.2 Outcomes 

Testing the hypothesis will generate a number of outcomes: 

1) Describe a complex system, or combination of systems, in a way that can be understood by 

engineers from other disciplines such as hydraulic, mechanical, powertrain etc. rather than 

purely systems or functional safety engineers. It should also allow explanation of the system 

to technical managers and non-technical managers (marketing / purchasing / finance etc.). 

2) Allow different architectures to be explored quickly, both at the higher system level (e.g. a 

vehicle) and at the sub-system level (e.g. a battery pack). 

3) Provide a quantitative analysis of the proposed architectures resulting in a sound argument 

for the chosen candidate to take forwards through to detailed design. 

4) Comparison against safety targets which must integrate easily into the required functional 

safety standard for the chosen discipline whether this is automotive, off-highway vehicles or 

industrial machinery for example. 

The quantitative analysis is challenging in that the standards perform quantified analysis in diverse 

ways. However, effectively they all analyse the failure to meet a safety target based on the 

diagnostic coverage that can be obtained for each failure mode of each component that results in a 

violation of the safety goal. This means that the method can be applied irrespective of the applicable 

standard. It should be remembered that the architectural metrics are for one safety goal; typically, a 

number of safety goals much be satisfied for a single system and although architectural metrics can 

be treated for each goal individually, the overall probability of random failures calculations for one 

safety gaol may be affected by the inclusion of components used to satisfy architectural metrics for 

another safety goal. 

For the purposes of this Thesis, analysis is performed as per BS ISO 26262 (BSI, 2011e) as this 

requires values for single point and multiple point failures to be quantified and the author has 

extensive experience in the automotive functional safety discipline. 
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3.3 Design Targets 

Each of the outcomes defined in 3.2 follow on from each other. The missing element (discussed in 

this section) is the safety target which is required for the comparison following the quantified 

analysis.  As this is normally the starting point to the entire process and aids in understanding the 

importance of functional safety it has been included for completeness. In an ideal world, the safety 

targets would come from the customer (OEM) as they have control over all the items being 

integrated to form the complete vehicle system. They also have responsibility to demonstrate 

compliance with the top-level vehicle safety targets i.e. the overall safety case. 

3.3.1 Risk Identification 

There are several different methods employed to identify risks; these include, but are not restricted 

to brainstorming, quality history, FMEA and Hazard and Operability (HAZOP) studies (BSI, 2016). 

Often, a function based approach is taken, such as a Functional Failure Analysis (FFA). At the concept 

stage this can be a qualitative assessment used to identify hazards. It can also be used in a 

quantitative manner by decomposing the functional architecture and adding functional criticality 

ratings (Kurtoglu T, 2010).  

The European Aviation Safety Agency advises that hazard identification should be treated as a 

dynamic process rather than a static design (EASA, 2011). This is desirable in automotive applications 

and is implicit in the BS ISO 26262 approach in ensuring that ‘all’ hazards have been identified at the 

vehicle level for the system under consideration. The system will have a well defied boundary. To 

identify ‘all’ hazards typically a number of different techniques are used as discussed later. 

BS ISO 26262 part 3 (BSI, 2011c) covers the HARA and includes consideration of the following areas: 

1) Situation Analysis; vehicle usage scenarios such as high-speed driving, parking, reversing, off 

road driving, trailer towing etc. 

2) Environmental conditions; ice, rain, side winds etc. 

3) Reasonably foreseeable driver misuse. 

4) Interaction between operational systems. 

The important criteria are that the list is comprehensive and has identified all possible hazards. 

When determining hazards, no merit is given to any existing or planned safety mechanisms designed 

to mitigate the hazard. The aim is to identify all possible hazards that can occur. This may be cross 

referenced against a known hazard list for completeness. 

Hazard identification analysis is performed at the vehicle level. This is a crucial point; it means that 

the wider picture must be analysed not just the specific hazards resulting from the malfunction of 
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one particular system / component that the company may be designing. Even though a company 

may be designing a generic product without a specific vehicle platform in mind which is termed ‘out 

of context’ in BS ISO 26262 (BSI, 2012) the whole vehicle must be considered. This forces the analysis 

to consider how other systems interact i.e. can one function / system affect another function / 

system. A HAZOP was conducted for an electric vehicle (refer to Appendix B – Hazard Identification) 

to identify all hazards at the vehicle level. 

The author promotes an iterative three stage approach. Initially the item is defined and includes: 

1) A list of functions without considering the input source or output destination. 

2) A list in interfaces. This may be relatively difficult at the concept stage, but the basic 

interfaces can be defined even if exact detail is unknown. For example, an input may be ‘cell 

voltage’ but the source may be unknown and may ultimately be a hard-wired input, data 

from a distributed system or multiplexed through an analogue front-end converter. The 

important fact at the concept stage is that hazards related to the cell voltage signal can be 

identified. In many cases mechanical / physical interfaces are also included to ensure all 

hazards are identified. 

In the second stage two approaches are then applied independently (separate meetings): 

1) FFA (Kurtoglu T, 2010) which is applied purely to the function AND 

2) HAZOP (BSI, 2016) which is applied purely to the interfaces to / from a system / function. 

Thirdly the hazards are compared to a maintained and controlled Company Hazard List. This allows: 

1) Any hazards that have been identified previously to be considered. These hazards may come 

from internal hazard identification activities or external referencing for example 

international databases on vehicle recalls such as that provided in the UK (VOSA, 2017) and 

Canada (Government of Canada - Transport Canada, 2017).  

2) The Company Hazard List is updated to include any new hazards identified by analysing the 

item under consideration. 

This offers many advantages: 

1) The processes use different guide words and so impose a slightly different thinking when 

identifying hazards i.e. the system is examined from different viewpoints 

2) The two methods can be conducted by two different teams, with a common chairperson. 

For example, the functional failures being analysed by a driver / user and controls 
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engineering based team and the interfaces by a systems integration / hardware engineering-

based team. 

3) The chairperson can align common hazards to ensure consistent wording for common 

hazards and ultimately agree the overall hazard list from the two approaches. 

4) The approach is interactive. The function analysis may identify that additional inputs / 

outputs are required than initially defined for the item. 

5) Signals may not be available within the boundary of the item which may increase system 

scope and identify additional interfaces required within the item. 

3.3.2 Classification of Hazardous Events 

The generic risk estimator (Table 2) was further evolved in BS ISO 26262 part 3 (BSI, 2011c) so that 

the level of risk is categorised in terms of an Automotive Safety Integrity Level (ASIL). The simple risk 

estimator takes no account of the driver in the control loop and how well they may be able to 

control the vehicle in the event of a component or system malfunction. This was addressed originally 

by MISRA (MISRA, 2007) as a controllability factor which adds another dimension to the risk analysis. 

The automotive risk analysis also terms the likelihood of harm as severity. To complete the risk 

analysis a number of parameters must be defined as required in BS ISO 26262 part 3  (BSI, 2011c): 

1) Severity (3.3.2.1) 

2) Exposure (3.3.2.2) 

3) Controllability (3.3.2.3) 

4) Driving / Environmental Conditions (3.3.2.4) 

3.3.2.1 Severity 

An estimate of the severity of harm to each endangered individual. This includes the driver, 

passengers, cyclists, pedestrians and occupants of other vehicles. The severity of an injury can be 

described by the Abbreviated Injury Scale (AIS) (AAAM, 2015) (Table 3).  

The AIS Stage can be assigned to the various classes of severity. For the purposes of this work the 
following cross references have been used depending on the type of hazard being considered: 

1) Table 4Cross reference to severity (Table 4). 

2) Vehicle speed difference where a collision is under consideration (Table 5). 

3) Vehicle activity where a pedestrian / cyclist injury is under consideration (Table 6). 
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Table 3: Abbreviated Injury Scale (AIS) (AAAM, 2015) 

AIS Stage AIS Description 

AIS 0 No injuries 

AIS 1 Light injuries such as skin-deep wounds, muscle pains, whiplash etc. 

AIS 2 
Moderate injuries such as deep flesh wounds, concussion with up to 15 minutes 

unconsciousness, uncomplicated long bone fractures, uncomplicated rib fractures etc. 

AIS 3 

Severe but not life-threatening injuries such as skull fractures without brain injury, 

spinal dislocation below the fourth cervical vertebra without damage to the spinal 

cord, more than one fractured rib without paradoxical breathing etc. 

AIS 4 
Severe injuries (life-threatening, survival probable) such as concussion with or without 

skull fractures with up to 12 hours of unconsciousness, paradoxical breathing 

AIS 5 

Critical injuries (life-threatening, survival uncertain) such as spinal fractures below the 

fourth cervical vertebra with damage to the spinal cord, intestinal tears, cardiac tears, 

more than 12 hours of unconsciousness including intracranial bleeding 

AIS 6 

Extremely critical or fatal injuries such as fractures of the cervical vertebrae above the 

third cervical vertebra with damage to the final cord, extremely critical open wounds 

of body cavities (thoracic and abdominal cavities) etc. 

 

Table 4: AIS cross reference to severity (based on (BSI, 2011c)) 

Class Description Reference for Single Injuries 

S0 No injuries AIS 0 

S1 Light and moderate injuries >10% probability of AIS1-6 and not within S2 or S3 

S2 
Severe and life-threatening 

injuries (survival Probable) 
>10% probability of AIS3-6 and not within S3 

S3 

Life-threatening injuries 

(survival uncertain), fatal 

injuries 

>10% probability of AIS5-6 
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Table 5: Vehicle speed cross reference to severity (based on (BSI, 2011c)) 

Class Description Reference based on Speed V between two vehicles 

S0 No injuries  

S1 Light and moderate injuries V <20kph 

S2 
Severe and life-threatening 

injuries (survival Probable) 
20kph<V<40kph 

S3 

Life-threatening injuries 

(survival uncertain), fatal 

injuries 

V>40kph 

 

Table 6: Pedestrian / cyclist cross reference to severity (based on (BSI, 2011c)) 

Class Description Reference based on Speed for pedestrians / cyclists 

S0 No injuries  

S1 Light and moderate injuries Parking 

S2 
Severe and life-threatening 

injuries (survival Probable) 

Urban area driving i.e. 20mph in UK outside Schools when 

access is required or 20mph at other times 

S3 

Life-threatening injuries 

(survival uncertain), fatal 

injuries 

Driving outside of a built-up area 

 

3.3.2.2 Exposure 

Estimate the exposure of each endangered individual. This includes the driver, passengers, cyclists, 

pedestrians and occupants of other vehicles. For the purposes of this work the following exposures 

(Table 7) have been used. 
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Table 7: Exposure classification (based on (BSI, 2011c)) 

Class Description Quantified Rate 

E1 Very Low probability <0.1% of operating time 

E2 Low probability <1% of operating time 

E3 Medium Probability <10% of operating time 

E4 High Probability >=10% of operating time 

 

If operating time is not appropriate, then a frequency-based approach can be used. For example, 

driving in an urban environment can be classed as >10% of operating time but towing a trailer may 

be a few times per year (BSI, 2011c). 

3.3.2.3 Controllability 

Controllability is defined as the ability to avoid a specific harm or damage through the timely 

reactions of the persons involved BS ISO 26262 part 1 (BSI, 2011a).  This term is only included in the 

automotive functional safety standards as the driver can be considered as part of the control loop. 

For example, if electric power steering assist fails then the driver can compensate and still bring the 

vehicle to a safe stop without endangering themselves, passengers or bystanders. In, for example, a 

chemical process plant it is unlikely that an operator would intervene other than using an emergency 

stop if the control system fails. Controllability is classified into four categories (Table 8) as based on 

original work by The Motor Industry Software Reliability Association (MISRA) (MISRA, 2007).  

Controllability can be subjective. As Pocock et al discuss regarding trained operators, it is ‘important 

to understand how work will actually be performed as opposed to how it is envisaged it will be 

performed’ (Pocock, 1999). Passenger cars (unlike commercial vehicles) assume only basic training 

and assessment (i.e. a driving test) and so a major part of determining controllability must be based 

on simulation, live data – i.e. introducing faults and monitor behaviour or statistical data from 

previous accident analysis (NHTSA, 2008). 
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Table 8: Controllability Classification (based on (BSI, 2011c)) 

Class Description Definition Examples 

C0 Generally Controllable 
Generally possible to 

control 

Situations that are considered 

distracting 

C1 Simply Controllable 

99% or more drivers 

and other participants 

can avoid harm 

E.g. steering column locked when 

pulling away. Can easily bring car to 

rest before achieving sufficient speed 

to do harm 

C2 Normally controllable 

90% or more drivers 

and other participants 

can avoid harm 

e.g. emergency braking with ABS 

failure, Loss of power assist steering 

C3 
Difficult or 

uncontrollable 

< 90% of drivers and 

other participants can 

avoid harm 

e.g. total loss of braking 

3.3.2.4 Driving / Environmental Conditions 

Another key factor to consider when performing the risk analysis is the operational situation. There 

are many variables that can affect the vehicle state at the time that the fault occurs. These include 

road conditions (e.g. tarmac, concrete, rough ground) and environmental conditions (e.g. rain, snow, 

heat). These must be comprehensive but also address sensible limits that can be foreseen. For 

example, cold, hot, wet, icy conditions can be considered for most hazards. However, rough terrain 

can be considered for a 4x4 vehicle but not for a city car. Consideration should also be given to 

foreseeable misuse of the vehicle. Further information is provided in ISO26262 Part 3 (BSI, 2011c). 

3.3.2.5 ASIL Determination. 

Once the severity (S), exposure (E) and controllability (C) are known they can be referenced in the 

ASIL determination table (Table 9) to determine the ASIL (from BS ISO 26262 part 3 Table 4 (BSI, 

2011c)) applicable to the hazard. 
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Table 9: ASIL Determination (BSI, 2011c) 

ISO 26262 Risk Graph Controllability 

Severity Exposure C1 C2 C3 

S1 

E1 QM QM QM 

E2 QM QM QM 

E3 QM QM ASIL A 

E4 QM ASIL A ASIL B 

S2 

E1 QM QM QM 

E2 QM QM ASIL A 

E3 QM ASIL A ASIL B 

E4 ASIL A ASIL B ASIL C 

S3 

E1 QM QM ASIL A 

E2 QM ASIL A ASIL B 

E3 ASIL A ASIL B ASIL C 

E4 ASIL B ASIL C ASIL D 

 

For each hazard under consideration an ASIL is derived in the range QM, ASIL A, ASIL B, ASIL C or ASIL 

D. If the hazard has many different operational situations, the worst-case rating (highest ASIL) would 

be taken for the hazard. 

The next stage in the design is to allocate a safety goal to each hazard; the safety goal describes how 

the hazard will be mitigated. Where possible this is a positive statement, for example, ‘Cells shall be 

maintained within their safe operating envelope for voltage and temperature’. This promotes the 

complete system design in a positive light and is preferred goals such ‘Unsafe operation of the cells 

shall not be tolerated’ generates a negative feeling to the entire process; the start of the design 

informs the designers of everything they can’t do as opposed to everything positive that the design 

needs to achieve. An additional benefit is that a positive safety goal implies designing in functional 

safety into the system rather than just relying on fault detection and mitigation. 

Once all safety goals are defined the system can be conceptualised. 
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3.4 PCc Method. 

An overview of the method is shown in Figure 4. It shows the stages (described in the following text) 

and a graphic for each of the diagrams and spreadsheets associated with each stage. Each of the 

graphics are shown in more detail in the following sections. 

The diagram shows the relatively short iterative loop (green arrow) that is used to ensure that the 

required confidence is achieved in the architectural metrics required for the functional safety 

standard being applied to the system of interest. 

At the end of the method, the engineer would continue with the detailed system design and 

subsequent hardware / software design or through a Development Interface Agreement (DIA) (BSI, 

2011a) with a suitable competent supplier. 
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Figure 4: PCc Method 
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3.5 System Description 

The aim of the system description part the method is to provide a graphical representation of the 

system using a sub-set of elements in order start the analysis process. An example of a very simple 

control system (Figure 5) consists of an input from a transducer, a control function (f) and an output 

to drive an actuator. 

Transducer Output = f(Input) Actuator

 

Figure 5: Simple System 

Maintaining this simple approach allows the different points of connection (signals and their 

interfaces) to be considered. The sensor has an output connected to an input on the control system. 

An output from the control system connects to the input of an actuator. In terms of hard-wired 

connections, it is now possible to build a complex system (see Figure 19) which may have multiple 

inputs feeding multiple functions with multiple outputs. The method is concerned with the detection 

of failures at the elements classified in section 3.5.2, this doesn’t classify a function as an element 

rather it looks at failures in terms of data or parameters at the signal level which are generated or 

modified  by functions i.e. Output = f(Input) as in Figure 5. Signals as parameters or data may pass to 

multiple other functions or outputs allowing an array of systems to be analysed. 

BS ISO 26262 part 5 (BSI, 2011e) defines the system as containing generic hardware components: 

1) Systems. 

2) Electrical Elements. 

3) Processing Units. 

4) Non-volatile Memory - Read Only Memory (ROM). 

5) Volatile Memory - Random Access Memory (RAM). 

6) Analogue and Digital Inputs and Outputs (IO). 

7) Communications Bus (serial, parallel). 

8) Power Supply. 

9) Program Sequence Monitoring / clock. 

10) Sensors. 

11) Actuators. 

12) Combinatorial and Sequential Logic. 

13) On-Chip Communication. 
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The above categories, although generic, relate to components that fall into specific categories and 

can only really be applied later in the design process when the control system containing all of the 

components is defined. This causes problems when designing at the concept level as this 

information may not yet be known. More importantly, the achievable safety integrity level of the 

whole design of the system may be influenced by decisions made at this point. This enforces the 

‘right first time’ mentality and is one of the driving forces behind this work. 

The diagnostic coverage section is always detailed in the hardware section of safety standards. This 

is because it is trying to reduce the number of undisclosed failures and it is related to the random 

hardware failure rate of the components and their failure modes. Again, this is information not yet 

known at the concept stage. To achieve sufficiently high diagnostic coverage, effectively two things 

are required: 

1) A detection method. Examples of feedback in hardware are a verification signal on an input 

that confirms a particular input value, or output that can report the status. 

2) Some method of cross-checking the input to the verification signal or the output to the 

feedback signal. 

It is rare to find a complex system that does not contain a microcontroller. This microcontroller will 

generally provide the necessary cross-checking through software. Software is not directly considered 

in the diagnostic coverage / architectural metrics calculations as a separate term. It is however used 

to determine the level of diagnostic coverage that can be achieved. This leads onto the idea of 

Plausibility Cross-checks as being a high-level method of detecting a failure that is not yet allocated 

to a particular hardware component or even to a specific area of the system. This allows it to be 

applied at the concept level. 

In some cases, diagnostics may be completely designed in hardware. In this case it is still common to 

have a PCc performing a self-test to identify latent faults in the system. 

3.5.1 System Itemisation 

To analyse the system, the major building blocks need a degree of itemisation to be able to perform 

the analysis at the concept stage. 

Some of the generic categories from BS ISO 26262 part 5 (BSI, 2011e) discussed above (3.5), are 

sufficiently high level to be included at the concept stage. This includes actuators, inputs and 

outputs. Some initially appear generic, for example a sensor. However, some sensors can be 

considered simple and others may be a complete system in themselves and be subject to design 
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guidelines such as BS ISO 26262 in their own right. For this reason, sensors were divided into two 

categories: 

1) Voltage measurement.  

2) Transducers. 

The sensors can be a simple voltage measurement type or a more complex transducer converting, 

for example, air mass flow to a voltage signal for use in combustion control algorithms. 

Considering how electrical systems are constructed on cars (equally applicable to industrial 

implementations) there is a need to include connectors to connect wiring harnesses from different 

physical entities on the vehicle together. For example, the transmission may have its own harness 

which is then connected to the main powertrain harness during the build process. Therefore, 

connectors should also be considered as part of the analysis as failures at the connection point may 

be significant. Care should be taken when looking at connectors and consideration given to including 

wires / harnesses when looking at architectural metrics. The author recommends that connectors at 

sensors / ECUs / actuators etc. are considered but not wires and connectors / splices in the harness. 

The reason being that: 

1) Electrical elements tend to have relatively high failure rates compared to the more reliable 

electronic elements and so can bias architectural metrics towards elements with the higher 

failure rates. 

2) If a fault at the signal interface level (as discussed in 3.5.2) to the electronic element has 

sufficient diagnostic coverage to achieve the architectural metrics for the inherited ASIL 

(highest from the allocated safety goals) then it would be able to detect any failures that 

were in the interconnecting electrical elements. 

3) The harness is unlikely to be understood at the concept stage other than that the signal 

interface requirements will have to be met and so would be difficult to analyse. 

The final implementation of the harness / interconnections / splices would be fully included when 

random hardware failures were evaluated to ensure that the safety goals were not violated as 

detailed in BS ISO 26262 part 3 clause 9 (BSI, 2011e), i.e. the connections have a greater impact on 

the reliability calculations than on the architectural metrics.  

For analysis purposes the power supply can be considered as a part of the microcontroller in this 

approach. If the power supply fails, then it will affect the microcontroller which affects all elements 

classed as ‘Parameters’. If the power supply also powers sensors or actuators and the supply is 

critical in terms of accuracy of physical measurements or positional response of actuators, then it 
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may be necessary to add a measurement of voltage on the power supply so that any errors can be 

detected by a PCc. If the power supply was complex, which may be applicable in some automotive 

applications, then this approach would treat it as a system in its own right. 

If we look at the control system in more detail, it is likely to contain a microcontroller to allow more 

complex control functions to be developed in software; this leads us to consider how this might be 

managed internally in terms of software variables. Generally, these are parameters used by 

subroutines that perform the control function. This allows the PCc to be thought of in terms of 

software variables but in reality, the analysis is performed on the hardware that manipulates or 

stores the variables. 

Vehicles contain distributed systems interconnected by a communications system. For automotive 

control systems this is typically a Controller Area Network (CAN) bus (ISO, 2003), FlexRay bus (ISO, 

2013) or Ethernet bus based on BroadR-Reach (Broadcom, 2014). Industrial systems use similar 

communications systems; some based on a CAN bus and others on Ethernet for example. Messages 

flow between the distributed nodes to communicate data signals from one area of the vehicle to 

another. These data signals can provide erroneous data so need to be considered when designing 

the conceptual architecture. 

Actuators are another source of failures and must be considered, along with their associated output 

action from the control system. 

3.5.2 Element Classification 

To derive the classifications discussed below there were many of iterations before arriving at the 

final element proposal. This related to: 

1)  Data and Parameters. The conclusion was to keep these separate as the data is a specific 

interface and can be used between systems e.g. CAN bus, Local Interconnect Network (LIN) 

bus or within a system for example SPI, I2C etc. but parameters are always within the 

internal memory area of the microcontroller or, if required, external memory e.g. calibration 

/ configuration data. 

2) Transducers / Measurement. Due to the simplicity of the measurement and complexity of 

the transducer, the result was to keep these as separate elements as it aids the analysis 

when reviewing the system description. 

3) Power Supply Unit. The PSU is a common block, but it can be used in multiple places. The 

outcome was not to classify this as an element but still have a worksheet for an individual 

power supply. This can be applied to a relatively complex power supply i.e. one that supplies 
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the rails to a microcontroller. This is now shown as a PCc on the controller rather than an 

individual element and the diagnostic claim is then used as a line item in the SPFM and LFM 

architectural metrics calculation. The PCc can also be used in parameters where there is 

protection built in for the memory failures relating to power supplies. In the case of 

transducers, outputs and actuators the power supply can be included if safety critical and 

considered as an integral part of the element. It was decided that having the PSU as a 

separate item would clutter the system diagrams if included for each actuator, output, 

microcontroller, individual supply rail and impede system analysis. 

 In summary, when the architecture is analysed at the signal level, the system description must 

consider: 

➢ Connections. 

➢ Measurements of voltage. 

➢ Transducers – conversion of physical measurements to a voltage prior to measurement i.e. 

Output (measured in Volts) = f(input) 

➢ Data - signals that pass between distributed systems or internally in control functions. 

➢ Parameters – software variable used as inputs to control algorithms. 

➢ Outputs – the output from a controller. 

➢ Actuators – control of physical outputs. 

The above allows for any system to be analysed as all elements fit within the classifications. The first 

letters of the above list have been capitalised and can now be used to describe our simple control 

system in a way that is more suitable for analysis (Figure 6).  

 
T M AOP DC C

 

Figure 6: Simple system using abbreviations 

The use of abbreviations has improved the way in which the system is viewed when identifying 

which types of faults occur at each categorised point. To be useful for analysis, further information is 

required to define the preliminary architecture: 

➢ Signal name. 

➢ Types of measurement. 

➢ The sub system performing the control function. 
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The method for allocating components to specific items in the preliminary architecture is shown in 

Figure 7 (connections are not shown for clarity). 

Resistance 

Measurement

Isolation

Monitor
Driver Warning

T M P D AO

 

Figure 7: Simple system with preliminary architecture 

The main aim of the work is to define the most appropriate architecture to achieve the required 

functional safety architectural metrics. When system architectures are analysed, it is useful to be 

able to differentiate between those elements that impact on functional safety and those that have 

no impact i.e. safe failures. For example, a power supply voltage may be measured and used for 

monitoring purposes. Any failure relating to this measurement may not violate the safety goal of 

interest for the item in terms of a single failure, but as it is used for diagnostics, it can still be 

considered as part a multiple point failure. The chosen route is to highlight any elements of interest 

in the functional safety analysis (Figure 8) in red and those that have no impact on functional safety 

in green. As the method evolved and additional diagnostic identification was included; if a signal is 

used purely for diagnostics or impacts on maintaining the safe sate it is shown in yellow. 

In this case, the isolation resistance (ISOL_RES_AI_0V1, ISOL_RES_AI_AP_1kR and ISOL_WARN_DP) 

are all critical.  The names may be considered slightly long but are unambiguous and unique within 

the design. The ISOL_RES_AP_1kR is purely used for diagnostics on the CAN Bus or it can be used as 

a self-test by monitoring by another system (connected to the CAN Bus). In this example, to 

demonstrate a safe signal, a power supply monitor is included purely for end of line test. The power 

supply has no impact on the safety goal and is not required for the diagnostics in relation to the 

isolation resistance measurement. As an interim solution where an element has not been classified 

then, as the concept is being developed, it initially remains black as previously shown in Figure 7. 
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Resistance 

Measurement

Isolation

Monitor
Driver Warning

T MISOL_RES_AI_0V1 P DISOL_RES_AP_1kR AISOL_WARN_DPO

CAN Bus

D

D

ISOL_RES_AP_1kR

DISOL_RES_AP_1kR

Power Supply

M DREG5_SI_0V001 P DREG5_SP_0V001 D DREG5_SP_0V001

 

Figure 8: Simple system with safety impact shown 

The vertical black lines indicate interfaces. This may be to the outside world as shown by the 

‘Resistance Measurement’ or ‘Driver Warning’ for example or internal within the ‘Isolation Monitor’ 

where there is in interface to inputs and outputs with any internal processing shown within the two 

vertical lines.  

3.5.3 Coverage Verification 

In any safety critical design, it is important to continually verify that the design is correct and 

complete at the current point in time. This can equally be applied to process, which can be 

monitored by a checklist, as it can to component selection. 

Considering detailed architectural metrics (part of the design process that must be completed to 

satisfy the safety critical design guidelines) against the conceptual design, the proposed method can 

be verified as shown in the following checklist (Table 10). 

Table 10: Element Verification 

Generic Hardware Description 
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Electrical Elements ✓       ✓ 

Processing Units     ✓   ✓ 

Non-volatile Memory     ✓   ✓ 

Volatile Memory     ✓   ✓ 

Analogue and Digital Inputs and 

Outputs 
 ✓ ✓   ✓  

✓ 

Communications Bus    ✓    ✓ 
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Generic Hardware Description 
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Power Supply     ✓   ✓ 

Program Sequence Monitoring / clock     ✓   ✓ 

Sensors   ✓     ✓ 

Actuators       ✓ ✓ 

Combinatorial and Sequential Logic     ✓   ✓ 

 

The element verification check does not cover systems. In this approach, the object that is being 

analysed is a system in itself. If the object is sufficiently complex that it can be considered a system 

in its own right, then this approach should be applied to it either: 

1) As a separate exercise (assuming the object is in the design stage are of the lifecycle) with a 

defined interface to this system 

2) Or as a combination of systems if it can’t be broken down into independent systems, i.e. all 

the systems need to be included when considering violation of a safety goal. 

If a system has already been designed, meets the relevant safety requirements for use in this 

application and it is being applied as intended, it can generally be treated as either a transducer i.e. 

it provides this higher-level system with a signal or as data i.e. it provides this system with a signal 

communicated over CAN bus for example or an actuator. 

3.5.4 System Requirements 

As more examples were completed the importance of a consistent naming convention became 

apparent. Significant improvements in traceability from initial concept through to final design can be 

realised if a naming convention for the Company is defined early on and used throughout the project 

and on subsequent projects. 

3.5.4.1 Signal Naming Convention 

The next stage is to understand the signals that transfer data between interfaces. This is achieved by 

labelling each signal in turn. In later stages of the design, i.e. when the hardware software interface 

is defined a naming convention would be applied, it is logical to apply the same convention to the 

signal name at the concept stage. This significantly aids traceability from the concept to final design 

and forces clear definition of signals very early on. 
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This structure can easily be adapted to suit a particular company. For this work, a generic structure 

and description shown in Table 11 has been developed. This can easily be expanded and tailored to 

suit an individual company process. To remove ambiguity, the naming convention must be 

consistent across all disciplines; systems, hardware, software and harness design engineers.  

Table 11: Signal naming convention 

Name Type Direction Units & Resolution 

Signal 

description 

e.g. CELL1 

_A – Analogue 

 

_Afb – 

Analogue 

Feedback 

 

_D – Digital 

 

_DH – Digital 

high Side 

 

_DL – Digital 

Low Side 

 

_F – Frequency 

 

_P – PWM 

 

_S – Supply 

I’n’ - Input 

 

 

 

O’n’ – 

Output 

 

 

P – 

Parameter 

 

’n ‘ – Internal 

Units 

_A – Current 

_C – Temperature 

_Dg – Degrees (angular) 

_HI – High 

_Hz – Frequency 

_LO – Low 

_Pa - pascal 

_PC - Per cent 

_R – resistance 

_RX – Receive 

(Note _RX max be prefixed by units and resolution for signals if 

required e.g. _0V1_RX) 

_TX – Transmit 

(Note _TX max be prefixed by units and resolution for signals if 

required e.g. _1C0_TX) 

_V – Volts 

Resolution (where ‘x’ is replaced by ‘Units’) 

_0x000001 – x0.000001 resolution 

_0x001 – x 0.001 resolution 

_0x01 – x 0.01 resolution 

_0x1 – x 0.1 resolution 

_1x – x 1 resolution 

_kx –  x 1000 resolution 

_Mx x 1000000 resolution 
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Applying the convention for the resistance measurement signal is shown in Table 12: 

Table 12: Isolation Resistance Signal Name 

Name Type Direction Units 

ISOL_RES _A I _1kR 

abbreviated 

for ‘Isolation 

Resistance’ 

it is analogue and an input and is measured in kΩ with a 

resolution of 1kΩ 

 

In the system description diagram, this can be shown as ‘ISOL_RES_AI_1KR’. When the signal is 

internal within an item the ‘_AI’ may be removed as it is processed, but the rest of the name remains 

the same unless the resolution is changed by a function in which case the signal name would reflect 

this. All other signal names have been allocated in a similar fashion to generate the system 

description diagram shown in Figure 9. A specific example of an analogue signal (typically an input) is 

the _Afb signal which indicates internal analogue feedback. This may, for example, be a current 

measurement or voltage measurement provided by an intelligent high side output driver. To indicate 

resolution and scaling at this point in the design may seem pedantic, however if the software 

engineer requires a measurement accuracy of microvolts to perform a particular calculation and 

provide the necessary accuracy required in the final result, the hardware engineer will need to 

consider choice of analogue / digital converter in terms of resolution, range and noise floor. Bringing 

this level of understanding to signals (not necessarily components) at the concept stage introduces 

critical design decisions very early on and is beneficial when aiming for a right-first-time design. 

Resolution can be significant in the analysis of a PCc. An example would be in the case of a cell 

voltage measurement in a battery management system. These typically require an accuracy of 5mV, 

or better, to satisfy performance requirements. To achieve a PCc at this level would also require a 

sophisticated analogue front end and so may drive the choice of hardware. 

The resistance measurement is shown as a transducer even though it measures the value as a 

voltage this is because in the final design it is likely that this will require some attenuation and 

scaling and so it is not a ‘simple’ voltage measurement. 

In many cases, signals may pass through several components and need a different net list name on 

the schematic. The internal ’n‘ term is used so for example the ISOL_RES_AI_1kR name would be 

used at the input, it this passed through a filter it would become ISOL_RES_AI1_1kR if this was 

necessary in order to support the final schematic layout tool. 
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Parameters (‘P’) are internal variables and so may not have a resolution or units, for example status 

flags or enumerated types. 

If a resolution is not given, it is considered as non-critical. For example, a digital output may have a 

voltage output from a microcontroller to a high side driver which switches a load. These signals will 

have a required operating range (i.e. 12V, 24V) but the ‘_V’ is considered sufficient for the analysis 

work as the resolution will not affect performance or safety criticality. In the case of these signals it 

is useful to understand how the signal switches for the ‘ON’ state. For example, the ‘_D’ would use 

the designator ‘_DH’ to indicate a high side output (switches high to turn the output on) or ‘_DL’ if a 

low side output were used (switches low to turn the output on). 

 

Resistance 

Measurement

Isolation

Monitor
Driver Warning

T MISOL_RES_AI_1V P DISOL_RES_AP_1kR AISOL_WARN_DPO

Power Supply

M DREG5_SI_0V001 P DREG5_SP_0V001

CAN Bus

D DREG5_SP_0V001

 

Figure 9: Simple system with safety impact and signal naming 

3.6 Fault Consideration 

The aim of the fault consideration section of the method is to ensure that all possible faults that may 

violate the safety goal of interest are known. 

It is possible to consider what faults can occur at each element. BS ISO 26262 part 5 (BSI, 2011e) 

gives a table in Annex D of all faults that should be considered and their failure modes. For reference 

this has been included in Appendix C - Diagnostic Coverage Techniques as it references the analysis 

required to make claims for diagnostic coverage. The table is quite generalised and does not 

necessarily result in a full analysis of all failure modes, to achieve this a failure mode and effect 

analysis (FMEA) is recommended in BS ISO 26262 part 3 (BSI, 2011c). As the PCc method is aimed at 

the concept stage, the detail of the design is not yet known which makes a detailed, component 

level FMEA difficult. An FMEA (BSI, 2016) can theoretically be undertaken at any stage from a high-

level block diagram down to the function of individual components. Based on this, an FMEA can be 

conducted at the concept stage, but this has limitations as it is a bottom up approach and so may 

need a greater level of detail than available at the concept stage. It is important not to add 

superfluous detail just to enable an FMEA to be completed at the concept stage. An FMEA useful 
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when examining signals in the system (once developed from the concept) and can identify 

significantly more specific signal-based failures than these already identified in BS ISO 26262 part 5 

(BSI, 2011e) as these tend to be generic. To ensure that the PCc method has a high confidence level 

of covering all failure modes a number of techniques can be used. Some of these are discussed in BS 

ISO 26262 part 4 (BSI, 2011d) as methods for developing test cases for verification purposes. By 

bringing these methods into the concept stage it improves the identification of failure modes.  

The methods discussed (BSI, 2011d) are: 

• Analysis of external interfaces 

• Analysis of internal interfaces 

• Analysis of boundary values 

• Error guessing based on knowledge or experience 

• Analysis of functional dependencies 

• Analysis of common limit conditions 

• Analysis of sequences 

• Analysis of sources of dependent failures 

• Analysis of field experience 

With all the faults determined for signals (the chosen method of analysis at the concept stage) 

through a combination of the above techniques the way in which they may affect the element 

classification can be tabulated. This leads onto the type of diagnostic coverage that is required to 

achieve the required percentage of diagnostic coverage. The robustness of the diagnostic coverage 

can be used in later analysis to understand the architectural metrics that are achieved by the design. 

By considering this early in the design the proposed method gives an accurate estimate of the 

architectural metrics that can be achieved by each preliminary architecture considered. 

Failures will propagate from one element to another so the PCc can be used to show at which point 

in the system the failure is detected to prevent it propagating through the system to the output. If 

the failure is in the output element itself then the PCc will be some form of monitoring at the output. 

An initial review of these requirements against the PCc method of classifying the elements (3.5.2) 

gives the following type of faults and failure mode allocation (Table 13). 
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Table 13: Fault Analysis and Failure Mode Consideration 

 Element Classification 
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Open circuit  ✓     ✓  

High contact resistance ✓     ✓  

Intermittent Contact ✓     ✓  

Short circuit to ground (d.c. coupled) ✓     ✓  

Short circuit to Vbat ✓     ✓  

Short circuit / welded contact – always on      ✓  

Short circuit – always off      ✓  

Short circuit to neighbouring pin(s) ✓     ✓  

Resistive drift between pins / signal lines ✓ ✓      

Out of range  ✓ ✓ ✓    

Offset   ✓ ✓ ✓    

Stuck-in range  ✓ ✓ ✓    

Drift  ✓ ✓ ✓    

Oscillation  ✓ ✓ ✓    

Power supply under and over voltage   ✓  ✓ ✓  

Power supply drift and oscillation   ✓  ✓ ✓  

Power spikes   ✓  ✓ ✓  

Clock frequencies     ✓   

Non-volatile Memory     ✓   

Volatile memory / stack      ✓   

ALU data path     ✓   

Soft error model (single event transients)     ✓   

Failure of communications    ✓    

Message corruption    ✓    

Message delay    ✓    

Message loss    ✓    

Unintended message    ✓    
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 Element Classification 
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Resequencing    ✓    

Message insertion    ✓    

Masquerading    ✓    

Timeout / Arbitration / corruption / repetition    ✓    

Incorrect action       ✓ 

Delayed Action       ✓ 

3.6.1 Safety Mechanism 

Recognising the types of failure modes (Table 13) and having a conceptual understanding of the 

system function (for example, Figure 9), allows analysis of each of the elements in the system in 

order to determine safety mechanisms to detect and prevent all of the possible signal failures that 

can possibly result in a hazardous situation. The safety mechanism is the overall protection method 

covering detection of the fault (diagnostics), putting the system into a safe state and maintaining the 

safe state. This should occur in a maximum period of time referred to as the ‘fault tolerant time 

interval’ BS ISO 26262 part 1 (BSI, 2011a). This includes the diagnostic test interval (the time 

between diagnostic tests i.e. maximum time from a fault occurring to when it is detected by the 

safety mechanism), the fault reaction time (the time from detecting the fault to the system reaching 

a safe state) and the time that the system is in a safe state before a possible hazard can occur. The 

timing does not influence the architectural metrics but understanding the fault tolerant time interval 

when analysing the architectures may influence decisions on how diagnostics are implemented. 

3.6.2 Diagnostic Coverage 

To prevent faults influencing the operation of the system a method must be employed to detect all 

relevant failure modes that can violate a safety goal. These are generally termed diagnostic 

techniques and it is possible to assign a coverage percentage to the technique depending on its 

robustness and ability to diagnose the failure mode of interest. 

The standards, for example BS ISO 26262 part 5 (BSI, 2011e) refer to specific diagnostic techniques 

that can be used to detect failures (as detailed in Appendix C - Diagnostic Coverage Techniques). The 

standard gives guidance on the maximum claim for different techniques. These tend to be very 

specific and are ideally suited to the later design stages where the final implementation is being 
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developed. However, a broader approach is required at the concept stage. The diagnostic coverage 

percentage claimed is critical to the SPFM, LFM and SFF calculations so it is important that the 

estimation is realistic at the concept stage for a new design. The estimate will increase in accuracy as 

the process is applied multiple times and final designs completed and analysed allowing re-use of 

techniques with fully verified diagnostic capability. 

3.6.3 Plausibility Cross-check (PCc) 

Strictly applying the diagnostic techniques implies that the system implementation is clearly 

understood but at this early stage in the design, these decisions have not yet been made. The PCc 

allows a more generic approach to be applied to diagnostics utilising standard diagnostic techniques 

as a reference point. 

Plausible is defined as ‘seemingly or apparently valid, likely, or acceptable; credible’, which fits in 

with the aim of the method. This has been designated as a ‘Plausibility Cross-Check’ (PCc) as 

plausibility is demonstrated as a cross-check between two signals. This allows a more generalised 

method to be employed during the analysis which has a wider scope than a specific diagnostic 

coverage technique. Being generalised, the PCc may rely on several different diagnostic techniques 

in the concept stage. 

For example, a PCc may be a simple valid range check. At the concept stage there may not be 

sufficient knowledge to know exactly how this algorithm will be implemented but it is acceptable to 

know that sufficient diagnostic coverage will be provided in the final design to ensure that the signal 

is in range (Figure 10) i.e. within a reference window. This takes a measured value and compares it 

with a calibration parameter to ensure the signal is within a window and outputs a failure signal 

when the signal is out of range. 

P

P

P

P
C

C

ISOL_RES_WIN_AP_1kRP

P

ISOL_RES_AI_1kR

PTEST_FAIL_DP

 
Figure 10: PCc example. Reference window for in-range monitoring 

 
As the system design matures, the detail of the PCc is refined to the point where standard diagnostic 

coverage methods are employed for specific elements or components in the final design. 

‘Seemingly or apparently valid’ is a qualitative term and insufficient for performing tangible 

engineering comparative analysis. The PCc must be quantified to allow a meaningful comparison to 



 

 Page 54 of 458 A.R. Williams 
 

be made between candidate architectures proposed at the concept stage in order to select an 

architecture to take forward with the confidence that the final design will be ‘right first time’. 

The PCc may not only be a comparison between two physical signals. It may be a comparison against 

a time reference for a rate of change measurement or measuring the delay between the activation 

of an output and an input signal affected by the output. 

3.7 System Analysis 

The method needs to have: 

1) Traceable links to analysis methods used in the analysis of the final design. 

2) Opportunity for continuous improvement so that as designs are completed any additional 

data acquired can be used to refine the PCcs for future designs. 

3.7.1 Plausibility Cross-check Measures 

 
For the PCc quantification to contribute to the design process it must provide a high confidence level 

that the final design will achieve the architectural metric targets that were predicted by the PCc 

analysis at the concept stage.  

To achieve this, the method employed to evaluate architectural metrics in the final design must be 

clearly understood. 

Generally, standards such as BS ISO 26262 part 5 (BSI, 2011e) and BS EN 61508 part 2 (BSI, 2010) use 

tables to map safety mechanisms and measures to achievable diagnostic coverage rankings. The 

rankings are rated low, medium and high and have respective diagnostic coverage levels of 60%, 

90% and 99%. These percentages allow the PCc to be quantified by assigning a level to each PCc and 

then analysing the achievable Single Point Fault Metric (SPFM) and Latent-Fault Metric (LFM) in the 

case of BS ISO 26262 part 5 (BSI, 2011e) and Safe Fail Fraction (SFF) in the case of BS EN 61508 part 2 

(BSI, 2010). 

The SPFM and LFM can be calculated in a spread sheet based on the equations discussed in the 

following two sections. 

3.7.1.1 Single Point Fault Metric (SPFM) 

BS ISO 26262 part 5 (BSI, 2011e) defines the SPFM as the robustness of the item to single point and 

residual faults either by coverage from safety mechanisms or by design (primarily safe faults). 

If the fault is a safe fault, when the fault occurs it does not lead to any increase in probability that 

the safety goal under consideration will be violated. It is important to remember that a component 
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may be considered safe when assessing one safety goal but considered a single point fault or 

residual fault when considering another safety goal. For example, an output failing open may be 

considered safe if the off state forces a warning lamp to come on and alert the driver.  

In order to understand which components lead to a fault an FTA is typically used. Initially in the 

concept stage his may be qualitative and identify areas of the system that could violate the safety 

goal. As the design progresses and individual hardware components are identified then a full 

quantitative FTA can be populated to determine the probability of violation of the safety goal due to 

random hardware failures. 

BS ISO 26262 part 1 (BSI, 2011a) has a number of specific definitions as detailed below: 

A single point fault occurs when a fault without any safety mechanism occurs and leads directly to 

the violation of the safety goal under consideration. 

A residual fault is a fault that is covered by a safety mechanism, but the safety mechanism is 

insufficient to prevent the fault from increasing the probability that the safety goal under 

consideration will be violated. 

A multi-point fault is an individual fault that, in combination with other independent faults, leads to 

a multi-point failure. A multi-point failure is a failure resulting from the combination of several 

independent faults which leads directly to the violation of the safety goal. 

The failure rate (), of each safety related hardware element according to BS ISO 26262 part 5 (BSI, 

2011e) can be expressed according to Equation ( 1 ) 

𝝀 =  𝝀𝑺𝑷𝑭 + 𝝀𝑹𝑭 + 𝝀𝑴𝑷𝑭 + 𝝀𝑺 

 ( 1 ) 

Where 

𝝀𝑺𝑷𝑭 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 𝑓𝑎𝑢𝑙𝑡𝑠      

𝝀𝑹𝑭 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑓𝑎𝑢𝑙𝑡𝑠                

𝝀𝑴𝑷𝑭 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 𝑓𝑎𝑢𝑙𝑡𝑠 

𝝀𝑺 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑎𝑓𝑒 𝑓𝑎𝑢𝑙𝑡𝑠                             
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The single point fault metric can then be defined as ( 2 ) 

𝑺𝑷𝑭𝑴 = 𝟏 −
∑ (𝝀𝑺𝑷𝑭 + 𝝀𝑹𝑭)𝑺𝑹,𝑯𝑾

∑ 𝝀𝑺𝑹,𝑯𝑾
=  

∑ (𝝀𝑴𝑷𝑭 + 𝝀𝑺)𝑺𝑹,𝑯𝑾

∑ 𝝀𝑺𝑹,𝑯𝑾
 

 ( 2 ) 

Substituting ( 1 ) into ( 2 ) this can be rewritten as ( 3 ) 

𝑺𝑷𝑭𝑴 ==  
∑ 𝝀𝑺 +  ∑ 𝝀𝑴𝑷𝑭

∑ 𝝀𝑺𝑷𝑭 + ∑ 𝝀𝑹𝑭 + ∑ 𝝀𝑴𝑷𝑭 +  ∑ 𝝀𝒔
 

 ( 3 ) 

3.7.1.2 Safe Fail Fraction (SFF) 

BS EN61508 part 2 (BSI, 2010) defines the SFF as the property of a safety related element that is 

defined by the ratio of safe plus dangerous detected failures and safe plus dangerous undetected 

failures. 

The failure rate (), of each safety related hardware element can be expressed (BSI, 2010) according 

to Equation ( 4 ). 

𝝀 =  𝝀𝑺 + 𝝀𝑫𝒅 + 𝝀𝑫𝒖 

 ( 4 ) 

Where 

𝝀𝑺 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑎𝑓𝑒 𝑓𝑎𝑢𝑙𝑡𝑠      

𝝀𝑫𝒅 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠                

𝝀𝑫𝒖 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠 

The safe fail fraction is then defined as ( 5 ). 

𝑺𝑭𝑭 =  
∑ 𝝀𝒔 +  ∑ 𝝀𝑫𝒅 

∑ 𝝀𝒔 +  ∑ 𝝀𝑫𝒅 +  ∑ 𝝀𝑫𝒖
 

 ( 5 ) 

3.7.1.3 Comparing SPFM and SFF 

On first inspection the equations for SFF ( 5 ) and SPFM ( 2 ) look rather different, however, by 

examining the descriptions for each of the failure rates it can be shown that they both calculate the 

same metric. Replacing λs with λsafe to avoid confusion with λs in the SPFM equation gives ( 6 ). 
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𝑺𝑭𝑭 =  
∑ 𝝀𝒔𝒂𝒇𝒆 + ∑ 𝝀𝑫𝒅 

∑ 𝝀𝒔𝒂𝒇𝒆 + ∑ 𝝀𝑫𝒅 + ∑ 𝝀𝑫𝒖
 

 ( 6 ) 

As the approach in BS EN61508 part 2 (BSI, 2010) does not consider multiple point faults they can be 

considered as not dangerous i.e. safe so can be derived. 

𝝀𝒔𝒂𝒇𝒆 =  𝝀𝒔 +  𝝀𝑴𝑷𝑭 

 ( 7 ) 

Substituting ( 7 ) into ( 6 ) gives 

𝑺𝑭𝑭 =  
∑ 𝝀𝒔 +  𝝀𝑴𝑷𝑭 +  ∑ 𝝀𝑫𝒅 

∑ 𝝀𝒔 +  𝝀𝑴𝑷𝑭 +  ∑ 𝝀𝑫𝒅 +  ∑ 𝝀𝑫𝒖
 

 ( 8 ) 

In BS ISO 26262 part 5 (BSI, 2011e) all dangerous detected faults are considered safe so can be 

grouped as λs giving ( 9 ). 

𝑺𝑭𝑭 =  
∑ 𝝀𝒔 +  𝝀𝑴𝑷𝑭 

∑ 𝝀𝒔 +  𝝀𝑴𝑷𝑭 +  ∑ 𝝀𝑫𝒖
 

 ( 9 )  

BS ISO 26262 part 5 (BSI, 2011e) also considers dangerous undetected faults to be the sum of single 

point faults and residual faults ( 10 ). This allows the residual faults to be considered under an 

additional metric – latent fault metric (LFM) 

𝝀𝑫𝒖 =  𝝀𝑺𝑷𝑭 +  𝝀𝑹𝑭 

 ( 10 ) 

Substituting ( 10 ) into ( 9 ) gives 

𝑆𝐹𝐹 =  
∑ 𝝀𝒔 + ∑ 𝝀𝑴𝑷𝑭

∑ 𝝀𝒔 +  𝝀𝑴𝑷𝑭 +  ∑ 𝜆𝑆𝑃𝐹 + ∑ 𝜆𝑅𝐹
 

 ( 11 ) 

Referring back to ( 3 ) proves that the single point fault metric and the safe fail fraction are actually 

identical ( 12 ). 

𝑺𝑭𝑭 = 𝑺𝑷𝑭𝑴 

 ( 12 ) 
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This is acceptable as far as single faults are concerned but in terms or architectural analysis BS ISO 

26262 considers the Latent Fault Metric and BS EN 61508 considers hardware fault tolerance. 

3.7.1.4 Latent Fault Metric 

BS ISO 26262 part 5 (BSI, 2011e) also calls for latent faults to be analysed for high higher ASIL safety 

goals. A latent fault is described as multiple-point fault whose presence is not detected by a safety 

mechanism nor perceived by the driver within the multiple point fault detection interval BS ISO 

26262 part 1 (BSI, 2011a). This covers all multi-point faults; however, the standard is quite clear that 

in the majority of cases the analysis only needs to be applied to dual point faults (not higher order 

unless considered necessary). It is important to analyse the technical safety concept to ensure that 

as a minimum, if one fault affected a safety related element that a second fault does not affect the 

corresponding safety mechanism. If this were to happen then it is possible that a fault occurs and 

then then system cannot achieve or maintain the safe state due to the second fault. 

In redundant systems, additional rigour in the analysis may be required to look at triple point or 

higher order faults depending on the redundancy and safety mechanisms built into the safety 

concept. 

When considering the safety mechanism, it is important to consider all attributes, including 

detection, entering a safe state, maintaining a safe state and the time intervals to achieve these 

attributes. 

3.7.2 SPFM and LFM calculations 

As the SPFM and LFM are calculated in a spreadsheet it is appropriate to use a similar approach in 

the PCc quantification.  The spreadsheet (headings shown in Table 14) requires a significant amount 

of data to populate it and subsequently perform the SPFM and LFM calculations. It must be 

remembered that this calculation needs to be performed for each safety goal with a sufficiently high 

enough ASIL rating to require the calculations to be performed according to the applicable standard. 

Due to the improvement in diagnostics offered, the author would recommend performing PCc 

analysis at all safety integrity levels. 
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Table 14: Architectural Metrics Calculation Headings 
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Single Point Fault Metric % 

The data required for the final design calculation is discussed in sections 3.7.2.1 to 3.7.2.9. 

3.7.2.1 Component Description 

Allocated at the final design stage, this is at the electrical / electronic component level i.e. integrated 

circuit, microcontroller, capacitor, resistor, crystal etc. 

3.7.2.2 Failure Rate (FIT) 

The failure rate of the component. This is often available from the supplier of the device. If not, it is 

possible to use generic data. Isograph products such as reliability Workbench (Isograph, 2017) 

reference several typical databases such as MIL-HDBK-217, Telcordia SR-332, Quanterion 217 Plus, 

IEC TR 62380, NSWC, GJB/z 299B and 299C, and Siemens SN29500. Failures in time (FIT) is often 

used as it represents the number of failures that can be expected per one billion (109) device-hours 

of operation. This can be one failure in one device in 109 hours or operation of 1 failure in one 

thousand (103) devices operating for one million (106) hours etc. 

3.7.2.3 Safety Criticality 

Whether the component is considered safety critical or not. If any of the failure modes for the 

component can lead to the violation of the safety goal, as determined by FTA discussed earlier 

(3.7.1.1), then it should be considered safety critical and the quality of the component source, 

storage, usage etc. controlled accordingly. 

3.7.2.4 Failure Mode 

This details each of the failure modes of the component. These were derived in section 3.6. As this is 

for the final design calculation, the failure modes should be assessed (through independent review) 

to ensure that every possible failure mode has been identified. It is important that all failure modes 

are covered whether they are considered safe or non-safe. This improves analysis efficiency as a 

base spreadsheet can be generated and used for each safety goal in the knowledge that all failure 

modes for all components are validated. 
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3.7.2.5 Failure Mode Distribution (%) 

Distribution of the failure mode can be found from component suppliers, generic handbooks or from 

analysis performed by the manufacturer on returned products (warranty or repair). An example is 

that a component with two failure modes ‘A’ and ‘B’ may fail in mode ‘A’ 80% of the time and mode 

‘B’ 20% of the time. The failure modes can be as straightforward as short circuit and open circuit for 

example. If data cannot be obtained from the specific component manufacturer or from warranty 

data then a useful source is provided by the System Reliability Centre (System Reliability Centre, 

2001). This is useful for both electronic and mechanical components; although mechanical 

components are outside the scope of BS ISO 26262, the data may be useful when considering 

external mechanical measures of risk reduction / failure mitigation at electronic / physical interfaces. 

3.7.2.6 Safety Goal Violation 

The SPFM and LFM calculations are performed for each safety goal so the engineer must be able to 

determine whether the failure mode for this component violates the safety goal or not. It is not 

uncommon for a system with two safety goals, ‘1’ and ‘2’ to have a component that fails in mode ‘A’ 

and violates safety goal 1 and fails in mode ‘B’ and violates safety goal 2. This can cause real design 

problems when selecting components for function and cost and having to meet conflicting safety 

goals and their associated ASIL rating. 

3.7.2.7 Safety Mechanism 

The failure mode of the component should, where necessary, be detected by some form of safety 

mechanism. It is important that this is traceable and verifiable in the design. It should be possible to 

identify the safety mechanism and ideally understand how it fits into the mechanisms discussed in 

the guidelines being applied and the maximum diagnostic coverage percentage (3.7.2.8) that can be 

allocated to the mechanism.  

3.7.2.8 Diagnostic Coverage (%) 

Generally rated as low (60%), medium (90%) and high (99%), the DC percentage quantifies what 

percentage of this failure mode will be detected by the safety mechanism (3.7.2.7). 

3.7.2.9 Single Point (FIT) 

The failure rate calculated for each failure mode that can violate the safety goal. 

3.7.3 Analysis of Plausibility Cross-Checks 

By understanding how the final design architecture is analysed (3.7.2) a method can be formulated 

to analyse the PCC at the concept stage to quantitatively compare candidate architectures.  
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Generally, at the concept stage, signals are identified as they are derived from inputs, migrate 

through the system and are used to generate outputs. There is no knowledge of the actual electronic 

component data as required in the SPFM and LFM calculations (3.7.2). This section discusses how 

the PCc is quantified to allow the architectural metrics to be calculated at the concept stage by 

looking at each piece of data required for the SPFM and LFM calculations again to see how the data 

can be obtained at the concept stage. 

 
Two possible areas of concern detailed (Lundteigen & Rausand, 2006) are increasing the safe failures 

by inclusion on non-essential function failures and using different assumptions for calculation of the 

metrics. 

This method avoids these pitfalls as far as possible by: 

1) Limiting the calculation: 

a. To the specific safety goal under consideration (a requirement in BS ISO 26262) 

b. Minimising the architecture through element classification to those elements which 

are safety critical, i.e. functions non-essential to the safety goal (which would tend 

to have safe failures) are not included in the analysis. 

2) Using the same assumptions for the elements in each of the candidate architectures. This 

avoids variance in for example the assumptions made by different vendors when performing 

the calculations, i.e. variance in failure rate data, failure mode distribution and diagnostic 

coverage percentages. 

3.7.3.1 Failure Rate 

As per the element classification (3.5.2) the conceptual analysis works at a much higher level. This 

means allocating a failure rate to elements (lumped models) used in the PCc analysis.  

When the final design is not known, estimating the failure rate requires a certain level of engineering 

judgement. This can be broken down into three different maturity levels: 

1) Completely new design with no previous PCc analysis performed (3.7.3.1.1).  

2) New design where PCc analysis has been performed previously on different systems 

(3.7.3.1.2). 

3) Design of a new controller based on previously analysed building blocks with known 

correlations between PCc predicted SPFM / LFM and that achieved in the final design 

(3.7.3.1.3). 
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As discussed in 2.11, care must be taken to ensure that the architectural metrics are not biased by 

significant differences in failure rate for different components. Taking the SPFM as an example with 

two components with an order of magnitude difference in failure rate but similar diagnostic 

coverage a high (90%) SPFM percentage is achieved (Table 15). 

Table 15: SPFM Example - 90% DC on both Components 

Failure 
Rate 

Safety 
Critical 
Failure 

Allocation 

Safety 
Critical 
Failure 

Rate 

Diagnostic 
Coverage 

Single 
Point or 
Residual 
Failure 

Rate 

(FIT) (%) (FIT) (%) (FIT) 

10 50% 5 90% 0.5 

1 50% 0.5 90% 0.05 

     

   SPFM 90% 

 

However, if we now allocate a low diagnostic coverage percentage on the component with the high 

failure rate a SPFM percentage of 17% is achieved (Table 16). 

Table 16: SPFM Example - 10% DC on High Failure Rate Component 

Failure 
Rate 

Safety 
Critical 
Failure 

Allocation 

Safety 
Critical 
Failure 

Rate 

Diagnostic 
Coverage 

Single 
Point or 
Residual 
Failure 

Rate 

(FIT) (%) (FIT) (%) (FIT) 

10 50% 5 10% 4.5 

1 50% 0.5 90% 0.05 

     

   SPFM 17% 

 

If the low diagnostic coverage is now applied to the low failure rate component the SPFM returns to 

83% (Table 17). 
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Table 17: SPFM Example - 10% DC on Low Failure Rate Component 

Failure 
Rate 

Safety 
Critical 
Failure 

Allocation 

Safety 
Critical 
Failure 

Rate 

Diagnostic 
Coverage 

Single 
Point or 
Residual 
Failure 

Rate 

(FIT) (%) (FIT) (%) (FIT) 

10 50% 5 90% 0.5 

1 50% 0.5 10% 0.45 

     

   SPFM 83% 

 

The above three examples show that consideration must be given to high failure rate components 

(or lumped models) when undertaking the architectural metric calculations. If necessary, similar 

component types can be grouped by order of magnitude of failure rate and the metrics calculated 

separately to determine the architectural metrics. 

Generally, the concept failure rates are lumped models for elements (discussed in 3.7.3.1.1). Moving 

from the conceptual stage to the full analysis means that the difference is averaged out due to the 

higher number of components in the analysis. 

3.7.3.1.1 Maturity Level 1 

In this case, it is probable that the company has previously designed electronic control units and 

understands failure rates. This may be for simple reliability analysis for warranty purposes or more 

detailed analysis from a safety perspective. An estimation can be made for each of the classified 

elements (3.5.2) by taking a sum of failure rates for an estimated number of components in the 

classified block. 

Taking a relatively trivial example, a voltage measurement input may logically consist of a potential 

divider, low pass filter and clamping diode. An estimate of the number of components, the type of 

components and a generic failure rate (Table 18) can be given as: 

Table 18: Failure Rate Estimation 

Component Quantity Failure Rate (FIT) Total Failure Rate (FIT)

Resistor 2 0.224 0.448

Capacitor 2 0.08 0.16

Diode 1 0.71 0.71

Element Failure Rate (FIT) 1.318  
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If this value for the failure rate is used in all candidate architectures, conclusions can be drawn as to 

which architectures offer improvements in achievable architectural metrics. As more information is 

accrued during the conceptual design, these values can be optimised and carried over into all 

architectures to give a better prediction for the architectural metrics. 

3.7.3.1.2 Maturity Level 2 

Where possible, previous analysis work will be used. For example, if a similar circuit was to be used 

for voltage measurement as above (3.7.3.1.1), the actual number of components and more 

representative failure rates are used in the final design or prototype designs would be used. This 

should be achievable, even to companies new to projects with additional safety critical design 

aspects. 

3.7.3.1.3 Maturity Level 3 

As more projects are completed it is possible to further refine the failure rate data. Maybe on earlier 

designs, problems were found with ESD protection on several inputs and so additional filtering and 

transient protection are added to the original voltage input circuits to be used for future designs. 

Rather than using generic failure rates as in Maturity Level 1 and 2, the actual failure rate for each 

individual component is now known and so a more accurate lumped value for the voltage input 

block can be used in the PCc analysis. Additional detail, may, for example, be that although two 

capacitors are used they have different dielectric materials and so different failure rates. Including 

this data provides a more accurate overall failure rate for the lumped model. 

 

3.7.3.2 Safety Criticality 

This has the same meaning in the PCc analysis except that it now relates to the ‘element’ under 

consideration in the PCc rather than the ‘component’ in the final design. 

3.7.3.3 Failure Mode 

The analysis has moved from single components to a lumped model (components combined to form 

an element). In Table 13, the failure modes for consideration were listed against each element 

classification. These can be defined and failure mode distribution percentages allocated to each 

failure mode that needs to be considered in the PCc for each element. These are examined 

individually for each classification in the following sections. 

3.7.3.3.1 Connectors 

The connector category covers harnesses splices and connectors. In automotive applications the 

harnesses can be a major cause of faults due to the harsh environmental conditions. This includes 
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temperature, humidity, corrosion, vibration etc. Good design practices mitigate many of these 

failures and only knowledge of the electrical harness, physical layout, mechanical restraints and 

historical data for similar applications can provide the actual failure mode distribution.  However, an 

initial estimate can be taken from the view that the vehicle chassis is normally connected to the 

ground of the low voltage electrical power supply (commonly 12V for cars and 24V for commercial 

vehicles and now with mild hybrids 48V to reduce current ratings) so if wire insulation wears through 

then it is more likely to short to ground than any other voltage. Another frequent problem is wires 

breaking through long term fatigue or pins backing out of connectors. Continued analysis of the 

possible failures results in an initial estimate (based on experience) of failure mode distribution as 

indicated in Table 19. 

Table 19: Failure Mode Distribution for Connectors 

Element 

Analysed Failure modes for low / medium / high 

Diagnostic Coverage 
Failure 

Mode 

Distribution Low Medium High 

60% 90% 99% 

Harness including splice and 

connectors 

Open Circuit Open Circuit Open Circuit 20% 

  
Contact 

resistance 
10% 

Short Circuit 

to ground 

Short Circuit to 

ground (dc 

Coupled) 

Short Circuit to 

ground (dc 

Coupled) 

30% 

 
Short Circuit to 

Vbat 

Short Circuit to 

Vbat 
20% 

 

Short circuit 

between 

neighbouring 

pins 

Short circuit 

between 

neighbouring 

pins 

10% 

  

Resistive drift 

between pins / 

signal lines 

10% 
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3.7.3.3.2 Measurements 

To a certain extent, the failure modes applicable to measurements are like those of connectors. The 

main additions being offsets, stuck in range and drift and oscillation. Again, distribution percentages 

(Table 20) are estimated based on current knowledge and refined as more historical data becomes 

available within the Company through warranty returns, diagnosed failures and reported diagnostic 

trouble codes (DTC’s). 

Table 20: Failure Mode Distribution for Measurements 

Element 

Analysed Failure modes for low / medium / high 

Diagnostic Coverage 
Failure 

Mode 

Distribution Low Medium High 

60% 90% 99% 

Harness including splice and 

connectors 
  

Resistive drift 

between pins / 

signal lines 

15% 

Analogue and digital Inputs 

Open circuit Open circuit Open circuit 10% 

Short Circuit 

to ground 

Short Circuit to 

ground (dc 

Coupled) 

Short Circuit to 

ground (dc 

Coupled) 

15% 

 
Short Circuit to 

Vbat 

Short Circuit to 

Vbat 
10% 

 

Short circuit 

between 

neighbouring 

pins 

Short circuit 

between 

neighbouring 

pins 

10% 

 Offsets Offsets 15% 

Stuck in range Stuck in range Stuck in range 15% 

 
Drift & 

Oscillation 
Drift & Oscillation 10% 
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3.7.3.3.3 Transducers 

As discussed previously, Transducers are considered more complex than Measurements and so are 

likely to either: 

1) Have their own internal power supply 

2) OR rely on a stabilised power supply from a dedicated sensor power supply or a sensor 

supply output from a main ECU. 

For this reason, power supplies are considered as part of the Transducer analysis along with the 

normal Transducer failure modes (Table 21). 

Table 21: Failure Mode Distribution for Transducers 

Element 

Analysed Failure modes for low / medium / high 

Diagnostic Coverage 
Failure 

Mode 

Distribution Low Medium High 

60% 90% 99% 

Sensors including Signal 

Switches 

Out of range Out of range Out of range 20% 

 Offsets Offsets 10% 

Stuck in range Stuck in range Stuck in range 30% 

  Oscillation 5% 

Power supply 

Under and 

Over Voltage 

Under and Over 

Voltage 

Under and Over 

Voltage 
10% 

 Drift Drift & Oscillation 20% 

  Power Spikes 5% 
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3.7.3.3.4 Data 

For PCc analysis the failure modes relating to Data cover two areas; the sensors and the actual data 

transmission. This is more appropriate in automotive applications as there tend to be distributed 

systems and so one ECU may make a measurement or have a sensor connected to it. The ECU may 

then transmit this data over the CAN bus for further processing in another ECU. Estimates are given 

for failure mode distribution in Table 22. 

Table 22: Failure Mode Distribution for Data 

Element 

Analysed Failure modes for low / medium / high 

Diagnostic Coverage 
Failure 

Mode 

Distribution Low Medium High 

60% 90% 99% 

Sensors including Signal 

Switches 

Out of range Out of range Out of range 30% 

 Offsets Offsets 10% 

Stuck in range Stuck in range Stuck in range 30% 

  Oscillation 4% 

Data Transmission 

Failure of 

communication 

peer 

Failure of 

communication 

peer 

Failure of 

communication 

peer 

15% 

Message 

corruption 

Message 

corruption 

Message 

corruption 
2% 

Message Delay Message Delay Message Delay 3% 

Message Loss Message Loss Message Loss 2% 

Unintended 

message 

repetition 

Unintended 

message 

repetition 

Unintended 

message 

repetition 

1% 

 Resequencing Resequencing 1% 

 
Insertion of 

message 

Insertion of 

message 
1% 

  Masquerading 1% 
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3.7.3.3.5 Parameters 

Parameters are the most complex classification to analyse due to them being microcontroller based 

i.e. they are processing data in a microcontroller, which, as well on relying on a power supply and 

external clock or oscillator they also have complex internal memory, processing units and peripheral 

blocks. Initial estimates are given in Table 23, however, data from manufacturers specifically on the 

microcontroller may provide a better distribution percentage if the silicon manufacture is willing to 

divulge this information. This type of data is difficult to analyse based on returns as most ECU design 

companies would only be able to narrow down failures to the complete microcontroller or specific 

peripheral pins. Internal diagnosis would not be possible but may be achievable by the manufacturer 

using built-in test code used for end-of-line test. 

 

Table 23: Failure Mode Distribution for Parameters 

Element 

Analysed Failure modes for low / medium / high 

Diagnostic Coverage 
Failure 

Mode 

Distribution Low Medium High 

60% 90% 99% 

Power supply 

Under and 

Over Voltage 

Under and Over 

Voltage 

Under and Over 

Voltage 
10% 

 Drift Drift & Oscillation 10% 

  Power Spikes 5% 

Clock 

stuck at stuck at stuck at 5% 

 dc fault model dc fault model 5% 

  
Incorrect 

frequency 
10% 

  Period jitter 10% 

Non-volatile Memory 
stuck at stuck at stuck at 5% 

 dc fault model dc fault model 5% 

Volatile Memory 

stuck at stuck at stuck at 5% 

 dc fault model dc fault model 5% 

 soft error model soft error model 5% 
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Element 

Analysed Failure modes for low / medium / high 

Diagnostic Coverage 
Failure 

Mode 

Distribution Low Medium High 

60% 90% 99% 

Processing Units: 

ALU - Data Path 

Stuck at Stuck at Stuck at 5% 

 
Stuck at - gate 

level 

Stuck at - gate 

level 
5% 

  dc fault model 5% 

Processing Units: 

ALU - Data Path 
  

Soft error model 

for sequential 

parts 

5% 
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3.7.3.3.6 Outputs 

Outputs consider both analogue and digital outputs. For PCc analysis it is assumed that the power 

supply is also critical in the case of both high side digital outputs and analogue outputs and so has 

been included in Table 24. This includes devices such as intelligent high side or low side switches. 

Table 24: Failure Mode Distribution for Outputs 

Element 

Analysed Failure modes for low / medium / high 

Diagnostic Coverage 
Failure 

Mode 

Distribution 
Low Medium High 

60% 90% 99% 

Analogue and digital 

Outputs - stuck at 

Open circuit Open circuit Open circuit 15% 

Short Circuit 

to ground 

Short Circuit to 

ground (dc 

Coupled) 

Short Circuit to 

ground (dc 

Coupled) 

15% 

 
Short Circuit to 

Vbat 

Short Circuit to 

Vbat 
10% 

 

Short circuit 

between 

neighbouring 

pins 

Short circuit 

between 

neighbouring 

pins 

10% 

 Offsets Offsets 5% 

Stuck in range Stuck in range Stuck in range 10% 

  Drift & Oscillation 5% 

Power supply 

Under and 

Over Voltage 

Under and Over 

Voltage 

Under and Over 

Voltage 
5% 

 Drift Drift & Oscillation 20% 

  Power Spikes 5% 
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3.7.3.3.7 Actuators 

Actuators can be relatively straightforward, such as a warning lamp or be a complex system in their 

own right, for example an actuator in an Automated Manual Transmission (AMT). This is detailed as 

a final element in Table 25 and for a full analysis would require a similar amount of work to the main 

control system. However, when performing PCc analysis it is sufficient to consider just the three 

types of elements, output relays, power supply and final elements. Actuators normally also rely on 

power supplies and often in automotive systems relays or intelligent switches are used to switch 

high current loads. 

Table 25: Failure Mode Distribution for Actuators 

Element See Table 

Analysed Failure modes for low / medium / high 

Diagnostic Coverage 
Failure 

Mode 

Distribution 
Low Medium High 

60% 90% 99% 

Outputs - 

relays 
D.3 

Does not 

energise or 

de-energise 

Does not 

energise or de-

energise 

Does not energise 

or de-energise 
20% 

Welded 

Contacts 

Welded 

Contacts 
Welded Contacts 5% 

 
Individual 

welded contacts 

Individual welded 

contacts 
10% 

Power supply D.9 

Under and 

Over Voltage 

Under and Over 

Voltage 

Under and Over 

Voltage 
10% 

 Drift Drift & Oscillation 15% 

  Power Spikes 5% 

Final Elements D.12 

No generic 

Fault Model 

available. 

Detailed 

Analysis 

necessary 

No generic Fault 

Model available. 

 

Detailed 

Analysis 

necessary 

No generic Fault 

Model available. 

 

Detailed Analysis 

necessary 

10% 

  Incorrect action 15% 

  Delayed Action 10% 
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3.7.3.3.8 Power Supplies 

Power supplies can be relatively complex systems and may need to be considered separately (Table 

26) and for a full analysis may require a similar amount of work to the main control system.  

Table 26: Failure Mode Distribution for Power Supplies 

Element See Table 

Analysed Failure modes for low / medium / high 

Diagnostic Coverage 
Failure 

Mode 

Distribution 
Low Medium High 

60% 90% 99% 

Power Supply D.9 

Under and 

Over Voltage 

Under and Over 

Voltage 

Under and Over 

Voltage 
50% 

 Drift Drift & Oscillation 20% 

  Power Spikes 30% 

 

3.7.3.4 Failure Mode Distribution 

The failure mode distribution is now based on the element failure modes and as discussed above, 

additional failure modes may need to be considered when looking at a single element in the final 

design SPFM and LFM. 

A level of experience exists on the accuracy of failure mode distribution as it did in the failure rate 

section (3.7.3.1) and this accuracy will improve as more designs are completed using safety critical 

design techniques and processes, i.e. as the design progresses and analysis of in-field failures 

mature. 

3.7.3.4.1 Maturity Level 1 

An estimation can be made for each of the classified elements (3.5.2) by using standard databases as 

discussed in 3.7.2.2. Another useful source is internal company information where data has been 

recorded over many years. 

If the final component arrangement or perhaps even the polarity of the signal were unknown i.e. 

failing high can be safe and failing low can be dangerous or vice-versa then a failure mode 

distribution of 50% can be assumed. If these values for failure rate and failure mode distribution 

were used in all candidate architectures, then conclusions can be drawn as to which architectures 

offer improvements relative to each other in achievable safety integrity level. However, the 50% 
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assumption will impact on the absolute error in the PCc SPFM and LFM results. As more information 

is accrued during the conceptual design, these values should be optimised and again carried over 

into all architectures to give a better prediction for the architectural metrics. 

3.7.3.4.2 Maturity Level 2 

Where possible, previous analysis work will be used. For example, if a similar circuit for voltage 

measurement as above (3.7.3.1.1) is used; it may be that the only dangerous failure occurs when the 

sensor input fails high or in range. The failure mode estimation for this may be a total of 10% for 

example and so the dangerous failure mode is now only attributed to 10% of the failure rate not 50% 

as in maturity level 1. If this new failure mode percentage is propagated through all candidate 

architectures, then accuracy of the achievable safety integrity level is improved. 

3.7.3.4.3 Maturity Level 3 

As more projects are completed it is possible to refine the failure mode distribution. As actual failure 

modes are obtained through testing and early prototype data is further refined. 

3.7.3.5 Safety Goal Violation 

In the PCc method the safety goal can be violated by an element rather than the component. This 

decision based on element failure modes is simplified compared to the component level failure 

modes where detailed electrical circuit analysis may be required to understand whether the safety 

goal is violated or not. 

3.7.3.6 Safety Mechanism 

The safety mechanism is now made up of several different diagnostic techniques. It is important that 

each technique is defined and understood as these techniques will carry over and be employed in 

the final design. This is considered an advantage at this stage because the concept is already 

formulating requirements for the final design and can be a useful validation check against the 

hardware software interface specification that will be defined in the system design stage of the 

project BS ISO 26262 part 4 (BSI, 2011d). 

3.7.3.7 Diagnostic Coverage 

Diagnostic coverage now details the diagnostic coverage achieved by the PCc. To define this, all of 

the diagnostic techniques applicable to an element are grouped. This allows each technique to be 

allocated a diagnostic coverage percentage and these combined to calculate the achievable 

diagnostic coverage for the PCc for the element. This approach has major benefits: 

1) It is rigorous in the method used to analyses each DC percentage. 
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2) It achieves the same level of detailed analysis as will be performed on the detailed design 

but is much faster as it considers lumped elements and signals rather than individual 

components. 

3) The tables used contain the detail of each PCc, the associated diagnostic techniques and the 

expected diagnostic coverage which allows a direct comparison to be made not only in 

relation to requirements validation but also in terms of achieved metrics. 

3.7.4 Plausibility Cross-Check Quantification 

The PCcs are designed to align with the techniques described in BS ISO 26262 part 5 (BSI, 2011e). 

There are a few reasons for adhering to this policy: 

1) The techniques are well known across a number of standards and have roots in BS EN 61508 

part 2 Annex A (BSI, 2010), meaning that the techniques can be used in all control 

applications, such as, machinery, industrial and automotive. 

2) Close alignment to the standard at the conceptual stage leads to close alignment at the 

analysis stage which provides a more robust explanation, or more explicitly, an argument as 

discussed by Kelly (Kelly, 2003) when developing the safety case for example using Goal 

Structured Notation (GSN). 

3) The techniques are proven, well documented and have justified maximum diagnostic claims 

depending on the robustness of the technique applied. 

3.7.4.1 PCc Claim Calculation 

The PCc claim is calculated based on the factors described in this section. To simplify application of 

the method the calculation has been converted to a macro which can be run in a spreadsheet 

(3.7.4.3). The calculation is interpreted from the ISO 26262 part 3 (BSI, 2011e). The calculation will 

be the same for both the concept design using the PCc and the final design which looks at the 

diagnostic coverage for each individual component. 

Initially the Failure Mode Diagnostic Coverage (FMDC) is calculated (13). This depends on whether: 

1) The failure mode for the lumped model can violate the safety goal (FMvSG), this is set to 1 if 

the failure mode for the lumped model will violate the safety goal under consideration, 

otherwise it is 0. 

2) An Available Technique is Used (ATU), this is set to 1 if a technique is used, otherwise it is 0. 

Generally, techniques are taken from ISO26262 part 5 (BSI, 2011e), but with justification 

other techniques could be used. 
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3) The Maximum Claim for the Technique used (MCfT). This is set to 60% for low, 90% for 

medium and 99% for high diagnostic coverage, assuming available techniques from ISO 

26262 part 5 (BSI, 2011e) are used and implemented to their full capability. These 

percentages will require justification in the final implementation. 

𝑭𝑴𝑫𝑪 = (𝑭𝑴𝒗𝑺𝑮 𝒙 𝑨𝑻𝑼 𝒙 𝑴𝑪𝒇𝑻) ( 13 ) 

Where 

𝑭𝑴𝒗𝑺𝑮 − 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑀𝑜𝑑𝑒 𝑉𝑖𝑜𝑙𝑎𝑡𝑒𝑠 𝑆𝑎𝑓𝑒𝑡𝑦 𝐺𝑜𝑎𝑙      

𝑨𝑻𝑼 − 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 𝑈𝑠𝑒𝑑                

𝑴𝑪𝒇𝑻 − 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐶𝑙𝑎𝑖𝑚 𝑓𝑜𝑟 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 

It is only possible to make a claim for a minimum diagnostic coverage if all the failure modes have an 

associated technique utilised in the design to detect the failure mode. For example, if, in order to 

achieve low (60%) diagnostic coverage for an element it must be possible to detect open circuit and 

short circuit to ground and both failure modes have diagnostic coverage then up to 60% can be 

claimed. However, if one of the failure modes is not covered then this claim cannot be made. The 

Maximum Claim for Failure Mode Diagnostic Coverage (MCFMDC) is limited (14) based on whether 

all failure modes are covered for each of the low, medium and high diagnostic coverage claims. 

𝑴𝑪𝑭𝑴𝑫𝑪 = 𝒇(𝑭𝑴𝑫𝑪, 𝑨𝑭𝑴𝑫𝒍, 𝑨𝑭𝑴𝑫𝒎, 𝑨𝑭𝑴𝑫𝒉) ( 14 ) 

Where 

𝑨𝑭𝑴𝑫𝒍 − 𝐴𝑙𝑙 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑀𝑜𝑑𝑒𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 − 𝑙𝑜𝑤      

𝑨𝑭𝑴𝑫𝒎 − 𝐴𝑙𝑙 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑀𝑜𝑑𝑒𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 − 𝑚𝑒𝑑𝑖𝑢𝑚      

𝑨𝑭𝑴𝑫𝒉 − 𝐴𝑙𝑙 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑀𝑜𝑑𝑒𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 − ℎ𝑖𝑔ℎ      

This function will limit the MCFMDC to 0%, 60%, 90% or 99% accordingly. 

For the failure mode of an element that violates the safety goal, the failure mode distribution factor 

must be known. For example, if the failure mode under consideration is open circuit and this 

contributes 20% of the overall failure rate then the Element Failure Mode Contribution (EFMC) 

would be set to 20%. 

The Failure Mode Diagnostic Coverage Claim (FMDCC) can now be calculated (15). 

𝑭𝑴𝑫𝑪𝑪 = (𝑴𝑪𝑭𝑴𝑫𝑪 𝒙 𝑬𝑭𝑴𝑪 ) ( 15 ) 
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Where 

𝑴𝑪𝑭𝑴𝑫𝑪 − 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐶𝑙𝑎𝑖𝑚 𝑓𝑜𝑟 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑀𝑜𝑑𝑒 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒      

𝑬𝑭𝑴𝑪 − 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑀𝑜𝑑𝑒 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛                

3.7.4.2 PCc Confidence Levels 

The PCc confidence level was developed for many reasons: 

a) It allows for a certain amount of flexibility at the concept stage. Various techniques can be 

used to diagnose a specific failure mode and the final technique may not be known so more 

than one technique can be referenced in the concept. As the design develops at least one of 

these techniques must be carried forward and the techniques employed in the final design 

must have comparable diagnostic coverage claims. If the technique(s) chosen cannot 

achieve the level claimed then additional techniques as used in the PCc can be deployed to 

increase diagnostic coverage. 

b) As the design develops then a limited number of techniques may be used in the final 

implementation but the chosen techniques will be fully developed to the point where it 

approaches or meets full diagnostic coverage claim and is therefore justified. This means 

that a conservative PCc DC% claim may achieve a higher diagnostic coverage percentage in 

the final design 

c) The PCc claim is more pessimistic when a reduced number of defined techniques are used. 

This tends to be more realistic in terms of the achievable full DC claim in the final design as 

reliance is placed on limited techniques which must be fully implemented. This may prove 

difficult to achieve in practice. For example, the theoretical maximum claim may be 99% but 

in practice, the engineers are only comfortable claiming 95% due to design difficulties. In this 

case the pessimistic PCc claim would be more accurate.  

d) The PCc claim is more optimistic when multiple techniques are used for a failure mode. In 

practice, multiple techniques can be, and often are, employed in the final design. If one 

technique proves difficult to implement to 99% and only achieves say 95% then more 

reliance can be placed on another technique referenced in the PCc conceptual stage. If this 

second technique only achieved 95% when 99% was required it is still likely that a claim 

(requires justifiable evidence) of 99% can be made due to the combination of the two 

techniques providing different diagnostic methods which overall provide the diagnostic 

coverage required. 

 



 

 Page 78 of 458 A.R. Williams 
 

A Confidence Table (CT) is used, which is effectively a lookup (Table 27). 

Table 27: Confidence Table Lookup 

[
∑ 𝐴𝑇𝑈

∑ 𝑇𝑇𝐴
] (see ‘(16)’) CT 

<1/6 97% 

>=1 / 6 98% 

>=1/3 99% 

>=1/2 99.5% 

>=2/3 100% 

 

The PCc Confidence Factor (PCcCF) can now be calculated (16). 

𝑷𝑪𝒄𝑪𝑭 = 𝒇([
∑ 𝑨𝑻𝑼

∑ 𝑻𝑻𝑨
] , 𝑪𝑻) ( 16 ) 

Where 

𝑨𝑻𝑼 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒𝑠 𝑈𝑠𝑒𝑑     

𝑻𝑻𝑨 − 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒                

𝑪𝑻 − 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑇𝑎𝑏𝑙𝑒                

With the above information the PCc Diagnostic Coverage Claim (PCcDCC) percentage can now be 

calculated (17). 

𝑷𝑪𝒄𝑫𝑪𝑪 = ∑ (𝑴𝑪𝑭𝑴𝑫𝑪 𝒙 𝑷𝑪𝒄𝑪𝑭)
𝒇𝒎=′𝒏′
𝒇𝒎=𝟏  ( 17 ) 

Where 

𝒇𝒎 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑜𝑑𝑒𝑠 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛    

′𝒏′ − 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑜𝑑𝑒𝑠     

3.7.4.3 Calculation Spread sheet 

To automate the calculations and provide a fast route to reference individual techniques deployed in 

a PCc a spread sheet was developed that allowed the data to be input in terms of the failure rates / 

failure modes and the techniques used to detect the failure. An example of each of the tables for the 

elements based on the failure modes discussed in 3.7.3.3 is shown below (Table 28 to Table 38).  
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The principle for populating the tables is identical in each case. Taking Table 28 as an example for a 

connection: 

1) Fill in the reference, normally 1) is the candidate architecture number and C1 would be 

connection 1 as used on the system diagram so ‘1)C1’ is architecture 1) conection1 as in this 

example. 

2) Fill in ‘Y’ in the ‘Failure Mode Leads to Violation of Safety Goal’ column for each failure mode 

that needs to be considered. 

3) For each failure mode to be considered (selected ‘Y’ in the step above) populate the ‘Failure 

Mode Distribution’ column for each of the failure mode rows. The Top ‘Failure Mode 

Distribution’ summation cell will be red if the sum is not 100% and change to green when 

the distribution totals 100% (as in this example).  

4) In the ‘Technique from ISO 26262’ column select which techniques are used and detail the 

‘Specific PCc’ that will be used. Note that multiple techniques may be used against a single 

failure mode which will increase the confidence level and lead to a higher PCc claim. Also, 

more than one PCC may be used against a single failure mode and all should be detailed. 

5) As the data is populated the spread sheet will update the Full Claim (the maximum 

achievable according to BS ISO 26262) and the PCc Claim which is used in the PCc SPFM and 

LFM spread sheets. 
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Table 28: Connection Example 
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Table 29: Measurement Example 
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Table 30: Transducer Example 
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Table 31: Data Example (subset 1) 
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%
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p
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D
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P
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Table 32: Data Example (subset 2) 

 R
e

fe
re

n
ce

1
)D

1
SG

 F
ai

lu
re

 

D
is

tr
ib

u
ti

o
n

0.
00

%
Li

m
it

ed
0.

00
%

Li
m

it
ed

10
0.

00
%

D.2.7.1

Used

D.2.7.2

Used

D.2.7.9

Used

D.2.7.3

Used

D.2.7.4

Used

D.2.7.5

Used

D.2.7.6

Used

D.2.7.7

Used

D.2.7.8

Used

D.2.7.6,7,8

Used

Lo
w

M
e

d
iu

m
H

ig
h

6
0

%
9

0
%

9
9

%

O
u

t 
o

f 
ra

n
ge

O
u

t 
o

f 
ra

n
ge

O
u

t 
o

f 
ra

n
ge

3
0

%
0

%
0

%
y

O
ff

se
ts

O
ff

se
ts

1
0

%
0

%
0

%
y

St
u

ck
 in

 r
an

ge
St

u
ck

 in
 r

an
ge

St
u

ck
 in

 r
an

ge
3

0
%

0
%

0
%

y

O
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il
la

ti
o

n
4

%
0

%
0

%
y

Fa
il

u
re

 o
f 

co
m

m
u

n
ic

at
io

n
 p

e
e

r

Fa
il

u
re

 o
f 

co
m

m
u

n
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at
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n
 p

e
e
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il

u
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 o
f 
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m

m
u

n
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n
 p

e
e

r
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5
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0
%

0
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➢
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➢

➢
➢

➢

M
e

ss
ag

e
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o
rr

u
p

ti
o

n
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e
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e

 c
o
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u
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ti

o
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M
e

ss
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e
 c

o
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u
p

ti
o

n
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%
0

%
0

%
y

➢
➢

➢
➢

➢
➢

➢
➢
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➢

M
e
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e
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M

e
ss

ag
e

 D
e

la
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e
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➢
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➢
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➢
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➢

➢
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 m
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 m
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➢
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➢
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➢
➢
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➢
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Table 33: Parameter Example (subset 1) 

 R
e

fe
re

n
ce

1
)P

1
SG

 F
ai

lu
re

 

D
is

tr
ib

u
ti

o
n

0.
00

%
Li

m
it

ed
0.

00
%

Li
m

it
ed

10
0.

00
%

D.2.8.1

Used

D.2.8.2

Used

D.2.9.1

Used

D.2.9.2

Used

D.2.9.3

Used

D.2.9.4

Used

D.2.9.5

Used

Lo
w

M
e

d
iu

m
H

ig
h

6
0

%
9

0
%

9
9

%
U

n
d

e
r 

an
d

 O
ve

r 

V
o

lt
ag

e

U
n

d
e

r 
an

d
 O

ve
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V
o

lt
ag

e

U
n

d
e
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an

d
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ve
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o

lt
ag
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1
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%
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➢

D
ri
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%
1

0
%

1
0

%
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➢
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e
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➢
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u
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➢

➢
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➢
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➢

➢
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➢
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%
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%
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%
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Table 34: Parameter Example (subset 2) 

 R
ef

er
en

ce
1)

P1
SG

 F
ai

lu
re

 

D
is

tr
ib

u
ti

o
n

0.
00

%
Li

m
it

ed
0.

00
%

Li
m

it
ed

10
0.

00
%

D.2.5.2

Used

D.2.4.1

Used

D.2.4.2

Used

D.2.4.3

Used

D.2.4.4

Used

D.2.5.1

Used

D.2.5.3

Used

D.2.5.2

Used

D.2.4.1

Used

D.2.4.4

Used

D.2.5.4

Used

Lo
w

M
ed

iu
m

H
ig

h

6
0

%
9

0
%

9
9

%
U

n
d

e
r 

an
d

 O
ve
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V
o

lt
ag

e

U
n

d
e
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an

d
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d
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0
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%
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0
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0
%
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u
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d
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d
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%
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%
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0
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P
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0
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Table 35: Parameter Example (subset 3) 
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D.2.3.3

Used
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d
e

r 
an

d
 O

ve
r 

V
o

lt
ag

e

U
n

d
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Table 36: PSU Example 

 

D.2.8.1

Used

D.2.8.2

Used

Lo
w

M
e

d
iu

m
H

ig
h

6
0

%
9

0
%

9
9

%
U

n
d

e
r 

an
d

 O
ve

r 

V
o

lt
ag

e

U
n

d
e

r 
an

d
 O

ve
r 

V
o

lt
ag

e

U
n

d
e

r 
an

d
 O

ve
r 

V
o

lt
ag

e
5

0
%

0
%

0
%

➢
➢

D
ri

ft
D

ri
ft

 &
 O

sc
il

la
ti

o
n

2
0

%
0

%
0

%
➢

➢

P
o

w
e

r 
Sp

ik
e

s
3

0
%

0
%

0
%

➢
➢

0
.0

0
%

0
.0

0
%

6
0

%
9

9
%

A
n

al
ys

e
d

 F
ai

lu
re

 m
o

d
e

s 
fo

r 
 lo

w
 /

 m
e

d
iu

m
 /

 h
ig

h
 

D
ia

gn
o

st
ic

 C
o

ve
ra

ge
Fa

il
u

re
 M

o
d

e
 

D
is

tr
ib

u
ti

o
n

Fu
ll

 C
la

im

10
0%

0.
00

%
0.

00
%

M
e

as
u

re
 a

n
d

 R
e

p
o

rt
 Is

o
la

ti
o

n
 R

e
si

st
an

ce
 C

an
d

id
at

e
 A

rc
h

it
e

ct
u

re
 1

Te
ch

n
iq

u
e 

fr
o

m
 

IS
O

26
26

2

Sp
ec

if
ic

  P
C

C

Te
ch

n
iq

u
e 

D
es

cr
ip

ti
o

n
Fa

ilu
re

 M
o

d
e 

D
is

tr
ib

u
ti

o
n

Fu
ll 

C
la

im
P

C
c 

C
la

im

V
o

lt
ag

e
 o

r 
cu

rr
e

n
t 

co
n

tr
o

l (
in

p
u

t)

V
o

lt
ag

e
 o

r 
cu

rr
e

n
t 

co
n

tr
o

l (
o

u
tp

u
t)

Lo
w

H
ig

h

P
C

c 
C

la
im



 

 Page 89 of 458 A.R. Williams 
 

Table 37: Output Example 

 R
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Table 38: Actuator Example 
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The spreadsheet runs visual basic macros to process the data.  

The macro determines both: 

1) The maximum diagnostic coverage that can be claimed in a full analysis (i.e. on the final 

design circuit diagram) which is shown in the tables as the ‘Full Claim’. 

2) The maximum diagnostic coverage that can be claimed when performing the PCc analysis. 

This is shown in the tables as the ‘PCc Claim’. This is a slightly more conservative value as it is 

biased by the number of techniques that are used against each failure mode with each 

additional technique increasing the confidence level. This approach is more realistic of final 

designs where, typically, a number of different techniques are used to diagnose failures.  

The table also refers to the associated techniques from BS ISO26262 part 5 (BSI, 2011e). This is 

relevant, as it starts to develop the specific requirements that will be carried forward into the 

detailed design stages. 

The steps in the macro are: 

1) Determine which failure modes can violate the safety goal. If the failure mode does not 

violate the safety goal, then it is not included in the diagnostic coverage calculation 

2) Confirm that the failure mode distribution percentages for the failure modes that can violate 

the safety goal add up to 100%, i.e. we have all failure modes covered. This is more of a 

check to ensure that the engineer has included all relevant data. 

3) Determine whether there is a technique available in the safety standard to diagnose each 

particular failure mode. 

4) If a technique is available and the engineer has used it, determine the maximum diagnostic 

coverage that can be claimed for each implemented technique for each failure mode. This 

assumes that the planned implementation is in accordance with the robustness required in 

the standard. 

5) For each failure mode, examine each technique used and determine the maximum 

diagnostic coverage that can be claimed, i.e. if one technique claims 60% diagnostic 

coverage and one technique 90% coverage then the maximum full claim would be 90%. 

6) Examine the failure modes for each of the low, medium and high coverage requirements. 

For example, if the requirement to claim high diagnostic coverage is that the failure modes 

of open circuit, contact resistance, short circuit to ground (DC coupled), short circuit to Vbat, 

short circuit to neighbouring pins and resistive drift between pins all must have diagnostic 

coverage then a technique must be used to diagnose each of these failure modes. If a 
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technique is used for each failure mode, then the maximum claim can be up to high (99%). If 

a technique is not used, then the maximum claim must be lower; in this case the medium 

claim requirements are checked to ensure a technique exists for each medium failure mode. 

If a technique is used for each required failure mode, then the maximum claim is limited to 

medium (90%). If not, then the maximum claim must be lower; in this case the low claim 

requirements are checked to ensure a technique exists for each low failure mode. If a 

technique is used, then the maximum claim is limited to low (60%). If not, then the 

maximum claim is limited to zero (0%), i.e. no coverage. 

7) The maximum full claim is worked out from the above two stages. This gives the maximum 

claim assuming each technique is fully implemented. 

8) As the PCc claim is based on a lumped model at the conceptual stage a confidence level 

(refer to section 3.7.4.2.) is applied to the maximum claim. This is based on the number of 

techniques that are used against each failure mode as a ratio of the number of techniques 

that are available in the standard.  

9) Finally, the PCc Confidence level is applied (as discussed in 3.7.4.2). 

3.7.5 Populating the PCc diagnostic Coverage in the SPFM and LFM Tables 

The resultant Maximum PCc claim (calculated using the process described in 3.7.4) is transferred to 

the SPFM and LFM calculation spreadsheet (for example Table 14) as the diagnostic coverage 

achieved for the element. Once all elements have their diagnostic coverage values populated the 

SPFM and LFM for the safety goal achievable for the candidate architecture is calculated. 

3.8 Candidate Architectures 

The process described in sections 3.5 to 3.7 is repeated for a number of candidate architectures. This 

is most appropriately achieved iteratively as described in 3.8.1. 

3.8.1 Progressive Approach 

The method lends itself to a progressive approach:  

1) Simple Functional System. The first architecture should satisfy the functional requirements 

utilising any carry over design as required but with no or only minimal additions for safety. 

This has the advantage of reducing complexity to a minimum and requires the least amount 

of effort on the analysis. The outcome of the analysis is a functionally complete design with 

predicted architectural metrics. The metrics are likely to be much lower in brand new 

designs than that required for the final design, as safety is not initially included, but they 

may approach the required targets with carry over designs (which already have safety 

mechanisms included). 
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2) Add detection for failure modes that currently have no diagnostic coverage. In analysing the 

elements in the first architecture proposal it will be obvious in the spread sheet which failure 

modes have no diagnostic coverage. PCcs are developed that will allow the undiagnosed 

failures to be detected with as much independence (see 3.8.2) as possible. Repeat the 

analysis on this new architecture and determine whether the metrics indicate a requirement 

for further improvement. 

3) Add additional detection for failure modes with the lowest diagnostic coverage percentages. 

This is now an iterative process looking at the failure modes with the lowest diagnostic 

coverage and applying suitable PCcs to increase diagnostic coverage and review the results 

of the analysis. 

4) Review architectures to see if they can be simplified through decomposition of requirements 

(see 3.8.3) 

By maintaining a progressive approach, the different architectures are documented and 

quantitatively reviewed as each candidate architecture is completed. This not only allows the design 

engineer to review the work, but also facilitates discussion with other engineering disciplines. A 

major advantage of the proposed method is that the architecture designs are simple, the 

spreadsheets relatively small and they can be discussed with the end customer who has an overview 

of the whole project. This may identify better solutions early in the project due to improved system 

understanding and clearly demonstrable PCcs. 

It is not necessary to generate a complete new architecture for explorative purposes. A DC 

percentage can be ‘trialled’ for an element. For example, elements can be given a fictitious 60%, 90% 

or 99% claim to see the immediate effect on the SPFM and LFM calculations. This quickly identifies 

which elements require improvement and gives an idea of the target diagnostic coverage required. 

3.8.2 Independence in PCcs 

Rather than adding in a disproportionate amount of failure mode detection on a single component / 

building block, it is beneficial to explore methods of detecting the fault using diverse techniques or 

techniques that use independent architectural elements. Independent elements may provide a level 

of redundancy and can be advantageous when applying BS ISO 26262 as it supports requirements 

decomposition (see 3.8.3). The term independent has a specific meaning within the scope of BS ISO 

26262. Generally, independence reduces CCFs and is also helpful in reducing the random hardware 

failure rate by introducing AND gates into the fault tree analysis used to calculate the random 

hardware failure rate for the safety goal. This process would be most efficient using a model-based 

tool such as HiP-HOPS (HiP-HOPS, 2017). 
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This work is concerned with the architectural metric calculations only. It is interesting that when 

analysing diagnostic coverage against lumped models, any failure mode with a diagnostic coverage 

of zero is likely to be a single point failure when the random hardware failures are analysed. The 

SPFM for the overall architecture may satisfy a particular ASIL level, but any failure modes with 0% 

or low percentage diagnostic coverage are likely to fail the probabilistic metric for random hardware 

failure when this analysis is performed (this analysis is not within the scope of the proposed 

method). 

To be independent, all the dependant failures must be analysed to provide evidence that sufficient 

independence exists or that the potential common causes lead to a safe state.  BS ISO 26262 part 1 

(BSI, 2011a) defines a dependant failure as single events or single causes that can bypass or 

invalidate a required independence or freedom from interference between given elements and 

violate the safety goal. The dependant failure analysis would need to examine similarities between 

redundant elements i.e. common microcontrollers or common power supplies, functionality 

implemented with identical software elements, functions and safety mechanism, memory 

partitioning in microcontrollers, physical separation between elements etc. 

Freedom of interference analysis requires examination of cascading failures. A cascading failure in a 

QM or low ASIL component can cause another component to fail (which has a higher ASIL) and leads 

to the violation of the safety goal. 

By designing the system as proposed in this method the independence between elements is easily 

depicted in the diagrams. An example of this is shown in section 4.2 and Figure 15 is a typical 

example where a timing monitor is moved to the battery String (a series connection of battery 

modules) which provides an independent clock source to that of the Isolation Monitor. Although it is 

not the rigorous proof required under BS ISO 2626 (BSI, 2011e) it does encourage allocation of PCcs 

across independent ECUs or hardware architectural elements at the concept stage which gives the 

design a sound basis for the safety case argument. 

For example, when monitoring a single cell in a battery that consists of 12 cells, often a great deal of 

diagnostics is placed at the cell level; additional monitoring at the cell level for open circuit 

detection, ADC accuracy checks etc. whereas it may be possible to measure the voltage across all 12 

cells using a separate ADC (a PCc) and compare this to the sum of the individual cells and use this to 

check that the cell voltage reading is correct. It is possible, that one cell can increase by 0.5V and one 

cell decrease by 0.5V so that the sum remains the same, but if cells are being discharged or charged 

then the cell voltages should all be varying in the same direction (monotonic) and so an additional 
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check (another PCc in software proving the sign of the change in voltage with respect to time, a rate 

monitor or a monotonicity flag) can be designed without the need for additional hardware. 

3.8.3 Requirements Decomposition 

BS ISO 26262 part 9 (BSI, 2011) allows for ‘Requirements decomposition with respect to ASIL 

tailoring’ meaning that safety requirements can be implemented in independent architectural items 

/ elements. This is an important aspect of the standard that can lower the ASIL assigned to 

decomposed requirements and subsequently reduce the level of rigour required in the development 

and implementation of certain safety requirements. Note: It does NOT reduce the ASIL rating of the 

safety goal at the vehicle level. 

The proposed method analyses the design in terms of PCcs rather than specific, detailed, low level, 

diagnostic techniques as detailed in the standard BS ISO 26262 part 5 (BSI, 2011e). This tends to 

spread the diagnostics across different controllers in systems where multiple controllers exist. This 

can be considered as requirements decomposition. Although requiring further justification as 

discussed below, it can have major benefits in achieving the safety targets (and other engineering 

constraints) when considered at this early stage.  

Even at this stage, in the concept design, it is possible to examine the candidate architectures and 

the allocation of PCcs to the different architectural elements and think about requirements 

decomposition. High level system requirements with a high ASIL target may be decomposed. 

The full details of decomposition are provided in BS ISO 26262 part 9 section 5.4 (BSI, 2011). As an 

example, the decomposition of an ASIL D requirement taken from the standard is shown below. 

An ASIL D requirement shall be decomposed as one of the following: 

1) One ASIL C(D) requirement and one ASILA(D) requirement, or 

2) One ASIL B(D) requirement and one ASIL B(D) requirement, or 

3) One AISL D(D) requirement and one QM(D) requirement 

Additional constraints are also placed on the design to ensure that overall safety is not compromised 

through incorrect application of requirements decomposition.  

When decomposing requirements, the associated safety mechanism should be assigned to the 

highest level ASIL. This is logical, as in general, the safety mechanisms are less complex than the 

control system that they are diagnosing and achieving a higher ASIL on a simpler system is less 

onerous than on a complex system. 
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The proposed method is an important route to facilitate decomposition. Often companies work in 

isolation when working on different systems, by performing this level of analysis at the concept 

stage accelerates discussion about decomposition across independent systems very early in the 

project.  This can often lead to lower cost, simpler solutions with equivalent or improved safety by 

companies working together using decomposition to achieve a better final system design. With the 

ability to provide predicted architectural metrics for candidate architectures, discussions can take 

place between suppliers to ensure that data is available to allow PCcs to be implemented. Without 

this discussion, the OEM tends to dictate the higher ASIL levels (prior to decomposition) to all 

suppliers and each delivers an individual solution that meets the requirements. This tends to lead to 

higher costs associated with the rigour achieved in achieving the higher ASIL target. It is 

recommended to have this discussion prior to formalising the DIAs between the OEM and the 

suppliers. 

The fact that the candidate architectures explore different solutions leads onto exploration of 

decomposition options early in the design process. This is where the standard intended 

decomposition to be performed – ‘Requirements Decomposition’. One tool that specifically looks at 

this is discussed by Azevedo (Azevedo LdS, 2014). 

3.8.4 Candidate Selection 

The method proposed allows all architectures to be considered very quickly to determine the best in 

terms of architectural metrics. In parallel, a simple cost analysis would provide an indication of the 

final hardware costs for each architecture. This allows sound engineering decisions to be made early 

in the design process.  

There will be several safety goals and a number of candidate architectures for each safety goal. 

Generally, experience shows that the candidate architectures, even though designed for different 

safety goals, tend to lead to a common architecture that can achieve the architectural metrics 

without over engineering (in terms of component cost and design cost).  

In some cases, there can be a conflict between the safety goals. For example, consider the two 

safety goals: 

1) Maintain the cells within their safe operating region for voltage. 

2) Ensure torque is delivered as demanded by the driver. 

In the first case the logical route is to say that if the cell voltage is too low (over discharged), the 

control system will limit the charge that can be taken from the cells and ultimately open the 

contactors to prevent further discharge of the cells. For the second safety goal the control system 
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should not open the contactors as this would prevent the vehicle management system from 

delivering the correct torque as demanded by the driver. Practically the first safety goal carries a 

higher risk and so higher ASIL rating than the second which can be mitigated by driver warnings 

when the battery is very low on charge (but prior to opening contactors). This difference in ASIL’s 

provides sufficient scope to allow the correct architecture to be chosen and achieve the required 

ASIL for both safety goals with the same architectural solution. 

The candidate architecture diagrams will also show a level of independence which justifies ASIL 

requirements decomposition as discussed in 3.8.3. In a full design to a functional safety standard it 

must be remembered that the architectural metrics only form one part of the argument for a safe 

system other hardware metrics, software process and metrics etc. must also be applied. 

3.9 Method Summary 

The proposed method allows many safety critical design architectures to be compared in a 

quantitative way in order the select the most suitable design to take from concept through to final 

design. The stages are: 

1) Describe the desired system function diagrammatically using existing architectural 

constraints where relevant, i.e. ECUs in the system that have to be re-used. 

2) Select a safety goal to analyse and understand which elements can violate the safety goal if a 

malfunction occurred. 

3) Understand the failure modes applicable to each element in the system that can violate the 

safety goal of interest. 

4) Add in PCcs to detect failures in a progressive manner. 

5) Quantify the PCcs for the architecture. 

6) Calculate the SPFM and LFM that the quantified PCc will achieve when implemented in the 

final design. 

7) Repeat the above steps ‘3) to ‘7)’ until the ASIL architectural metric targets can be achieved. 

This is in line with the required outcomes set out earlier in this section (3.2). As the method is 

generic it is possible to apply any architectural metric calculation which is based on failure rates, 

failure modes and diagnostics coverage. For example, it can be used for single point fault metrics in 

line with BS ISO 262622 part 5 (BSI, 2011e) or safe fail fractions as in BS EN 61508 part 2 (BSI, 2010). 
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The limitations in the method are: 

• The allocation of failure modes percentages to the different element classifications. This 

limitation is reduced over time as more examples are completed and designs are based on 

previous projects. 

• A number of assumptions have to be made on the failure rate allocated to the lumped 

models. Again, as more projects are completed, and standard blocks used for inputs, 

outputs and communications systems etc. the number of assumptions are reduced and 

confidence is increased in the failure rates used. 

• The method is purely examining the architecture based on architectural metrics and does 

not cover the over aspects such as violation of safety goals due to random hardware failures 

which requires FTA. 

• The is no optimisation in the design. The full design will need further optimisation using 

additional techniques. One example is automatic optimisation of system architectures using 

a model-based design approach such as EAST-ADL and HiP-HOPS (Walker, 2013). 
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4 Practical Applications with Results 

4.1 Introduction 

Following the approach outlined in section 3, a complete analysis was performed for a Rechargeable 

Energy Storage System (RESS). This generated a number of safety goals (further safety goals may be 

identified depending on a more detailed item definition): 

1) The isolation resistance between the high voltage battery and the vehicle chassis shall be 

monitored and deviations below safe limits reported to the vehicle controller. 

2) Cell voltages shall be maintained within their safe operating envelope. 

3) Cell temperatures shall be maintained within their safe operating region. 

4) Charge currents shall be maintained with their safe operating range. 

5) Discharge currents shall be maintained with their safe operating range. 

The first two were selected for analysis; isolation resistance measurement and maintaining the cells 

within their safe operating envelope. The method described in section 3 was applied to the two 

safety goals and a candidate architecture selected based on the outcome of the method. These are 

discussed in detail in sections 4.2 and 4.3. Both of these studies related to activities the author was 

working on. 

4.2 Isolation Tester 

The Isolation tester is considered without the rest of the vehicle as it is considered as a stand-alone 

system which can then be applied to any system, as long as the safety goals and associated ASIL, are 

compatible with, or exceed the application requirements and a cross-check of all hazards 

demonstrates full coverage. The main function is to Measure the Isolation Resistance (MIR). 

4.2.1 Safety Goal 

4.2.1.1 Aim – Measure and report the resistance between high voltage and chassis 

Whenever a high voltage exists (generally considered > 60V dc) then a shock hazard exists if a person 

can touch exposed live parts. In all automotive designs, the high voltage is isolated from the chassis, 

this provides and additional level of fault protection as now the person must locate two exposed 

points of different potential in order to be at risk of electric shock. However, a single fault can cause 

the chassis to be connected to one side of the high voltage bus. This now means the person only 

needs to touch one other point with reference to the chassis to risk electric shock. 
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By measuring the resistance between the chassis and either side of the HV bus, it is possible to 

report a warning or fault due to insulation breakdown and ensure persons remain safe even in the 

presence of a single fault.  

4.2.1.2 Safety Goal 

The safety goal is: 

Measure and report the minimum isolation resistance between the High Voltage Bus (HV 

positive OR HV negative) and the chassis of the vehicle. 

The safety goal is applied purely to the Isolation Tester. Any actions revert to the vehicle supervisory 

system. Typically, the vehicle action would depend on its operating mode: 

1) Charging - would disconnect the HV battery when charging as there is a common connection 

between the vehicle chassis and the earth connection of the electrical distribution system 

2) Driving – warn the driver but allow the current drive cycle to complete. Once parked and the 

drive cycle stopped (key off) then the battery would disconnect and not connect again until 

either the isolation test had passed, or a service reset is performed followed by a successful 

isolation test. 

4.2.2 System Description 

This system is relatively simple, compared to the more complete BMS system (4.3) and so offers a 

good introduction to application of the method. The system consists of a measurement input to 

measure the HV voltage with respect to the chassis connection, a microcontroller to calculate the 

resistance from the voltage measurements and an interface to communicate the information to the 

vehicle supervisory controller. 

The overall system, before the addition of cross checks and analysis can be seen in Figure 11.  
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STR_ISOL_HV_DP_1V0_TX STR_ISOL_HV_DP_1V0D3

 

Figure 11: Isolation Tester System Description 

4.2.3 Fault Consideration 

Based on the system the main faults are incorrect measurement AND / OR incorrect reporting of the 

measurement value. Either fault can lead to the driver being unaware of a potential hazard. 

4.2.4 System Analysis 

The system is now analysed to consider which signals are safety critical and the system diagram 

updated (Figure 12). The HV measurement signal out of the isolation tester is considered as safety 

critical as other vehicle systems may use this value. By transmitting this along with the resistance 

value, other systems e.g. the battery management system can rely on this voltage as being accurate 

and may use it in external plausibility checks. 

In theory the isolation tester can generate the warning and fault flags internally and provide these as 

digital outputs. This has not been considered in this application as the battery management system 

can achieve a high ASIL due to the microcontroller employed in the design and so it is preferable to 

use the isolation tester as an intelligent transducer but try and maintain as low a cost as possible 

while still maintaining the integrity of the overall system. 

Should later applications need the warning and fault monitoring in the isolation tester then these 

outputs can be added either over CAN or hardwired and a new architectural metric design 

completed by applying the proposed PCc method. This is a good example of an application of this 

method when examining large systems i.e. array of systems where there is considerable interaction 

at the interfaces and a number of safety requirements placed on one system from another system; 

all of which require architectural metrics to be considered early on in the design process.  
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Figure 12: Measure Isolation Resistance – System Diagram with Safety Critical Signals  
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4.2.5 Candidate Selection 

As per the proposed method a candidate architecture is chosen that fulfils the functional 

requirements and the safety concept without significant emphasis on how the diagnostics will be 

achieved. This concept is usually relatively simple and low cost and allows the initial data for analysis 

to be collected. 

The selection process for this example starts with a relatively simple software control based concept, 

then adds reference windows followed by a self-test option followed by a level of independence on 

the self-test. 

4.2.5.1 Measure Isolation Resistance – Architecture 1 

The system measures the isolation resistance according to the method described in the United 

Nations Economic Commission for Europe (UNECE) guideline for ‘Uniform provisions concerning the 

approval of vehicles with regard to specific requirements for the electric power train’ (UN ECE Reg 

100, 2013). 

To sequence the measurements and interpret the voltage measurements into a resistance value, 

many calculations are required lending itself to the inclusion of a microcontroller in the system. This 

has the associated ancillaries such as crystal and power supply. The power supply is referenced to 

the vehicle chassis to make the measurements. In this case, the communications method is over 

CAN bus so that it can directly link to a suitable CAN bus within the Battery Management System 

(BMS) or the vehicle CAN bus if no private battery bus is available. The initial architecture is identical 

to that shown in Figure 12. 

4.2.5.2 Measure Isolation Resistance – Architecture 1 Classified Signals 

To perform the analysis, many signals are defined which are connected between the critical 

elements. For clarity, only signals for this candidate architecture diagram (Figure 12) are discussed in 

this section. The relevant PCcs that are applied are discussed in subsequent sections. 

The signals are described as they appear in the architecture diagram (Figure 12) from top left to 

bottom right. 

4.2.5.2.1 Connections 

4.2.5.2.1.1 C1, M1 - HVPOS_AI_1V0 

The connection to the positive side of the HV bus used for voltage measurements with respect to the 

chassis connection (C3 - CHASSIS_AI_1V0). 
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4.2.5.2.1.2 C2, M2 - HVNEG_AI_1V0 

The connection to the negative side of the HV bus used for voltage measurements with respect to 

the chassis connection (C3 - CHASSIS_AI_1V0). 

4.2.5.2.1.3 C3 - CHASSIS_AI_1V0 

The main reference point for the measurements. This is assumed to be a separate connection to that 

of the 0V of the 12V power supply. 

4.2.5.2.2 Isolation Tester Inputs 

4.2.5.2.2.1 T1, P1 - STR_ISOL_HV_DP_1V0 

The measurement is a voltage measurement at the front end but in order to meet accuracy 

requirements the concept includes an amplifier / buffer in order to be able to control the gain of the 

measurement circuit which is why the element is classed as a transducer. 

4.2.5.2.2.2 T1, P2 - STR_ISOL_RES_DP_1KR0 

The transducer also provides all the necessary scaled measurements for the resistance calculation in 

the microcontroller. This is converted to an internal parameter (resolution 1kR) which is then used to 

generate the necessary data for the CAN interface. 

4.2.5.2.3 Isolation Tester Outputs 

CAN will be updated periodically depending on the measurement rate in the isolation tester. 

Typically, 100ms update rates on CAN are sufficient for isolation resistance values as measurements 

take in excess of 500mS. Additional information such as status or voltage for diagnostic purposes for 

other systems which can be included in the same data packet for the message may require a faster 

update rate. 

4.2.5.2.3.1 D1, D4 - STR_ISOL_HV_DP_1V0_TX 

The voltage measurement values transmitted by the isolation tester.  

4.2.5.2.3.2 D2, D5 - STR_ISOL_RES_DP_1KR0_TX 

The measured isolation resistance value transmitted by the isolation tester. 

4.2.5.3 Measure Isolation Resistance – Architecture 1 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.2.5.4. Table 39 acts 

as a cross reference into the appendices for the associated diagnostic coverage calculations which 

also detail each PCc used in the calculation. 
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Table 39: MIR Architecture 1 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix D1 – MIR – Architecture 1 DC% Claims 

1)C1 Table 80: MIR – Architecture 1 Connection 1 

1)C2 Table 81: MIR – Architecture 1 Connection 2 

1)C3 Table 82: MIR – Architecture 1 Connection 3 

1)D1 Table 83: MIR – Architecture 1 Data 1 (subset 1) 

Table 84: MIR – Architecture 1 Data 1 (subset 2) 

1)D2 Table 85: MIR – Architecture 1 Data 2 (subset 1) 

Table 86: MIR – Architecture 1 Data 2 (subset 2) 

1)D4 Table 87: MIR – Architecture 1 Data 4 (subset 1) 

Table 88: MIR – Architecture 1 Data 4 (subset 2) 

1)D5 Table 89: MIR – Architecture 1 Data 5 (subset 1) 

Table 90: MIR – Architecture 1 Data 5 (subset 2) 

1)M1 Table 91: MIR – Architecture 1 Measurement 1 

1)M2 Table 92: MIR – Architecture 1 Measurement 2 

1)P1 Table 93: MIR – Architecture 1 Parameter 1 (subset 1) 

Table 94: MIR – Architecture 1 Parameter 1 (subset 2) 

Table 95: MIR – Architecture 1 Parameter 1 (subset 3) 

1)P2 Refer to 1)P1 as similar techniques used 

1)P4 Refer to 1)P1 as similar techniques used 

1)P6 Refer to 1)P1 as similar techniques used 

1)PSU1 Table 96: MIR – Architecture 1 Power Supply 1 

1)PSU2 Refer to 1)PSU1 as similar techniques used 

1)T1 Table 97: MIR – Architecture 1 Transducer 1 

 

4.2.5.3.1 Element 1)C1, 1)C2, 1)C3 

No diagnostic coverage is provided for these connections. 

4.2.5.3.2 Element 1)D1, 1D2, 1)D4,1)D5 

Only the data failure modes of this signal are covered and the normal Data PCCs are used – see 

4.2.5.4.1. 

4.2.5.3.3 Element 1)M1, 1)M2 

No diagnostic coverage is provided for these measurements. 
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4.2.5.3.4 Element 1)P1, 1)P2, 1)P4, 1)P6 

A number of standard Parameter PCcs are performed as covered in section 4.2.5.4.3. 

4.2.5.3.5 Element 1)PSU1, 1)PSU2 

PCc_PSU_MON monitors all power supply faults (4.2.5.4.4). 

4.2.5.3.6 Element 1)T1 

PCc_PSU_MON (4.2.5.4.4) is used for the power supply section; however there is no coverage for the 

remaining measurement functionality.  

4.2.5.4 Measure Isolation Resistance – Architecture 1 Plausibility Cross checks 

Several generic PCcs are used in this design relating to power supply monitoring, data 

communications and internal microcontroller functionality. These are discussed below based on the 

element classifications. 

4.2.5.4.1 Data 

The microcontroller is responsible for calculating transmission checksums (PCc_Data_Checksum), 

frame sequence counters (PCc_Frame_Seq / PCc_Frame_Count) and transmission timing 

(PCc_Poll_Response_Time) of data. To ensure end to end data integrity it is the responsibility in the 

higher software layers (application) to pack the data with rolling counts and checksums. Additionally, 

checks performed in the CAN stack are to ensure data to be transmitted is correct (i.e. no corruption 

has occurred between the application software and the point of transmission) and also monitor poll 

/ response timing. 

4.2.5.4.1.1 PCc_Data_Checksum 

A data checksum can be performed in many ways. This may be a simple parity check, and exclusive-

OR check or a more complicated Cyclic Redundancy Check (CRC). The integrity of the check is based 

on the criticality of the data as described in each of the individual element references. The integrity 

can also be improved based on the position of the checksum calculation in the data timeline. The 

higher the integrity the higher the diagnostic coverage achievable. The preferred method is to use an 

end-to-end checksum whereby the data is packed in the application with the calculated checksum to 

form a high integrity data packet. The data is unpacked by the application at the receiving end and 

verified using the same checksum calculation us used by the transmitting application. This eliminates 

any errors in data processing through CAN stacks and other lower levels of software. To a certain 

extent it also protects against timing issues as the data can be packed in a function call that provides 

the data and unpacked in a function that utilises the data.  
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This PCc does not only apply to data passed over a communications networks, such as CAN, it can 

also be applied to critical data packets, for example data passed between algorithms or state 

machines within a single microcontroller if necessary. 

4.2.5.4.1.2 PCc_Frame_Seq / PCc_Frame_Count 

Data frames sent between ECUs generally contain live data which should be processed in the correct 

order. This means that the ECU receiving the data needs to know the order in which the data was 

sent (normally there is no specific timestamp with a CAN protocol) a combination of the frame 

sequence (sometimes referred to as a rolling counter) and independent monitoring of the timing is 

used. 

4.2.5.4.2 PCc_Poll_Response_Time 

Individual message poll and response timing checked by the receiving ECU. For example, if a periodic 

message is expected to be transmitted every 20mS then the receiving ECU can reset a timer when 

the message is received and then increment the timer until the next valid message is received. The 

time difference measured between the two messages can be compared to the correct time of 20mS 

and the ECU can determine whether the message is being received at a higher rate or lower rate 

than expected. As CAN traffic is not deterministic, a certain timing tolerance would be allowed. It is 

important that CAN bus loading is appropriate to provide bus access meaning that time delays can 

be accommodated without causing nuisance trips. If a message is lost (no longer present on the bus) 

the receiving ECU will have to decide whether to use data from the last known good message or else 

revert to default data. 

4.2.5.4.3 Parameters 

The microcontroller performs many standard tests. This is kept relatively general for each PCc, but 

each test would be developed when working with a specific microcontroller in the final design. Many 

microcontrollers have a range on Built in Self-Test (BIST) functions that cover as a minimum all the 

PCcs discussed here plus additional ones that are more specific to the peripherals on the 

microcontroller. The Texas Instruments Hercules series (Texas Instruments, 2014) is a good example 

of microcontrollers specifically designed for use in safety critical applications and there is sufficient 

data available in the public domain to perform the PCc calculations, more detailed information (as 

required for final design) is available under NDA. 

4.2.5.4.4 PCc_PSU_Mon 

Monitoring of the PSU can be achieved in a number of ways with differing integrity levels. The test 

can be performed by a simple comparator in the microcontroller that can detect brown-out, power 

dips etc. and inform the application of the type of power transient either as it happens for a very 
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short transient or after a microcontroller reset for longer power dips. In more complex 

microcontrollers there may be a companion chip that performs detailed power supply monitoring in 

conjunction with a watchdog, reset function and in some cases a safety output for disabling output 

drivers. 

4.2.5.4.5 PCc_Code_Seq 

The microcontroller will execute all required tasks, either through a Real Time operating System 

(RTOS), or a simple scheduler. These relate to management of the lower level tasks such as input 

output control and communication message handling, microcontroller testing such as memory tests, 

peripheral tests etc. and management of the main application tasks such as state machines and 

control strategies. 

The code sequence check ensures that these tasks are scheduled correctly in terms of the correct 

order and also that they are performed in a timely manner. This ensures that the tasks are handled 

in a deterministic way. The sequence check identifies slow or fast tasks or incorrect task sequencing, 

if faults are detected it can decide to perform some form of soft restart, a soft reset or in extreme 

cases trip the watchdog which in turn performs a complete hardware reset of the microcontroller.  

Bearing in mind that this is a safety critical application a soft recovery is preferred to minimise 

disruption but this may not always be possible. 

4.2.5.4.6 PCc_MICRO_Test 

Microcontrollers have a number of self-test functions built into them. These can be run at start up or 

periodically during normal operation. It is the software engineer’s responsibility to ensure that these 

self-tests are executed in a timely manner, results are consistent with correct operation and that any 

deviation from correct operation is detected and the microcontroller operation managed if a fault is 

found. As these tests are critical, a test schedule monitor would normally be included as part of the 

PCc_Code_Seq check. The PCc assumes that all peripherals used by the application and those 

powered / running are checked. Even a peripheral not used in the application if powered (i.e. not 

properly disabled) may influence operation of another safety critical function. Normally, peripherals 

can be disabled through software configuration of the control registers, however, a detailed 

knowledge of the microcontroller may be required to ensure this is the case. 

Normally the data sheets for the microcontroller will specify all peripheral tests available and for 

microcontrollers designed for use in safety critical applications there is normally sufficient data 

available to allow the achievable diagnostic coverage to be calculated. 
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Typical peripherals include: 

➢ Integrated memory – flash, Data RAM, Data flash EEPROM emulation, trace memory. 

➢ Direct memory access to transfer data. 

➢ CAN communication channels. 

➢ Inter-Integrated Circuit communication ports (I2C). 

➢ Serial Peripheral Interfaces (SPI). 

➢ Universal Asynchronous Receiver Transmitter (UART). 

➢ Timers. 

➢ Analogue to digital converters. 

➢ Pulse Width Modulation (PWM) outputs. 

➢ Input capture and compare units. 

➢ On board temperature sensing. 

➢ Dedicated general purpose input / output pins. Etc. 

4.2.5.4.7 PCc_RAM_Test 

RAM tests may be scheduled (at start up or cyclically during normal operation) or completed just 

prior to access to memory and / or just after writing to RAM. This may be a simple parity test, a 

more complex checksum which is performed by software, or, in higher end microcontrollers, a 

dedicated memory manager which is used to perform access monitoring of the memory. This may 

also extend to memory protection which ensures that only the correct functions can read from / 

write to specific areas of memory. This is a requirement where functions with different ASIL 

requirements co-exist in the same microcontroller as discussed in BS ISO 26262 part 9 section 6 - 

Criteria for coexistence of elements (BSI, 2011). 

4.2.5.4.8 PCc_NV_Test 

Non-Volatile memory tests are normally run at start up and during normal operation to verify any 

calibration / configuration data that may be set at the end of line or learnt as the application is used 

(e.g. storage of diagnostic trouble codes or data logging). 

4.2.5.5 Measure Isolation Resistance – Architecture 1 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 40 and the LFM calculation shown in Table 41. For presentation purposes the tables are split 

into two sections (SPFM and LFM) although a single spreadsheet would normally be used. 
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Table 40: Measure Isolation Resistance Architecture 1 SPFM Calculation 
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Connections

HVPOS_AI_1V0 Connection 1)C1 0.0353 y 0.0353 45% 0.0159 y 0.00% 0.0159

HVNEG_AI_1V0 Connection 1)C2 0.0353 y 0.0353 45% 0.0159 y 0.00% 0.0159

Isolation Monitor Inputs

HVPOS_AI_1V0 Measurement 1)M1 4.9000 y 4.9000 45% 2.2050 y 0.00% 2.2050

HVNEG_AI_1V0 Measurement 1)M2 4.9000 Y 4.9000 45% 2.2050 y 0.00% 2.2050

CHASSIS_AI_1V0 Connection 1)C3 0.0353 Y 0.0353 45% 0.0159 y 0.00% 0.0159

Isolation Monitor Internal

STR_ISOL_HV_1V0

STR_ISOL_RES_DP_1KR0
Transducer 1)T1 14.3674 Y 14.3674 45% 6.4653 y PCc_PSU_MON 0.00% 6.4653

STR_ISOL_HV_1V0 Parameter 1)P1 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.02% 0.1197

Power Supply General - PSU 1)PSU1 12.0000 Y 12.0000 45% 5.4000 y PCc_PSU_MON 98.51% 0.0807

Isolation Monitor Outputs

STR_ISOL_HV_DP_1V0_TX Data 1)D1 3.9991 Y 3.9991 45% 1.7996 y
PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT, 

PCc_POLL_RESPONSE_TIME

0.00% 1.7996

String Inputs

STR_ISOL_HV_DP_1V0_TX Data 1)D4 3.9991 Y 3.9991 45% 1.7996 y
PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT,

PCc_POLL_RESPONSE_TIME 

0.00% 1.7996

String Internal

STR_ISOL_HV_DP_1V0_TX Parameter 1)P6 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.02% 0.1197

Power Supply General - PSU 1)PSU2 12.0000 Y 12.0000 45% 5.4000 y PCc_PSU_MON 98.51% 0.0807

Total FR (FIT) 74.115 74.115 14.923

Single Point Fault Metric 79.9%
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Table 41: Measure Isolation Resistance Architecture 1 LFM Calculation 

 

The PCc architectural analysis results in a SPFM of 79.9% (Table 40) and a LFM of 87.5% (Table 41). 

This means the design is not capable of achieving ASIL B (the first ASIL level that requires 

architectural metric analysis). Significantly, there are effectively several single point failures – i.e. no 

diagnostic coverage on safety critical components. Although the SPFM for the overall architecture is 

capable of achieving ASIL A, the fault trees used for calculating the probabilistic metric for random 

hardware failure would highlight this problem. 

4.2.5.6 Measure Isolation Resistance – Architecture 2 

Improvement can quite easily be made by cross referencing voltage and resistance measurements 

against windows that can be calibrated to provide an upper and lower value. If they are in a suitable 

working range, signal plausibility confidence is increased. The updated system diagram is shown in 

Figure 13. 

Si
gn

al
 D

e
sc

ri
p

ti
o

n

El
e

m
e

n
t 

C
la

ss
if

ic
at

io
n

El
e

m
e

n
t 

R
e

fe
re

n
ce

Fa
il

u
re

 R
at

e
/F

IT

Sa
fe

ty
 C

ri
ti

ca
l c

o
m

p
o

n
e

n
t

Sa
fe

ty
 C

ri
ti

ca
l F

ai
lu

re
 r

at
e

M
u

lt
ip

le
 P

o
in

t 
Fa

il
u

re
 r

at
e

 (
P

e
rc

e
iv

e
d

 +
 

La
te

n
t

Fa
il

u
re

 m
o

d
e

 t
h

at
 m

ay
 le

ad
 t

o
 t

h
e

 

vi
o

la
ti

o
n

 o
f 

sa
fe

ty
 g

o
al

 in
 c

o
m

b
in

at
io

n
 

w
it

h
 f

ai
lu

re
 o

f 
an

o
th

e
r 

co
m

p
o

n
e

n
t?

D
e

te
ct

io
n

 m
e

an
s?

 S
af

e
ty

 m
e

ch
an

is
m

(s
) 

al
lo

w
in

g 
to

 p
re

ve
n

t 
th

e
 f

ai
lu

re
 m

o
d

e
 

fr
o

m
 b

e
in

g 
la

te
n

t

El
e

m
e

n
t 

re
fe

re
n

ce

Fa
il

u
re

 M
o

d
e

 c
o

ve
ra

ge
 w

it
h

 r
e

sp
e

ct
 t

o
 

La
te

n
t 

fa
il

u
re

s,
 %

La
te

n
t.

m
u

lt
ip

le
-P

o
in

t 
fa

il
u

re
 r

at
e

/F
IT

Connections

HVPOS_AI_1V0 Connection 1)C1 0.0353 y 0.0353 0 Y SC_EXT_REF 90% 0.0000

HVNEG_AI_1V0 Connection 1)C2 0.0353 y 0.0353 0 Y SC_EXT_REF 90% 0.0000

Isolation Monitor Inputs

HVPOS_AI_1V0 Measurement 1)M1 4.9000 y 4.9000 0 Y SC_EXT_REF 90% 0.0000

HVNEG_AI_1V0 Measurement 1)M2 4.9000 Y 4.9000 0 Y SC_EXT_REF 90% 0.0000

CHASSIS_AI_1V0 Connection 1)C3 0.0353 Y 0.0353 0 Y SC_EXT_REF 90% 0.0000

Isolation Monitor Internal

STR_ISOL_HV_1V0

STR_ISOL_RES_DP_1KR0
Transducer 1)T1 14.3674 Y 14.3674 0 Y SC_EXT_REF 90% 0.0000

STR_ISOL_HV_1V0 Parameter 1)P1 8.9218 Y 8.9218 3.89505607 Y Wdog 60% 1.5580

Power Supply General - PSU 1)PSU1 12.0000 Y 12.0000 5.31927 Y Wdog 60% 2.1277

Isolation Monitor Outputs

STR_ISOL_HV_DP_1V0_TX Data 1)D1 3.9991 Y 3.9991 0

String Inputs

STR_ISOL_HV_DP_1V0_TX Data 1)D4 3.9991 Y 3.9991 0

String Internal

STR_ISOL_HV_DP_1V0_TX Parameter 1)P6 8.9218 Y 8.9218 3.89505607 Y Wdog 60% 1.5580

Power Supply General - PSU 1)PSU2 12.0000 Y 12.0000 5.31927 Y Wdog 60% 2.1277

Total FR (FIT) 74.115 74.115 7.371

Latent Fault metric 87.5%
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Figure 13: Measure Isolation Resistance – System Diagram - Architecture 2 
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4.2.5.7 Measure Isolation Resistance – Architecture 2 Classified Signals 

The plausibility cross checks require several additional signals. Only new signals for this candidate 

architecture diagram (Figure 13) are discussed in this section. The relevant PCcs that are applied are 

discussed in subsequent sections. 

The signals are described as they appear in the architecture diagram (Figure 13) from top left to 

bottom right. 

4.2.5.7.1 Isolation Tester Internal Signals 

4.2.5.7.1.1 P3 - CAL_REF_WIN_DP_1V0 

The calibration value for the reference voltage window.  

4.2.5.7.1.2 P5 - CAL_REF_WIN_DP_1KR0 

The calibration value for the reference resistance window.  

4.2.5.7.1.3 P2 - STR_ISOL_STATUS_DP 

The status flag set to show that the measurements are plausible.  

4.2.5.7.1.4 D3, D6, P8 - STR_ISOL_STATUS_DP_TX 

The status flag transmitted to the string and converted to a parameter for internal use in the string 

controller. 

4.2.5.8 Measure Isolation Resistance – Architecture 2 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.2.5.9. Table 42 acts 

as a cross reference to the appendices for the associated diagnostic coverage calculations which also 

detail each PCc used in the calculation. 

Table 42: MIR Architecture 2 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix D2 – MIR – Architecture 2 DC% Claims 

2)C1 Table 98: MIR – Architecture 2 Connection 1 

2)C2 Table 99: MIR – Architecture 2 Connection 2 

2)D1 Table 100: MIR – Architecture 2 Data 1 (subset 1) 

Table 101: MIR – Architecture 2 Data 1 (subset 2) 

2)D2 Refer to 2)D1 as similar techniques used 

2)D3 Refer to 2)D1 as similar techniques used 

2)D4 Refer to 2)D1 as similar techniques used 
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Element Diagnostic Coverage Calculation Table Reference in 

Appendix D2 – MIR – Architecture 2 DC% Claims 

2)D5 Refer to 2)D1 as similar techniques used 

2)D6 Refer to 2)D1 as similar techniques used 

2)M1 Table 102: MIR – Architecture 2 Measurement 1 

2)M2 Refer to 2)M1 as similar techniques used 

2)P3 Table 103: MIR – Architecture 2 Parameter 3 (subset 1) 

Table 104: MIR – Architecture 2 Parameter 3 (subset 2) 

Table 105: MIR – Architecture 2 Parameter 3 (subset 3) 

2)P5 Refer to 2)P3 as similar techniques used 

2)P6 Table 106: MIR – Architecture 2 Parameter 6 (subset 1) 

Table 107: MIR – Architecture 2 Parameter 6 (subset 2) 

Table 108: MIR – Architecture 2 Parameter 6 (subset 3) 

2)P7 Refer to 2)P6 as similar techniques used 

2)P8 Refer to 2)P6 as similar techniques used 

2)T1 Table 109: MIR – Architecture 2 Transducer 1 

 

4.2.5.8.1 Element 2)C1, 2)C2 

A reference window - PCc_REF_WINDOW (4.2.5.9.1.1) increases diagnostic coverage from 0% to 

72%. 

4.2.5.8.2 Element 2)D1, 2)D2, 2)D3, 2)D4, 2)D5, 2)D6, 2)M1, 2)M2 

The reference window (4.2.5.9.1.1) significantly increases coverage on the Data as there is 

confidence that the signal is within a valid range. 

4.2.5.8.3 Element 2)P3, 2)P5, 2)P6, 2)P7, 2)P8 

This architecture employs a number of additional Parameters all of which are covered by the 

standard Parameter diagnostics (4.2.5.4.3). 

4.2.5.8.4 Element 2)T1 

The reference window (4.2.5.9.1.1) is now applicable to this input; however, as this is the conversion 

to resistance, the diagnostic coverage remains at 0% as a number of failure modes are still 

undiagnosed in terms of the actual resistance value. 
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4.2.5.9 Measure Isolation Resistance – Architecture 2 Plausibility Cross checks 

4.2.5.9.1 Isolation Tester PCCs 

4.2.5.9.1.1 PCc_REF_WIN – Reference Window 

PCc_REF_WIN takes two inputs – one, a live measurement value and the other a calibration window 

with an upper and lower limit. The PCc ensures that the measured value is within the window. The 

output is a status flag to show whether the measured signal is plausible or not. If the measurements 

are not plausible the string controller (receiver of the signal in this example) can determine a 

relevant course of action. The reference window would normally be selected to have a lower limit 

that is greater than the warning limit. This means that the isolation tester is effectively monitoring 

the warning level as well as the string controller. 

4.2.5.10 Measure Isolation Resistance – Architecture 2 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 43 and the LFM calculation shown in Table 44. 

Table 43: Measure Isolation Resistance Architecture 2 SPFM Calculation 

 

Si
gn

al
 D

es
cr

ip
ti

o
n

El
em

en
t 

C
la

ss
if

ic
at

io
n

El
em

en
t 

R
ef

er
en

ce

Fa
ilu

re
 R

at
e/

FI
T

Sa
fe

ty
 C

ri
ti

ca
l c

o
m

p
o

n
en

t

Sa
fe

ty
 C

ri
ti

ca
l F

ai
lu

re
 

R
at

e/
FI

T

Fa
ilu

re
 r

at
e 

d
is

tr
ib

u
ti

o
n

, %

Sa
fe

ty
 C

ri
ti

ca
l F

ai
lu

re
 r

at
e

Fa
ilu

re
 m

o
d

e 
th

at
 c

an
 

vi
o

la
te

 s
af

et
y 

go
al

 w
/o

 

sa
fe

ty
 m

ec
h

an
is

m
s?

Sa
fe

ty
 m

ec
h

an
is

m
s 

al
lo

w
in

g 
to

 p
re

ve
n

t 

vi
o

la
ti

o
n

 o
f 

Sa
fe

ty
 G

o
al

Fa
ilu

re
 m

o
d

e 
co

ve
ra

ge
 w

rt
 

vi
o

la
ti

o
n

 o
f 

Sa
fe

ty
 G

o
al

, %

R
es

id
u

al
 o

r 
Si

n
gl

e 
P

o
in

t 

fa
ilu

re
 r

at
e/

FI
T

Connections

HVPOS_AI_1V0 Connection 2)C1 0.0353 y 0.0353 45% 0.0159 y PCc_Ref_WIN 72.00% 0.0045

HVNEG_AI_1V0 Connection 2)C2 0.0353 y 0.0353 45% 0.0159 y PCc_Ref_WIN 72.00% 0.0045

Isolation Monitor Inputs

HVPOS_AI_1V0 Measurement 2)M1 4.9000 y 4.9000 45% 2.2050 y PCc_Ref_WIN 0.00% 2.2050

HVNEG_AI_1V0 Measurement 2)M2 4.9000 Y 4.9000 45% 2.2050 y PCc_Ref_WIN 0.00% 2.2050

CHASSIS_AI_1V0 Connection 1)C3 0.0353 Y 0.0353 45% 0.0159 y 0.00% 0.0159

Isolation Monitor Internal

STR_ISOL_HV_1V0

STR_ISOL_RES_DP_1KR0
Transducer 2)T1 14.3674 Y 14.3674 45% 6.4653 y PCc_REF_WINDOW 0.00% 6.4653

STR_ISOL_HV_1V0 Parameter 1)P1 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.02% 0.1197

Power Supply General - PSU 1)PSU1 12.0000 Y 12.0000 45% 5.4000 y PCc_PSU_MON 98.51% 0.0807

Isolation Monitor Outputs

STR_ISOL_HV_DP_1V0_TX Data 2)D1 3.9991 Y 3.9991 45% 1.7996 y PCc_REF_WINDOW 95.89% 0.0740

String Inputs

STR_ISOL_HV_DP_1V0_TX Data 2)D4 3.9991 Y 3.9991 45% 1.7996 y PCc_REF_WINDOW 95.89% 0.0740

String Internal

STR_ISOL_HV_DP_1V0_TX Parameter 2)P6 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.02% 0.1197

Power Supply General - PSU 1)PSU2 12.0000 Y 12.0000 45% 5.4000 y PCc_PSU_MON 98.51% 0.0807

Total FR (FIT) 74.115 74.115 11.449

Single Point Fault Metric 84.6%
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Table 44: Measure Isolation Resistance Architecture 2 LFM Calculation 

 

As expected the SPFM has increased, now achieving 84.6% (Table 43) compared to 79.9% (candidate 

architecture 1). A slight increase in LFM from 87.5% (architecture 1) to 88.2% (Table 44) has also 

been achieved. Due to the SFM being less than 90%, ASIL B can still not be achieved and the 

dominant area of concern (due to the PCc claim of 0%) is the isolation measurement and transducer. 

4.2.5.11 Measure Isolation Resistance – Architecture 3 

To provide evidence that the measurement system is working a self-test system was added. This 

switches a resistance between one side of the HV Bus voltage (HV Positive or HV Negative) and 

chassis. In this example HV Negative (HVNEG_AI_1V0) has been chosen. The self-test resistance is 

chosen so that it can reduce the isolation resistance (as it is effectively in parallel to the existence HV 

Bus – chassis resistance). The Isolation Tester can then check that the measured resistance is that of 

the previously measured HV Bus to chassis resistance in parallel with the known self-test resistance 

value. The updated system diagram is shown in Figure 14 . 
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HVNEG_AI_1V0 Connection 2)C2 0.0353 y 0.0353 0.0114 Y SC_EXT_REF 90% 0.0011

Isolation Monitor Inputs

HVPOS_AI_1V0 Measurement 2)M1 4.9000 y 4.9000 0.0000 Y SC_EXT_REF 90% 0.0000

HVNEG_AI_1V0 Measurement 2)M2 4.9000 Y 4.9000 0.0000 Y SC_EXT_REF 90% 0.0000

CHASSIS_AI_1V0 Connection 1)C3 0.0353 Y 0.0353 0.0000 Y SC_EXT_REF 90% 0.0000

Isolation Monitor Internal

STR_ISOL_HV_1V0

STR_ISOL_RES_DP_1KR0
Transducer 2)T1 14.3674 Y 14.3674 0.0000 Y SC_EXT_REF 90% 0.0000

STR_ISOL_HV_1V0 Parameter 1)P1 8.9218 Y 8.9218 3.8951 Y Wdog 60% 1.5580

Power Supply General - PSU 1)PSU1 12.0000 Y 12.0000 5.3193 Y Wdog 60% 2.1277

Isolation Monitor Outputs

STR_ISOL_HV_DP_1V0_TX Data 2)D1 3.9991 Y 3.9991 1.7256

String Inputs

STR_ISOL_HV_DP_1V0_TX Data 2)D4 3.9991 Y 3.9991 1.7256

String Internal

STR_ISOL_HV_DP_1V0_TX Parameter 2)P6 8.9218 Y 8.9218 3.8951 Y Wdog 60% 1.5580

Power Supply General - PSU 1)PSU2 12.0000 Y 12.0000 5.3193 Y Wdog 60% 2.1277

Total FR (FIT) 74.115 74.115 7.374

Latent Fault metric 88.2%
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Figure 14: Measure Isolation Resistance – System Diagram - Architecture 3 
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4.2.5.12 Measure Isolation Resistance – Architecture 3 Classified Signals 

To implement the PCc a new signal is added for this candidate architecture diagram (Figure 14). New 

signals are discussed in this section. The relevant PCcs that are applied are discussed in subsequent 

sections. 

4.2.5.12.1 Isolation Tester Internal Signals 

4.2.5.12.1.1.1 P9, O1, A1 - TEST_RES_EN_DHO_V 

A high side output (O1) that switches a test resistor between one side of the HV bus and the chassis 

connection based on a demand from the microcontroller (P9). This would be via a relay (A1). 

4.2.5.13 Measure Isolation Resistance – Architecture 3 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.2.5.14. Table 45 

acts as a cross reference to the appendices for the associated diagnostic coverage calculations which 

also detail each PCc used in the calculation. 

Table 45: MIR Architecture 3 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix D3 – MIR – Architecture 3 DC% Claims 

3)A1 Table 110: MIR – Architecture 3 Actuator 1 

3)C1 Table 111: MIR – Architecture 3 Connection 1 

3)C2 Refer to 3)C1 as similar techniques used 

3)C3 Table 112: MIR – Architecture 3 Connection 3 

3)D7 Table 113: MIR – Architecture 3 Data 7 (subset 1) 

Table 114: MIR – Architecture 3 Data 7 (subset 2) 

3)D8 Refer to 3)D7 as similar techniques used 

3)M1 Table 115: MIR – Architecture 3 Measurement 1 

3)M2 Refer to 3)M1 as similar techniques used 

3)O1 Table 116: MIR – Architecture 3 Output 1 

3)T1 Table 117: MIR – Architecture 3 Transducer 1 

 

4.2.5.13.1 Element 3)A1 

A new element added to this architecture for the self-test PCc. The actuator itself is effectively 

diagnosed by the self-test (4.2.5.14.1.1) and so 73.6% coverage is claimed in this architecture. 
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4.2.5.13.2 Element 3)C1, 3)C2 

The self-test (4.2.5.14.1.1) significantly increases the diagnostic coverage when used in combination 

with the reference window achieving a claim of 99%. 

4.2.5.13.3 Element 3)C3 

The self-test (4.2.5.14.1.1) improves the chassis connection diagnostics by 72% because the self-test 

resistance provides a new path to the chassis connection. 

4.2.5.13.4 Element 3)D7, 3)D8 

New elements added to the architecture in order to perform the self-test (4.2.5.14.1.1) which as well 

as being covered by the standard data diagnostics (4.2.5.4.1) are to some extent also covered by the 

reference window (4.2.5.9.1.1). 

4.2.5.13.5 Element 3)M1, 3)M3 

An increase of 93.5% is achieved by the addition of the self-test (4.2.5.14.1.1) on the measurements 

as the measurement must now be accurate within a prescribed time period in order to pass the self-

test. 

4.2.5.13.6 Element 3)O1 

This output (used for the self-test) is covered by the self-test (4.2.5.14.1.1) as any failure will be 

detected by the change in measured resistance when either the resistor is switched into circuit 

(reduction in value) or out of circuit (increase in value). 

4.2.5.13.7 Element 3)T1 

Now that the actual measured value can be verified (4.2.5.14.1.1) the claim increases by 85% as all 

failure modes for medium coverage are now diagnosed. 

4.2.5.14 Measure Isolation Resistance – Architecture 3 Plausibility Cross checks 

4.2.5.14.1 Isolation Tester PCCs 

4.2.5.14.1.1 PCc_ISOT_RES_ST – Isolation Resistance Self-Test 

At a predefined rate the PCc will measure the current resistance value, switch in the test resistance 

and then measure the new resistance. If the measured value equates to the parallel combination of 

the isolation resistance prior to the test in parallel with the self-test resistor value, then the test has 

passed and the measured value remains plausible. A significant aspect of this is that the 

measurement must be seen to change when the resistance is switched into circuit and out of circuit; 

it is not only checking the parallel combination of resistance. 
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4.2.5.15 Measure Isolation Resistance – Architecture 3 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 46 and the LFM calculation shown in Table 47. 

Table 46: Measure Isolation Resistance Architecture 3 SPFM Calculation 
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HVNEG_AI_1V0 Connection 3)C2 0.0353 y 0.0353 45% 0.0159 y PCc_Ref_WIN 99.00% 0.0002

Isolation Monitor Inputs

HVPOS_AI_1V0 Measurement 3)M1 4.9000 y 4.9000 45% 2.2050 y PCc_Ref_WIN. PCc_ISOT_RES_ST 93.50% 0.1434

HVNEG_AI_1V0 Measurement 3)M2 4.9000 Y 4.9000 45% 2.2050 y PCc_Ref_WIN. PCc_ISOT_RES_ST 93.50% 0.1434

CHASSIS_AI_1V0 Connection 3)C3 0.0353 Y 0.0353 45% 0.0159 y PCc_ISOT_RES_ST 72.00% 0.0045

Isolation Monitor Internal x

STR_ISOL_HV_1V0

STR_ISOL_RES_DP_1KR0
Transducer 3)T1 14.3674 Y 14.3674 45% 6.4653 y

PCc_REF_WINDOW
84.98% 0.9709

STR_ISOL_HV_1V0 Parameter 1)P1 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97% 0.1197
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Power Supply General - PSU 1)PSU1 12.0000 Y 12.0000 45% 5.4000 y
PCc_PSU_MON
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Isolation Monitor Outputs

TEST_RES_EN Output 3)O1 3.0000 Y 3.0000 45% 1.3500 y PCc_EXT_RES_ST 84% 0.2205
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STR_ISOL_HV_DP_1V0_TX Data 2)D1 3.9991 Y 3.9991 45% 1.7996 y
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95.89% 0.0740

TEST_RES_EN Actuator 3)A1 15.0000 Y 15.0000 45% 6.7500 y
PCc_EXT_RES_ST

74% 1.7760

String Inputs

STR_ISOL_HV_DP_1V0_TX Data 2)D4 3.9991 Y 3.9991 45% 1.7996 y
PCc_REF_WINDOW

95.89% 0.0740

String Internal

STR_ISOL_HV_DP_1V0_TX Parameter 2)P6 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.02% 0.1197

Power Supply General - PSU 1)PSU2 12.0000 Y 12.0000 45% 5.4000 y
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Total FR (FIT) 101.037 101.037 3.919

Single Point Fault Metric 96.1%
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Table 47: Measure Isolation Resistance Architecture 3 LFM Calculation 

 

A significant jump of 11.6% to 96.1% is achieved for the SPFM (Table 46). The LFM has also improved 

slightly. These values mean that the architecture now satisfies ASIL B for the architectural metric 

requirements. The architecture is now close to satisfying ASIL C architectural metrics, an 

improvement of 0.9% is required, and this can be achieved even if the LFM was reduced as this is 

well within the target area for ASIL C (>80%). 

4.2.5.16 Measure Isolation Resistance – Architecture 4 

One idea is to move PCc_ISOT_RES_ST to the string controller to give it a level of independence. This 

offers some advantages: 

1) The self-test can now be operated asynchronously to the measurement in the Isolation 

Tester. 
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HVPOS_AI_1V0 Connection 3)C1 0.0353 y 0.0353 0.0157 Y SC_EXT_REF 90% 0.0016

HVNEG_AI_1V0 Connection 3)C2 0.0353 y 0.0353 0.0157 Y SC_EXT_REF 90% 0.0016

Isolation Monitor Inputs

HVPOS_AI_1V0 Measurement 3)M1 4.9000 y 4.9000 2.0616 Y SC_EXT_REF 90% 0.2062

HVNEG_AI_1V0 Measurement 3)M2 4.9000 Y 4.9000 2.0616 Y SC_EXT_REF 90% 0.2062

CHASSIS_AI_1V0 Connection 3)C3 0.0353 Y 0.0353 0.0114 Y SC_EXT_REF 90% 0.0011

Isolation Monitor Internal

STR_ISOL_HV_1V0

STR_ISOL_RES_DP_1KR0
Transducer 3)T1 14.3674 Y 14.3674 5.4944 Y SC_EXT_REF 90% 0.5494

STR_ISOL_HV_1V0 Parameter 1)P1 8.9218 Y 8.9218 3.8951 Y Wdog 60% 1.5580

STR_ISOL_RES_DP_1V0 Parameter 2)P3 8.9218 Y 8.9218 3.9040 Y Wdog 60% 1.5616
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Y Wdog 60%
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Isolation Monitor Outputs

TEST_RES_EN Output 3)O1 3.0000 Y 3.0000 1.1295

Isolation Monitor Outputs

STR_ISOL_HV_DP_1V0_TX Data 2)D1 3.9991 Y 3.9991 1.7256

TEST_RES_EN Actuator 3)A1 15.0000 Y 15.0000 4.9740

String Inputs

STR_ISOL_HV_DP_1V0_TX Data 2)D4 3.9991 Y 3.9991 1.7256

String Internal

STR_ISOL_HV_DP_1V0_TX Parameter 2)P6 8.9218 Y 8.9218 3.8951 Y Wdog 60% 1.5580

Power Supply General - PSU 1)PSU2 12.0000 Y 12.0000 5.3193
Y Wdog 60%

2.1277

Total FR (FIT) 101.037 101.037 9.899

Latent Fault metric 89.8%
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2) The String Controller would know when it was requesting the self-test and would know to 

expect the drop in measured resistance (if the self-test functioned correctly). 

3) It is likely to reduce latent faults (in that there was some independence in the self-test). 

4) It offers a route to a level of ASIL decomposition (BSI, 2011).  

It does, however, have the disadvantage that to perform Isolation Resistance monitoring two 

controllers are required. This was not thought a significant disadvantage as isolation monitoring is 

only required for systems operating at a voltage greater than 60Vdc (UN ECE Reg 100, 2013) and this 

typically requires and additional controller for the battery management / string control. 

The new architecture is shown in Figure 15. 
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Figure 15: Measure Isolation Resistance – System Diagram - Architecture 4 
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4.2.5.17 Measure Isolation Resistance – Architecture 4 Classified Signals 

To implement the PCc in another controller requires some of the function blocks and connection to 

move from the Isolation Tester to the String Controller. Generally, the element types and signal 

names have remained the same and so are not repeated in this section and effectively only one new 

signal is added (discussed below). The relevant PCcs that are applied are discussed in subsequent 

sections. 

4.2.5.17.1 Isolation Tester Internal Signals 

4.2.5.17.1.1 C4 - CHASSIS_AI_1V0 

One improvement is to add a separate chassis connection. This has the advantage that it is proving 

both the chassis connection to the string controller and the chassis connection to the isolation 

tester, rather than the self-test being performed through another ground route such as the ground 

connection of the 12V power supply. 

4.2.5.17.1.2 P10 - TEST_MEAS_FAILED_DP 

To differentiate the self-test failure, TEST_MEAS_FAILED_DP is added rather than using a repeat of 

the STR_ISOL_STATUS_DP signal as used in the Isolation Tester. This would be set as before when 

the isolation measurement failed to correctly report the self-test / HV – chassis parallel resistance 

correctly.  

4.2.5.18 Measure Isolation Resistance – Architecture 4 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section4.2.5.19. Table 48 

acts as a cross reference to the appendices for the associated diagnostic coverage calculations which 

also detail each PCc used in the calculation. 

Table 48: MIR Architecture 4 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix D4 – MIR – Architecture 4 DC% Claims 

4)C4 Table 118: MIR – Architecture 4 Connection 4 

 

4.2.5.18.1 Element 4)C4 

Moving the self-test (4.2.5.19.1.1) to an external system immediately offers high coverage for this 

connection as it can be independently verified as being correct. 
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4.2.5.19 Measure Isolation Resistance – Architecture 4 Plausibility Cross checks 

4.2.5.19.1 Isolation Tester PCCs 

4.2.5.19.1.1 PCc_EXT_RES_ST– External Isolation Resistance Self-Test 

This is identical to PCc_ISOT_RES_ST discussed in 4.2.5.14.1.1, however it is now external to the 

Isolation Tester. 

4.2.5.20 Measure Isolation Resistance – Architecture 4 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 49 and the LFM calculation shown in Table 50. 

 

Table 49: Measure Isolation Resistance Architecture 4 SPFM Calculation 
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Connections

HVPOS_AI_1V0 Connection 3)C1 0.0353 y 0.0353 45% 0.0159 y PCc_Ref_WIN 99% 0.0002

HVNEG_AI_1V0 Connection 3)C2 0.0353 y 0.0353 45% 0.0159 y PCc_Ref_WIN 99% 0.0002

Isolation Monitor Inputs

HVPOS_AI_1V0 Measurement 3)M1 4.9000 y 4.9000 45% 2.2050 y PCc_Ref_WIN. PCc_ISOT_RES_ST 93% 0.1434

HVNEG_AI_1V0 Measurement 3)M2 4.9000 Y 4.9000 45% 2.2050 y PCc_Ref_WIN. PCc_ISOT_RES_ST 93% 0.1434

CHASSIS_AI_1V0 Connection 3)C3 0.0353 Y 0.0353 45% 0.0159 y PCc_ISOT_RES_ST 72% 0.0045

Isolation Monitor Internal

STR_ISOL_HV_1V0

STR_ISOL_RES_DP_1KR0
Transducer 3)T1 14.3674 Y 14.3674 45% 6.4653 y

PCc_REF_WINDOW
85% 0.9709

STR_ISOL_HV_1V0 Parameter 1)P1 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.02% 0.1197

STR_ISOL_RES_DP_1V0 Parameter 2)P3 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.24% 0.1108

Power Supply General - PSU 1)PSU1 12.0000 Y 12.0000 45% 5.4000 y
PCc_PSU_MON

98.51% 0.0807

Isolation Monitor Outputs

STR_ISOL_HV_DP_1V0_TX Data 2)D1 3.9991 Y 3.9991 45% 1.7996 y
PCc_REF_WINDOW

95.89% 0.0740

String Inputs

STR_ISOL_HV_DP_1V0_TX Data 2)D4 3.9991 Y 3.9991 45% 1.7996 y
PCc_REF_WINDOW

95.89% 0.0740

CHASSIS_AI_1V0 Connection 4)C4 0.0353 Y 0.0353 45% 0.0159 y PCc_EXT_RES_ST 99% 0.0002

String Internal

STR_ISOL_HV_DP_1V0_TX Parameter 2)P6 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.02% 0.1197

TEST_RES_EN Output 3)O1 3.0000 Y 3.0000 45% 1.3500 y PCc_EXT_RES_ST 84% 0.2205

Power Supply General - PSU 1)PSU2 12.0000 Y 12.0000 45% 5.4000 y
PCc_PSU_MON

98.51% 0.0807

String Outputs

TEST_RES_EN Actuator 3)A1 15.0000 Y 15.0000 45% 6.7500 y
PCc_EXT_RES_ST

74% 1.7760

Total FR (FIT) 101.072 101.072 3.919

Single Point Fault Metric 96.1%
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Table 50: Measure Isolation Resistance Architecture 4 LFM Calculation 

 

This gives no change in the architectural metrics, even though a slight increase was initially 

expected. As the PCc analysis is using effectively the same lumped models and just moving them 

between controllers then the only remaining difference is the addition of the chassis connection. 

The failure rate of this (0.0353 FIT) is very small when compared to the overall safety critical 

failure rate (101 FIT) which explains why the same metrics were achieved. 

One remaining area for possible improvement is to monitor the timing of the self-test function 

to ensure that it is being run at the correct rate. This is discussed in Architecture 5 (4.2.5.21).  
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Power Supply General - PSU 1)PSU1 12.0000 Y 12.0000 5.3193
Y Wdog 60%

2.1277

Isolation Monitor Outputs

STR_ISOL_HV_DP_1V0_TX Data 2)D1 3.9991 Y 3.9991 1.7256

String Inputs

STR_ISOL_HV_DP_1V0_TX Data 2)D4 3.9991 Y 3.9991 1.7256

CHASSIS_AI_1V0 Connection 4)C4 0.0353 Y 0.0353 0.0157

String Internal

STR_ISOL_HV_DP_1V0_TX Parameter 2)P6 8.9218 Y 8.9218 3.8951 Y Wdog 60% 1.5580

TEST_RES_EN Output 3)O1 3.0000 Y 3.0000 1.1295

Power Supply General - PSU 1)PSU2 12.0000 Y 12.0000 5.3193
Y Wdog 60%

2.1277

String Outputs

TEST_RES_EN Actuator 3)A1 15.0000 Y 15.0000 4.9740

Total FR (FIT) 101.072 101.072 9.899

Latent Fault metric 89.8%
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4.2.5.21 Measure Isolation Resistance – Architecture 5 

The aim of architecture 5 is to ensure correct operation of the self-test function timing and increase 

the architectural metrics to achieve ASIL C targets. 

The self-test is provided with an additional calibrated time window that is independently monitored 

to ensure that the isolation resistance dips to the warning level and the internal warning (based on 

self-test) flag is set within the time window. This effectively proves that the self-test and warning 

detection functions are all working. The new architecture is shown in Figure 16. 
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Figure 16: Measure Isolation Resistance – System Diagram - Architecture 5 
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4.2.5.22 Measure Isolation Resistance – Architecture 5 Classified Signals 

4.2.5.22.1 Isolation Tester Internal Signals 

4.2.5.22.1.1 P11 – CAL_TIME_S 

The calibration time. This is an array of parameters to cover minimum time and maximum time for 

the self-test. It will also need times from start up as the first isolation measurement time is normally 

longer. 

4.2.5.22.1.2 P10 - TEST_MEAS_FAILED_DP 

To differentiate the self-test failure, TEST_MEAS_FAILED_DP is added rather than using a repeat of 

the STR_ISOL_STATUS_DP signal as used in the Isolation Tester. This would be set as before when 

the isolation measurement failed to correctly report the self-test / HV – chassis parallel resistance 

correctly.  

4.2.5.23 Measure Isolation Resistance – Architecture 5 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.2.5.24. Table 51 

acts as a cross reference to the appendices for the associated diagnostic coverage calculations which 

also detail each PCc used in the calculation. 

Table 51: MIR Architecture 5 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix D5 – MIR – Architecture 5 DC% Claims 

5)M1 Table 119: MIR – Architecture 5 Measurement 1 

5)M2 Refer to 5)M1 as similar techniques used 

5)T1 Table 120: MIR – Architecture 5 Transducer 1 

 

4.2.5.23.1 Element 5)M1, 5)M2 

An improvement of nearly 4% is achieved by having independent timing on the self-test function 

(4.2.5.24.1.1). 

4.2.5.23.2 Element 5)T1 

A 14% increase in coverage is provided due to the independence between the self-test (4.2.5.24.1.1) 

monitoring functions and their associated timing. 
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4.2.5.24 Measure Isolation Resistance – Architecture 5 Plausibility Cross checks 

4.2.5.24.1 Isolation Tester PCCs 

4.2.5.24.1.1 PCc_EXT_RES_ST_TIMED– External Isolation Resistance Self-Test Timed 

This is based on PCc_ISOT_RES_ST discussed in 4.2.5.14.1.1, however it now has a method to cross 

check the timing between the String Controller and the Isolation Tester. 

4.2.5.25 Measure Isolation Resistance – Architecture 5 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 52 and the LFM calculation shown in Table 53. 

 

Table 52: Measure Isolation Resistance Architecture 5 SPFM Calculation 
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te

/F
IT

Connections

HVPOS_AI_1V0 Connection 3)C1 0.0353 y 0.0353 45% 0.0159 y PCc_Ref_WIN 99.00% 0.0002

HVNEG_AI_1V0 Connection 3)C2 0.0353 y 0.0353 45% 0.0159 y PCc_Ref_WIN 99.00% 0.0002

Isolation Monitor Inputs

HVPOS_AI_1V0 Measurement 5)M1 4.9000 y 4.9000 45% 2.2050 y
PCc_Ref_WIN,

PCc_EXT_RES_ST_TIMED
97.32% 0.0592

HVNEG_AI_1V0 Measurement 5)M2 4.9000 Y 4.9000 45% 2.2050 y
PCc_Ref_WIN,

PCc_EXT_RES_ST_TIMED
97.32% 0.0592

CHASSIS_AI_1V0 Connection 3)C3 0.0353 Y 0.0353 45% 0.0159 y PCc_ISOT_RES_ST 72.00% 0.0045

Isolation Monitor Internal x

STR_ISOL_HV_1V0

STR_ISOL_RES_DP_1KR0
Transducer 5)T1 14.3674 Y 14.3674 45% 6.4653 y PCc_REF_WIN,

Cc_EXT_RES_ST_TIMED
98.33% 0.1079

STR_ISOL_HV_1V0 Parameter 1)P1 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.02% 0.1197

STR_ISOL_RES_DP_1V0 Parameter 2)P3 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.24% 0.1108

Power Supply General - PSU 1)PSU1 12.0000 Y 12.0000 45% 5.4000 y
PCc_PSU_MON

98.51% 0.0807

Isolation Monitor Outputs

STR_ISOL_HV_DP_1V0_TX Data 2)D1 3.9991 Y 3.9991 45% 1.7996 y
PCc_REF_WINDOW

95.89% 0.0740

String Inputs

STR_ISOL_HV_DP_1V0_TX Data 2)D4 3.9991 Y 3.9991 45% 1.7996 y
PCc_REF_WINDOW

95.89% 0.0740

CHASSIS_AI_1V0 Connection 4)C4 0.0353 Y 0.0353 45% 0.0159 y PCc_EXT_RES_ST 99% 0.0002

String Internal

STR_ISOL_HV_DP_1V0_TX Parameter 2)P6 8.9218 Y 8.9218 45% 4.0148 y PCc_PSU_MON 97.02% 0.1197

TEST_RES_EN Output 3)O1 3.0000 Y 3.0000 45% 1.3500 y PCc_EXT_RES_ST 84% 0.2205

Power Supply General - PSU 1)PSU2 12.0000 Y 12.0000 45% 5.4000 y
PCc_PSU_MON

98.51% 0.0807

String Outputs

TEST_RES_EN Actuator 3)A1 15.0000 Y 15.0000 45% 6.7500 y
PCc_EXT_RES_ST

74% 1.7760

Total FR (FIT) 101.072 101.072 2.887

Single Point Fault Metric 97.1%
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Table 53: Measure Isolation Resistance Architecture 5 LFM Calculation 

 

This candidate architecture now achieves ASIL C architectural metric targets. This makes use of 

ASIL decomposition (BSI, 2011) in that the overall safety goal of measuring and reporting 

isolation resistance is achieved in two systems. If a target of ASIL C was required from the 

HARA, then the probable route would be to treat the Isolation Tester as the lower ASIL and put 

the main safety mechanism (the self-test) in the string controller. It is likely that the string 

controller having overall responsibility for the Battery Management System would be of a 

higher ASIL which fits with the rules for decomposition: 

 ASIL C can be ASIL B(C) and ASIL A(C) 

With additional requirements as specified in section 4.4.7 in BS ISO 262626 part 9 (BSI, 2011), 

one of which is proof of independence which is achieved by this candidate architecture. 
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te
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IT

Connections

HVPOS_AI_1V0 Connection 3)C1 0.0353 y 0.0353 0.0157 Y SC_EXT_REF 90% 0.0016

HVNEG_AI_1V0 Connection 3)C2 0.0353 y 0.0353 0.0157 Y SC_EXT_REF 90% 0.0016

Isolation Monitor Inputs

HVPOS_AI_1V0 Measurement 5)M1 4.9000 y 4.9000 2.1458 Y SC_EXT_REF 90% 0.2146

HVNEG_AI_1V0 Measurement 5)M2 4.9000 Y 4.9000 2.1458 Y SC_EXT_REF 90% 0.2146

CHASSIS_AI_1V0 Connection 3)C3 0.0353 Y 0.0353 0.0114 Y SC_EXT_REF 90% 0.0011

Isolation Monitor Internal

STR_ISOL_HV_1V0

STR_ISOL_RES_DP_1KR0
Transducer 5)T1 14.3674 Y 14.3674 6.3575 Y SC_EXT_REF 90% 0.6357

STR_ISOL_HV_1V0 Parameter 1)P1 8.9218 Y 8.9218 3.8951 Y Wdog 60% 1.5580

STR_ISOL_RES_DP_1V0 Parameter 2)P3 8.9218 Y 8.9218 3.9040 Y Wdog 60% 1.5616

Power Supply General - PSU 1)PSU1 12.0000 Y 12.0000 5.3193
Y Wdog 60%

2.1277

Isolation Monitor Outputs

STR_ISOL_HV_DP_1V0_TX Data 2)D1 3.9991 Y 3.9991 1.7256

String Inputs

STR_ISOL_HV_DP_1V0_TX Data 2)D4 3.9991 Y 3.9991 1.7256

CHASSIS_AI_1V0 Connection 4)C4 0.0353 Y 0.0353 0.0157

String Internal

STR_ISOL_HV_DP_1V0_TX Parameter 2)P6 8.9218 Y 8.9218 3.8951 Y Wdog 60% 1.5580

TEST_RES_EN Output 3)O1 3.0000 Y 3.0000 1.1295

Power Supply General - PSU 1)PSU2 12.0000 Y 12.0000 5.3193
Y Wdog 60%

2.1277

String Outputs

TEST_RES_EN Actuator 3)A1 15.0000 Y 15.0000 4.9740

Total FR (FIT) 101.072 101.072 10.002

Latent Fault metric 89.8%
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4.2.5.26 Comparison against Full Architectural Metrics. 

To allow the PCc results to be compared, an Isolation Tester was designed in various stages (to 

match each proposed architecture) to allow the architectural metrics to be calculated for each 

candidate architecture. The PCcs were generated in more detail as defined for each of the elements 

and SPFM and LFM calculated. 

A number of architectures have been developed and each has a calculated SPFM and LFM value. To 

validate the accuracy of the results the only route is to perform the SPFM and LFM calculations on 

the final Isolation Measurement and Reporting System design. This is where considerable effort was 

required in the detailed design, gathering of failure rate data and failure mode data and analysing 

every safety critical failure mode for diagnostic coverage.  

The candidate architectures led to the final architecture (Architecture 5) that would be taken 

through to final design. However, to understand how well the predicted SPFM and LFM metrics 

matched the final results, a design needed to be completed that matched each of the five 

architectures. To simplify this process, all the data for the components for Architecture 5 was 

collected. This involved obtaining failure rate data for approximately 140 components. This was 

either obtained from the manufacturers directly or else calculated from reliability handbooks such as 

the Reliability Data handbook – Universal model for reliability prediction of electronics components, 

PCBs and equipment (BSI, 2004). This also gives a breakdown of failure modes and their associated 

failure mode percentages. 

With all the data available, an equivalent schematic was analysed (as per BS ISO 26262 part 5 (BSI, 

2011e) ) that provided the required functionality and diagnostics as detailed in each of the candidate 

architectures. This resulted in the final SPFM and LFM values for each of the candidate architectures 

1 to 5.  

This required a significant amount of effort and is one of the reasons why the PCc method has been 

developed. 

As the full analysis contains more than 400 component failure modes to be analysed, for brevity only 

the Architecture 5 calculations are included in the appendices. The full SPFM calculations for 

Architecture 5 are shown in Appendix D6 – MIR – SPFM Calculation – Architecture 5 and the full LFM 

calculations are shown in Appendix D7 – MIR –LFM Calculation – Architecture 5. 
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4.2.6 Results. 

The results are detailed below (Table 54). This shows the comparison between the SPFM and LFM 

values achieved for each candidate architecture using the PCc method against the full SPFM and LFM 

values calculated as per the standard (BSI, 2011e) for the final design implementation. 

Table 54: Measure Isolation Resistance Calculation Comparison 

 

As can be seen in each case the PCc results show a slightly lower prediction of the SPFM (maximum 

error of 2.96%) and LFM (maximum error of 4.78%) architectural metric percentages compared to 

that achieved by the final design. Apart from architecture 1 the trend is for the SPFM (Figure 17) and 

LFM (Figure 18) values to stay constant or increase as each architecture is developed which is as 

expected. The only discrepancy is in architecture 1 where the Full LFM percentage is relatively high 

(92.33%) compared to the PCc prediction (87.55%) The LFM is of lower importance in this case as the 

value is already within the range for ASIL C. 

SPFM LFM

PCC 79.86% 87.55%

Full 82.14% 92.33%

Error -2.27% -4.78%

PCC 84.55% 88.23%

Full 87.51% 89.85%

Error -2.96% -1.62%

PCC 96.12% 89.81%

Full 96.53% 90.98%

Error -0.41% -1.17%

PCC 96.12% 89.81%

Full 97.31% 91.64%

Error -1.19% -1.83%

PCC 97.14% 89.81%

Full 98.86% 91.82%

Error -1.72% -2.01%

Architecture 1

Architecture 2

Architecture 3

Architecture 4

Architecture 5
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Figure 17: SPFM Comparison for the Measure Isolation Resistance 

 

Figure 18: LFM Comparison for the Measure Isolation Resistance 

The most important aspect from the results is that, as the architecture is theoretically improved (by 

the designer adding diagnostic capability or moving diagnostics to provide independence) that the 

PCc prediction improves allowing a quantified assessment to be made and additional improvements 

suggested. The results also match that of the Full SPFM calculations i.e. improvements in the PCc 

calculations are validated by the final design calculations. 

The closeness of the results can be explained as follows: 
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1) The circuits used for the main function (excluding the diagnostics identified throughout 

the PCc allocation to the candidate architectures) were established and so data was 

available for the final design. This meant that the lumped models were based on a well-

defined selection of components with known failure rates and failure modes. 

2) The diagnostic coverage percentages used in the PCc checks were selected from the 

standards with defined maximum claims and suggested techniques. 

3) The techniques selected for the PCc were developed and used in the final design. 

4) The final design worked on the diagnostic techniques to the point that they fulfilled the 

predicted values used in the proposed PCc. 

5) The PCc method had defined an architecture that could be implemented in the final 

design and no significant changes were made between the proposed architecture at the 

concept level and that completed in the final circuit design. This shows an advantage of 

the method in that the proposed design can be utilised all the way through to 

production intent. 

The errors between the PCc and full values are considered acceptable and the above results gave the 

confidence to apply the method to a much more complicated system; the Battery Management 

System (4.3). 
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4.3 Battery Management System (BMS) 

4.3.1 Hazard Identification and HARA 

Prior to conducting the Hazard Analysis and Risk Assessment (HARA) (BSI, 2011c) the hazards 

applicable to the BMS were identified using a HAZOP – see Appendix B – Hazard Identification. The 

HARA has not been included in the Thesis as this is a large piece of work covering all the identified 

hazards considered in all applicable operational situations. The outcome of this work determined an 

ASIL C classification for overcharge / undercharge of the cells within the battery pack.  

4.3.2 Safety Goal Definition 

4.3.2.1 Aim - Maintain the cell voltages within their operating area 

Manufacturers provide varying levels of detail for their cells. This can take several formats (for 

example the AMP20M1HD-A cell from A123 Systems (A123 Systems Inc, 2011)) but generally in 

order to determine a voltage against temperature profile for a cell either the manufacturer has to be 

contacted through an NDA or else extensive testing has to be performed by the BMS supplier or a 

nominated third party. This varies with cell chemistry and to a certain extent what manufacturers 

are prepared to claim to satisfy warranty terms. 

The voltage operating area will have an upper and lower limit. 

The upper voltage limit would normally be of concern during two use cases: 

1) Battery charging when the vehicle is stationary, for example, the on-board or wall mounted 

(e.g. at home) low power charger or an external high-power charger (e.g. at a service 

station). 

2) Regenerative charging during a drive cycle where energy is recovered when the driver 

requires the vehicle to slow down during accelerator pedal lift off or braking. This tends to 

provide a higher current into the cells compared to normal charging, it can also be quite 

transient in nature due to the nature of the road and driving conditions. 

The lower voltage limit is normally of concern during discharge. In this case the vehicle considered 

only discharge during the drive use case. Additionally, the car can be used as part of the grid system 

for example to provide power to a house or to the grid system for load balancing. 

For the purposes of this example one safety goal has been considered to cover both over and under 

voltage conditions. 
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4.3.2.2 Safety Goal 

The safety goal is: 

Ensure the individual cell voltages cannot increase above the maximum operating voltage 

for a given temperature or decrease below the minimum operating voltage for a given 

temperature. 

Temperature has specifically been mentioned in the safety goal as the upper and lower voltage 

curves have a temperature related profile. However, in this analysis, the measured temperature is 

considered correct so that the analysis concentrates on the voltage measurement only. 

It is anticipated that the temperature would be analysed as a separate safety goal with an 

appropriate ASIL which would independently ensure the safety integrity of the temperature 

measurement. 

The work in this section goes on to develop the system required to satisfy the safety goal using the 

PCc method. The system is iteratively improved until the architectural metrics meet the required 

percentages for ASIL C. 

4.3.3 System Description 

In this example, a different approach has been taken to the Isolation tester (4.2). This demonstrates 

how the proposed method can be applied to a complete vehicle. This is how a Vehicle OEM may 

approach the analysis; ultimately, they are responsible for providing a complete safety case for the 

complete vehicle based on the individual analysis performed for each sub-system (Item as per the BS 

ISO 26262 definition (BSI, 2011a)). 

4.3.4 Sub-system Items 

Based on all the sub-system safety goals and known functional requirements a system description 

diagram can be created. Often, even at the concept stage, the major system components are known 

and the interfaces between these systems well defined. For example, one of the functions of the 

BMS is reporting battery operating states and control parameters to external systems. These signal 

interfaces would have specific requirements for each customer and so not discussed in detail in this 

Thesis; typical examples would be string / pack current, module / string / pack voltages, module / 

string / pack temperatures, and control parameters such as maximum discharge current and 

minimum discharge voltage, maximum regen current and maximum charge current etc. 

A similar approach is taken to the other sub-systems and a complete system derived as per the 

method discussed in3.5. 
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The author has found this to be an iterative approach and can be used to verify the system diagram 

against the Item Definition for each sub-system (being considered for functional safety purposes). 

For reference a basic Item Definition is included in Appendix A – Item Definition. Experience shows 

that the function descriptions and the interfaces between the functions and external sub-systems 

lead to a comprehensive but concise item definition. 

The overall system can be seen in Figure 19. It is important to show the complete system in terms of 

functional requirements (not just functional safety requirements). This allows better communication 

about the system and acts as the initial reference point for interdisciplinary discussion. The aim is to 

ensure a right first-time approach and this is achieved by availability of common information and a 

clear understanding of requirements. It also acts as an only source, as the conceptual design 

progresses (before significant resource is invested in detailed design) all disciples can maintain this 

diagram with effective communication to all stake holders so that the impact of any system 

functional requirements can be discussed, reviewed and agreed prior to implementation. 

There are several conventions used in battery systems. A suitable convention is discussed by Andrea 

(Andrea, 2010) who uses the following terms. Additional annotations have been included to aid the 

system description: 

1) Cell – a single cell in a system. Annotated as C’c’ where ‘c’ is the specific cell number. 

2) Block – one or more cells connected in parallel to increase the current capacity (i.e. the sum 

of the individual cell capacities). Annotated as B’b’ where ‘b’ is the specific block number. 

3) Battery – a series connection of more than one cell to increase output voltage (i.e. the sum 

of the series connected cells or blocks). This is often referred to as a module and is 

annotated as M’m’ where ‘m’ is the specific cell number. 

4) String – a series connection of batteries to generate a higher voltage (i.e. the sum of the 

individual batteries connected in series to form the string). Annotated as S’s’ where ‘s’ is the 

specific string number. 

5) Pack – a parallel connection of strings to increase the capacity of the pack (i.e. the sum of 

the parallel connected strings. Annotated as P’p’ where ‘p’ is the specific pack number. 

This convention is logical and suits all applications and so has been derived for use in this example. 
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Figure 19: Overall Battery Electric Vehicle System Diagram 
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4.3.5 System Analysis 

The next stage is to define which signals are safety critical for the safety goal under consideration 

(Figure 20). The critical signals related to the safety goal are highlighted in red in this diagram so that 

the engineer can see exactly which sub-systems have the capability to violate the safety goal. 
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Figure 20: Maintain OA – System Diagram with Safety Critical Signals  
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4.3.5.1 Conceptual Ideas. 

In its most basic form, the system (Figure 21) will have to implement the following functions in order 

to achieve the safety goal: 

1) Measure cell voltages. 

2) Measure cell temperatures. 

3) Compare the actual cell measurements against a reference table. 

4) Prevent further charge or discharge of the cell(s) if the operating limit is exceeded. 

Measurement 

channels
Compare

Contactor 

Control

Voltage (V)

Temperature (
O
C)

Discharge Load / 

Charge Source

 

Figure 21: Preliminary Concept 

As discussed earlier the cell temperatures are considered correct during the analysis of the cell 

voltages but the signal is shown as it cannot be ignored when considering violation of the safety goal 

at the vehicle level. 

All faults that can lead to either cell voltages increasing above or decreasing below their pre-defined 

operating voltage can lead to a violation of the safety goal must be considered when calculating the 

architectural metrics. 

At the concept stage this would be at the signal / interface level such as incorrect measurement i.e. 

determining a voltage is in range when it is out of range or at the control parameter level such as 

failure to decide to disconnect the cells from either the load (allowing further discharge) or the 

source (allowing further charge) when the voltage / temperature calibration profile requires that the 

cells must be disconnected. 

Various possible concept solutions exist which can be hardware based, software based or a 

combination of the two. Initial assumptions are that a combined system would offer better 

refinement and therefore an improved driver experience, as software limits can be imposed and the 

system performance gracefully degraded prior to an absolute disconnect which is likely to be the 

outcome in a hardware only based solution. 
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4.3.6 Candidate Selection 

As discussed in the proposed method, a candidate architecture is chosen that fulfils the functional 

requirements and the safety concept without significant emphasis on how the diagnostics will be 

achieved.  

The selection process for this example starts with a relatively simple software control based concept, 

then examines a different concept (hardware only) and then a combination of the both software 

control and hardware. 

4.3.6.1 Cell Voltage Operating Area – Architecture 1 

The architecture measures the cell voltages using an accurate Analogue Front End (AFE). Although 

the intention of the concept is not to get into specific detail often there are very restricted offerings 

for devices that meet the functional requirements, accuracy requirements and environmental 

requirements so in this case a specific device is selected for the concept which is an LTC6803 (Linear 

Technology, 2011). This has its own self-test functionality (PCc_6803_Self_Test) which is initiated 

from the battery microcontroller.  

The AFE allows voltage measurements (to the required accuracy of +/-5mV) to be compared against 

pre-determined maximum voltage and minimum voltage limits stored as calibration values in the 

microcontroller. This is considered a cross check (PCc_OA_Window) as it is used as part of the 

diagnostic capability to ensure correct cell voltage.  

If at any point in time, the PCc_6803_Self_Test or the PCc_OA_Window functions detect a failure in 

the system this results in the M’m’_TRIP_DP parameter being set which notifies the string 

microcontroller to open its contactor thus preventing any further increase in voltage due to an 

external charge source or discharge due to a connected load. As there can be multiple battery 

modules connected in series to form the string, B’b’ is used to indicate battery 1 (_B1_), battery 2 

(_B2_) etc. 

The architecture places a high degree of responsibility on the software for detecting voltages outside 

of the limits and shutting down the system.  

To perform the analysis more detail is required in terms on internal signals within the sub-system. 

This highlights an initial problem with the system description diagram (Figure 20) in that the 

M’m’_TRIP_DP signal is not present between the module microcontroller and the string 

microcontroller. 
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The candidate internal architecture, at the item level rather than the vehicle level, is fully developed 

as shown in Figure 22. It is considered a requirement that there is a route from the module 

microcontroller to the string microcontroller to trip the system whichever final architecture is 

adopted and this necessitates an update of the system diagram from that shown in Figure 20 to that 

shown in Figure 23. 

The method now allows us to perform the analysis on this system to determine the types of failure 

modes that can be detected and the amount of diagnostic coverage that can be achieved. This in 

turn allows the SPFM and LFM to be calculated for this candidate architecture. 
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Figure 22: Maintain OA - Concept Architecture Candidate 1 
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Figure 23: Maintain OA - Safety Critical Signals Update 1 
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4.3.6.2 Cell Voltage Operating Area - Architecture 1 Classified Signals 

To perform the analysis a number of signals are defined which are connected between the critical 

elements. For clarity, only signals for this candidate architecture diagram (Figure 22) are discussed in 

this section. The relevant PCcs that are applied are discussed in subsequent sections. 

The signals are described as they appear in the architecture diagram (Figure 22) from top left to 

bottom right. 

4.3.6.2.1 Cell 

4.3.6.2.1.1 C1 - C’c’_AI_0V001 

There is one voltage connection per cell. As the LTC6803 can be configured for many cells (up to a 

maximum of twelve) the final implementation can vary. For the benefit of this analysis and to 

assume the maximum failure rate associated with the device, all twelve channels of the LTC6803 are 

utilised. 

This signal is used for the AFE and hardware monitor. 

4.3.6.2.1.2 C2 - C’c’_AI_0V 

The 0V reference (i.e. is connected to the negative side of cell ‘C1’).  

This signal is used for the AFE and hardware monitor. 

4.3.6.2.2 SPI ADC Inputs 

4.3.6.2.2.1 M1 - C’c’_AI_0V001 

The cell voltage for each cell as received at the AFE for measurement.  

4.3.6.2.3 SPI ADC Internal 

4.3.6.2.3.1 T1 - VMEAS_AI_TX 

The internal logic of the AFE. Although the actual measurement is taken by ‘M1’ (4.3.6.2.2.1), the 

AFE is considered sufficiently complicated to be classed as a transducer as it is performing all of the 

scaling, ADC offset correction and data packaging etc.  

4.3.6.2.4 SPI ADC Outputs 

4.3.6.2.4.1 D1 - VMEAS_AI_TX 

The data transmitted by the AFE. Depending on the request from the cell / battery microcontroller, 

this data will contain the cell measurements (one per cell) and associated diagnostic information. 
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4.3.6.2.5 Module Management Inputs 

4.3.6.2.5.1 D2 - VMEAS_AI_TX 

The data for the measured voltage of each of the cells as received at the module management SPI 

data input buffer. 

4.3.6.2.6 Module Management Internals 

4.3.6.2.6.1 PSU1 - Power Supply 

The internal power supply for the module microcontroller and any other voltages required by the 

Module Management system, this would typically be for analogue references etc. 

4.3.6.2.6.2 P2 - C’c’_OA_0V001 

The internal parameter used as a limit of the cell voltage. As this is an operating window it would 

contain an upper and lower limit and these would be further modified by temperatures as the safe 

operating window is temperature dependent. 

4.3.6.2.6.3 P1 - C’c’_AI_0V001 

The internal parameter for the measure cell voltage. One parameter per cell (i.e. cell 1 to cell 12). 

4.3.6.2.6.4 P3 - C’c’_DIAG 

The internal parameter is used in the Module Management system to indicate the status of 

comparison of the cell voltages against the operating area window. It includes status information 

regarding each individual cell so that the actual cell that trips the module flag M’m’_OA_TRIP_DP 

(4.3.6.2.6.5) can be typically logged in the data logging system included in Module Management 

systems. 

4.3.6.2.6.5 P4 – M’m’_OA_TRIP_DP 

The trip status of the module which indicates that all of the cell voltages C’c’_AI_0V001 are with 

their operating windows C’c’_OA_0V001 or one or the cells has exceeded either the lower operating 

area window or the upper operating area window. 

4.3.6.2.7 Module Management Outputs 

4.3.6.2.7.1 D3 - M’m’_OA_TRIP_DP 

The signal M’m’_OA_TRIP_DP (described in 4.3.6.2.6.5) transmitted from the Module Management 

CAN Bus interface. 
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4.3.6.2.8 String Management Inputs 

4.3.6.2.8.1 D5 - M’m’_OA_TRIP_DP 

The signal M’m’_OA_TRIP_DP (see 4.3.6.2.6.5) received at the String Management CAN bus 

interface. 

4.3.6.2.9 String Management Internal 

4.3.6.2.9.1 PSU3- Power Supply 

The internal power supply for the String Management system. This includes the microcontroller 

power supply and any other voltages required by the String Management system, this would 

typically be for analogue references and CAN isolation to the modules (as the modules are not 

ground referenced to the chassis) whereas the string management logic would be chassis 

referenced. 

4.3.6.2.9.2 P8 – M’m’_OA_TRIP_DP 

The internal parameter M’m’_OA_TRIP_DP (see 4.3.6.2.6.5) used by the String Management 

application. 

4.3.6.2.9.3 P9 – M’m’_AI_0V1 

The internal parameter M’m’_AI_0V1 used by the String Management application (see equation 18). 

𝑴′𝒎′_𝑨𝑰_𝟎𝑽𝟏 =  ∑ 𝑪′𝒄′_𝑨𝑰_𝟎𝑽𝟎𝟎𝟏
′𝒄′=𝟏𝟐

′𝒄′=𝟏
 

Where ‘c’ is the number of cells and the maximum (12) for the LTC6803 is used in this 

example. 

 ( 18 ) 

4.3.6.2.9.4 P14 – S’s’_OA_TRIP_DP 

All of the module trips M’M’OA_TRIP_DP (see 4.3.6.2.6.5) are monitored and if any modules trip 

then the S’s’_OA_TRIP_DP parameter is set. 

4.3.6.2.10 String Management Outputs 

4.3.6.2.10.1 O1 - HVPOS1P_DHO_V 

The high side drive of the high voltage positive contactor. 

 

4.3.6.2.11 Coils 
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4.3.6.2.11.1 A1 - HVPOS1P_DHO_V 

The positive side of the high voltage positive contactor coil. 

4.3.6.3 Cell Voltage Operating Area - Architecture 1 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.3.6.4. Table 55 acts 

as a cross reference to the appendices for the associated diagnostic coverage calculations which also 

detail each PCc used in the calculation. 

Table 55: BMS Architecture 1 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix E1 – BMS – Architecture 1 DC% Claims  

1)A1 Table 121: BMS - Architecture 1 Actuator 1 

1)A2 Refer to 1)A1 as similar techniques used 

1)C1 Table 122: BMS - Architecture 1 Connection 1 

1)C2 Table 123: BMS - Architecture 1 Connection 2 

1)C3 Table 124: BMS - Architecture 1 Connection 3 

1)C4 Refer to 1)C3 as similar techniques used 

1)D1 Table 125: BMS - Architecture 1 Data 1 (subset 1) 

Table 126: BMS - Architecture 1 Data 1 (subset 2) 

1)D2 Refer to 1)D1 as similar techniques used 

1)D3 Refer to 1)D1 as similar techniques used 

1)D5 Refer to 1)D1 as similar techniques used 

1)M1 Table 127: BMS - Architecture 1 Measurement 1 

1)M2 Table 128: BMS - Architecture 1 Measurement 2 

1)M6 Refer to 1)M2 as similar techniques used 

1)O1 Table 129: BMS - Architecture 1 Output 1 

1)O2 Table 130: BMS - Architecture 1 Output 2 

1)P1 Table 131: BMS - Architecture 1 Parameter 1 (subset 1) 

Table 132: BMS - Architecture 1 Parameter 1 (subset 2) 

Table 133: BMS - Architecture 1 Parameter 1 (subset 3) 

1)P2 Refer to 1)P1 as similar techniques used 

1)P4 Refer to 1)P1 as similar techniques used 

1)P5 Refer to 1)P1 as similar techniques used 

1)P8 Refer to 1)P1 as similar techniques used 
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Element Diagnostic Coverage Calculation Table Reference in 

Appendix E1 – BMS – Architecture 1 DC% Claims  

1)P14 Refer to 1)P1 as similar techniques used 

1)PSU1 Table 134: BMS - Architecture 1 Power Supply Unit 1 

1)PSU2 Refer to 1)PSU1 as similar techniques used 

1)PSU3 Refer to 1)PSU1 as similar techniques used 

1)T1 Table 135: BMS - Architecture 1 Transducer 1 

4.3.6.3.1 Element ‘1)A1’, 1)A2 

Diagnostic coverage is limited to a basic PCC which looks at the power supply (PCc_PSU_Mon 

4.2.5.4.4). As there are a number of failure modes not covered that are required for Low diagnostic 

coverage the PCc claim is reduced to 0.  

4.3.6.3.2 Element 1)C1, 1)C2 

Initially diagnostics in architecture 1 are limited to the analogue front end internal self-tests - 

PCc_6803_Self_test (4.3.6.4.2) that can be initiated from the microcontroller. 

4.3.6.3.3 Element 1)C3, 1)C4 

This is used purely for a diagnostic input in later architectures but they are included here as they 

have no change in diagnostic coverage through any of the architecture candidates.  

4.3.6.3.4 Element 1)D1, 1)D2, 1)D3, 1)D5 

PCcs are covered by the standard Data checks (4.2.5.4.1). 

4.3.6.3.5 Element 1)M1 

Two PCcs are used PCc_6803_Self_Test (4.3.6.4.2) and PCc_OA_Window (4.3.6.4.1) for diagnostic 

purposes offering low diagnostic coverage. 

4.3.6.3.6 Element 1)M2 

Measurement 2 is used purely for a diagnostic input in later architectures but is included here as it 

has no change in diagnostic coverage through any of the architecture candidates.  

4.3.6.3.7 Element 1)M6 

Measurement 6 is used purely for a diagnostic input in later architectures but is included here as it 

has no change in diagnostic coverage through any of the architecture candidates.  

4.3.6.3.8 Element 1)O1, 1)O2 

For the early candidate architectures there are limited diagnostics on the high side driver outputs 

namely PCc_PSU_Mon (4.2.5.4.4).  
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4.3.6.3.9 Element 1)P1, 1)P2, 1)P4, 1)P5, 1)P8, 1)P14 

Generally, all parameters have similar diagnostics. These vary slightly between those for parameters 

stored in flash memory and those stored in Random Access memory (RAM). They are covered in 

detail in 4.2.5.4.3. 

4.3.6.3.10 Element 1)PSU1, 1)PSU2, 1)PSU3 

The power supplies have the same PCcs  - PCc_PSU_Mon (4.2.5.4.4) applied to them. 

4.3.6.3.11 Element 1)T1 

A number of PCcs are used – PCc_OA_Window (4.3.6.4.1), PCc_6803_Self_Test (4.3.6.4.2) and 

PCc_PSU_Mon (4.2.5.4.4). 

4.3.6.4 Cell Voltage Operating Area - Architecture 1 Plausibility Cross-checks 

4.3.6.4.1 PCc_OA_Window 

Cells are monitored to be within the specified Operating Area (OA) Window. If individual cell 

voltages exceed the OA window (defined as an upper and lower voltage limit for a given 

temperature) for a calibrated time then the software will attempt to reduce current into / out of the 

system via a maximum set point signal back to the vehicle controller to prevent continued charge or 

discharge. If this set point demand is not obeyed, the software will normally allow operation to a 

wider operating window (with a warning to the driver) before ultimately opening the contactors 

within a specified time. This will prevent the vehicle from being charged or discharged until a 

suitable reset is actioned. This may be an ignition cycle which then forces a limp home mode or in 

extreme circumstances a service technician may be required to perform a restart of the vehicle in a 

tightly controlled environment. 

4.3.6.4.2 PCc_6803_Self_Test 

The linear device (Linear Technology, 2011) used as the AFE can perform a number of self-tests. 

These are not performed automatically; rather they are triggered by individual test requests by the 

microcontroller over the Serial Peripheral Interface (SPI) communications port which connects the 

microcontroller to the AFE. The integrity of the diagnostic coverage is determined by the number 

and type of tests performed and their repetition rate. Generally, the software / hardware engineer 

would decide on the test requirements and determine a method to interleave the tests between the 

normal cell measurement commands. This is one case where the PCc is determined by a specific 

device and cannot be generalised. The tests are selected to cover the techniques required by BS ISO 

26262 and given the generic classification PCc_6803_Self_Test. 
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This is considered acceptable in the approach, as the functional requirements will normally dictate a 

route which in turn limits the choice of device. If several devices are available that can fulfil the 

functional requirements then many different candidate architectures can be generated using each 

device in turn which uses representative diagnostic coverage values for each individual device. 

In fact, this is another demonstration of where the method allows the architecture to be evaluated 

early in the project. It may lead directly to a decision as to which analogue front end is to be used in 

the design based on the architectural metrics demonstrated at the concept stage. 

4.3.6.5 Cell Voltage Operating Area – Architecture 1 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 56 and the LFM calculation shown in Table 57.  
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Table 56: Maintain OA Architecture 1 SPFM Calculation 
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Cell Connections

C’c’_AI_0V001 Connection 1)C1 0.6 Y 0.6 45% Y PCC 6803 Self test 42.00% 0.1566

C’c’_AI_0V Connection 1)C2 0.05 Y 0.05 45% Y PCC 6803 Self test 72.00% 0.0063

HW Monitor

C’c’_AI_0V001 Measurement 2)M3 24 0 45%  PCc6801_Self_-Test

C’c’_AI_0V001 Transducer 2)T3 25 0 45%
6801 Internal functionality, Don't 

claim 5kHz as not independently 

proved to be periodic, PCc_PSU_Mon

SPI ADC Inputs

C’c’_AI_0V001 Measurement 1)M1 102 Y 102 45% Y OA Window, PCC 6803 Self Test 58.80% 18.9108

SPI ADC Internal

VMEAS_AI_TX Transducer 1)T1 50 Y 50 45% Y 6803 Self Test, OA Window 97.74% 0.50900625

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 45% Y
PCc_Data_Checksum,  Individual poll 

and response timing
90.79% 0.124308

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 45% Y
PCc_Data_Checksum,  Individual poll 

and response timing
90.79% 0.124308

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 45% Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test

94.08% 0.119930625

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 45% Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test, CRC on CAL Tables

94.37% 0.113972063

Power Supply General - PSU 1)PSU1 48 Y 48 45% Y PCc_PSU_Mon 98.51% 0.32292

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 6 Y 6 45% Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.10719

M’m’_TRIP_DP Data 4)D11 3 0 45%

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 45%

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 45%

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 45%

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45%

S’s’_HVPOS_AI_1V Transducer 1)T2 14 0 45%

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 45%

Power Supply General - PSU 1)PSU2 20 0 45%

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 45%

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 45% Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.10719

M’m’_TRIP_DP Data 4)D11 3 0 45%

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 45% Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test

94.08% 0.23986125

Power Supply General - PSU 1)PSU3 40 Y 40 45% Y PCc_PSU_Mon 98.51% 0.2691

String Management Outputs

HVPOS1P_DHO_V Output 1)O1 20 Y 20 45% Y PCc_PSU_Mon 0.00% 9

HVNEGN_DLO_V Output 1)O2 20 0 45%

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 2)A6 15 0 45% Refer to element reference 0.00%

String Hardware Logic outputs

HVPOS1N_DLO_V Output 20 0 45% PCc_PSU_Mon

HVNEGP_DHO_V Output 20 0 45% PCc_PSU_Mon

Coils

HVPOS1P_DHO_V Actuator 1)A1 30 Y 30 100% Y PCc_PSU_Mon 0.00% 30

HVNEGN_DLO_V Actuator 1)A2 30 0 100%

542.55 326.65 SPFM = 81.6% 60.11
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Table 57: Maintain OA Architecture 1 LFM Calculation 

 

From the above two tables the architecture gives an SPFM of 81.6% (Table 56) and LFM of 71.9% 

(Table 57). This would only be acceptable in an application with a QM rating for the safety goal and 

so needs improvement. This was to be expected because the design was based on a functional 

implementation rather than one specifically aimed at achieving functional safety. This highlights an 

additional benefit of the proposed method. Before consideration is given to functional safety i.e. 

when exploring a function, maybe at the proof of concept stage, it is possible to perform a relatively 
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Cell Connections

C’c’_AI_0V001 Connection 1)C1 0.6 Y 0.6 45% 0.1134 Y 100.00% 0.1134 0.1134

C’c’_AI_0V Connection 1)C2 0.05 Y 0.05 45% 0.0162 Y 100.00% 0.0162 0.0162

HW Monitor

C’c’_AI_0V001 Measurement 2)M3 24 0 45% 0 0.0000

C’c’_AI_0V001 Transducer 2)T3 25 0 45% 0 0.0000

SPI ADC Inputs

C’c’_AI_0V001 Measurement 1)M1 102 Y 102 45% 26.9892 Y 100.00% 26.9892 26.9892

SPI ADC Internal

VMEAS_AI_TX Transducer 1)T1 50 Y 50 45% 21.99099375 Y 100.00% 21.9910 21.990994

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 45% 1.225692 Y 100.00% 1.2257 1.225692

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 45% 1.225692 Y 100.00% 1.2257 1.225692

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 45% 1.905069375 Y 100.00% 1.9051 Wdog 90.00% 0.1905069

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 45% 1.911027938 Y 100.00% 1.9110 Wdog 90.00% 0.1911028

Power Supply General - PSU 1)PSU1 48 Y 48 45% 21.27708 Y 100.00% 21.2771 Wdog 90.00% 2.127708

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 6 Y 6 45% 2.59281 0.0000

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 45% 0 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 45% 0 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 45% 0 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0 0.0000

S’s’_HVPOS_AI_1V Transducer 1)T2 14 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 45% 0 0.0000

Power Supply General - PSU 1)PSU2 20 0 45% 0 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 45% 0 0.0000

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 45% 2.59281 Y 100.00% 2.5928 2.59281

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 45% 3.81013875 Y 100.00% 3.8101 Wdog 90.00% 0.3810139

Power Supply General - PSU 1)PSU3 40 Y 40 45% 17.7309 Y 100.00% 17.7309 17.7309

String Management Outputs

HVPOS1P_DHO_V Output 1)O1 20 Y 20 45% 0 Y 100.00% 0.0000 0

HVNEGN_DLO_V Output 1)O2 20 0 45% 0 0.0000

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 2)A6 15 0 45% 0 0.0000

String Hardware Logic outputs

HVPOS1N_DLO_V Output 20 0 45% 0 0.0000

HVNEGP_DHO_V Output 20 0 45% 0 0.0000

Coils

HVPOS1P_DHO_V Actuator 1)A1 30 Y 30 100% 0 Y 100.00% 0.0000 0

HVNEGN_DLO_V Actuator 1)A2 30 0 100% 0 0.0000

542.55 326.65 LFM = 71.9% 74.78
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simple analysis that looks at the base diagnostic capability of the system in a quantified way. This 

can well influence the architecture long before thoughtful consideration is given to functional safety 

aspects of the project. 

4.3.6.6 Cell Voltage Operating Area – Architecture 2 

This second candidate architecture (Figure 24) moves responsibility for maintaining the cells within 

the operating area from the analogue front-end communication with the microcontroller (software-

based solution) to a hardware only solution.  

This is achieved by utilising a hardware shutoff mechanism. This approach has the disadvantage that 

the measurements are not communicated to the battery microcontroller and so the vehicle driver 

would not be warned about battery state or an impending limp home mode; the battery would just 

disconnect resulting in loss of drive.  

This approach effectively violates other driveline related safety goals in that the driver should be 

warned if a limp home mode is to be activated (not part of this analysis but a common safety goal 

generally applied in automotive applications). This architecture is relevant and as such has been 

analysed in its own right for understanding of what can be achieved with the stand-alone hardware 

monitor. The basis of this is then used in subsequent architectures which contain both the hardware 

shut off mechanism and the accurate AFE as discussed in 4.3.6.1. 
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Figure 24: Maintain OA - Concept Architecture Candidate 2 
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4.3.6.7 Cell Voltage Operating Area – Architecture 2 Classified Signals 

All of the signals used in Architecture Candidate 1 (Figure 23) that have been discussed previously in 

(4.3.6.2) are not duplicated in this section.  

4.3.6.7.1 HW Monitor 

4.3.6.7.1.1 M3 – C’c’_AI_0V001 

The hardware monitor uses the clock input M’m’_FO_1Hz_1 to perform the measurements on the 

individual cell voltages C’c’_AI_0V001 (4.3.6.2.1.1) in the module. 

4.3.6.7.1.2 A5 – M’m’_FO_1Hz_1 

The hardware monitor uses the M’m’_FO_1Hz_1 signal as a clock input to the hardware monitor 

(LTC6801). 

4.3.6.7.1.3 T3 – M’m’_TRIP_FO_1Hz 

The hardware monitor uses the clock input M’m’_FO_1Hz_1 to run comparative tests between the 

cell voltages C’c’_AI_0V001 (4.3.6.2.1.1) and the internal upper and lower voltage limits. These limits 

are configured by input pin configurations that select predefined voltage limits.  

4.3.6.7.2 Module Management Inputs 

4.3.6.7.2.1 M4 – M’m’_TRIP_FO_1Hz 

The measurement of the trip signal based on the hardware monitor transducer output. A frequency 

signal which is maintained at 5kHz when the LTC6801 is within range. 

4.3.6.7.3 Module Management Internals 

4.3.6.7.3.1 A3 – M’m’_TRIP_DI_V_1 

The frequency input monitored by a window comparator to determine whether the frequency 

output from the hardware monitor is within appropriate thresholds and then converted to a bi-state 

voltage which is later used by the String Management system. It is classed as an actuator because it 

is utilising optical isolation as the measurement side of the module has a different 0V reference to 

the String Management system. 

4.3.6.7.3.2 O3 – M’m’_TRIP_DI_V_1 

A voltage output that is later hardwired to the String Management system. 
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4.3.6.7.4 Module Management Outputs 

4.3.6.7.4.1 C5 - M’m’_TRIP_DI_V_1 

The hard-wired output from the module management that indicates to the string management that 

the hardware monitor has tripped.  

4.3.6.7.5 String Management Inputs 

4.3.6.7.5.1 C6 - M’m’_TRIP_DO_V  

M’m’_TRIP_DO_V received as a hardwired signal at the String Management digital input interface. 

4.3.6.7.6 String Management Internal 

4.3.6.7.6.1 T4 – M’m_OK_DLY_DI_V 

M’m’_OK_DLY_DI_V is a time delayed signal. It is time delayed to allowed diagnostics to be 

performed (the hardware monitor self-test) and monitored (M’m’_OK_DI_V) without it actually 

tripping the contactors. 

4.3.6.7.6.2 M5 – M’m_OK_DI_V 

M’m’_OK_DI_V allows the trip voltage to be measured and used by the string management to 

monitor the status of the hardware monitor both in terms of its actual status and also during and 

self-tests that are performed. 

4.3.6.7.6.3 P14 – S’s’_OA_TRIP_DP 

All of the module trips M’M’OA_TRIP_DP (see 4.3.6.2.6.5) are monitored and if any modules trip 

then the S’s’_OA_TRIP_DP parameter is set. 

4.3.6.7.6.4 P12 – S’s’_HVPOS_AI_1V 

An internal value used in the String Management system. This is also likely to be transmitted onto 

the CAN bus for diagnostic purposes and is not considered further as part of the safety critical 

analysis. 

4.3.6.7.6.5 P11 – S’s’_DIAG_DP 

If the plausibility checks PCc_HVPOSBATT and PCc_POSCoN (see 4.3.6.29 and 4.3.6.34 respectively) 

detect failures then the S’s’_Diag_DP flag is set which can provide a redundant path to open the 

contactors via O2 – HVPOS1N_DLO_V. 
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4.3.6.7.7 String Hardware Logic Inputs 

4.3.6.7.7.1 A6 - M’m’_OK_DLY_DI_V 

The hardware monitored delayed voltage signal (M’m_OK_DLY_DI_V) is converted to an output via 

actuator A6 which can turn off both the positive and negative contactors via an independent route 

to the software control outputs. 

4.3.6.7.8 String Hardware Logic outputs 

4.3.6.7.8.1 O5 – HVPOS1N_DLO_V 

The low side drive of the high voltage positive contactor. 

4.3.6.7.8.2 O6 – HVNEGP_DHO_V 

The high side drive of the high voltage negative contactor. 

4.3.6.7.9 Coils 

4.3.6.7.9.1 A4 - HVPOS1N_DLO_V 

The negative side of the high voltage positive contactor coil. 

4.3.6.7.9.2 A7 - HVNEGP_DHO_V 

The positive side of the high voltage negative contactor coil. 

4.3.6.8 Cell Voltage Operating Area – Architecture 2 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.3.6.9. Table 58 acts 

as a cross reference to the appendices for the associated diagnostic coverage calculations which also 

detail each PCc used in the calculation. 

Table 58: BMS Architecture 2 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix E2 – BMS – Architecture 2 DC% Claims 

2)A3 Table 136: BMS - Architecture 2 Actuator 3 

2)A4 Table 137: BMS - Architecture 2 Actuator 4 

2)A6 Refer to 2)A4 as similar techniques used 

2)A7 Refer to 2)A4 as similar techniques used 

2)C1 Table 138: BMS - Architecture 2 Connection 1 

2)C2 Refer to 2)C1 as similar techniques used 

2)C5 Table 139: BMS - Architecture 2 Connection 5 
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Element Diagnostic Coverage Calculation Table Reference in 

Appendix E2 – BMS – Architecture 2 DC% Claims 

2)C6 Refer to 2)C5 as similar techniques used 

2)M1 Table 140: BMS - Architecture 2 Measurement 1 

2)M3 Table 141: BMS - Architecture 2 Measurement 3 

2)M4 Table 142: BMS - Architecture 2 Measurement 4 

2)M5 Refer to 2)M4 as similar techniques used 

2)O3 Table 143: BMS - Architecture 2 Output 3 

2)O5 Table 144: BMS - Architecture 2 Output 5 

2)O6 Refer to 2)O5 as similar techniques used 

2)T3 Table 145: BMS - Architecture 2 Transducer 3 

2)T4 Table 146: BMS - Architecture 2 Transducer 4 

 

4.3.6.8.1 Element ‘2)A3’ 

Two PCcs are relied upon the PCc_5kHzSelf_Test (4.3.6.9.2) and the PCc_PSU_Mon (4.2.5.4.4). 

4.3.6.8.2 Element ‘2)A4’, 2)A6, 2)A7 

PCc_PSU_Mon (4.2.5.4.4) is used for these actuators. 

4.3.6.8.3 Element ‘2)C1’, ‘2C2’ 

PCc6801_Self_Test is used for these input connections. 

4.3.6.8.4 Element ‘2)C5’, 2)C6 

In this architecture no diagnostics are used on these connections. 

4.3.6.8.5 Element ‘2)M1’ 

This uses exactly the same PCcs as in architecture 1 but with additional redundancy built into the 

system as the AFE is used for control and monitoring and can still trip the system but the safety is 

purely derived by the LTC 6801 hardware monitoring system. This increases the PCc claim 

significantly (now 98.21% compared to 58.8% in architecture 1). 

4.3.6.8.6 Element ‘2)M3’ 

This is a new element in architecture 2 and introduces a new PCc_HW_MONITOR (4.3.6.9.1). 

4.3.6.8.7 Element ‘2)M4’ 

This is a new element in architecture 2 but no coverage is provided for this element. 

4.3.6.8.8 Element ‘2)M5’ 
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No diagnostics are possible on this measurement. 

4.3.6.8.9 Element ‘2)O3’ 

The output can be partially verified by the power supply monitoring i.e. if the power supply is correct 

the output is capable of being driven and to a limited amount the OA trip in software can also be 

used as a cross check against the intelligent output driver. Diagnostics include PCc_OA_Window 

(4.3.6.4.1) and PCc_PSU_MON (4.2.5.4.4). 

4.3.6.8.10 Element ‘2)O5’, 2)O6 

These outputs are not monitored; however, the high side driver power supply is monitored by 

PCc_PSU_MON (4.2.5.4.4) to prove that the high side drive power is correct. 

4.3.6.8.11 Element ‘2)T3’ 

The hardware monitor (LTC6801) has a number of internal diagnostics that verify internal operation 

as detailed in the data sheet (Linear Technology, 2010) which are diagnosed by the 

PCc6801_Self_Test (4.3.6.9.3). 

4.3.6.8.12 Element ‘2)T4’ 

The time delay transducer has no verifiable PCc other than proving that the power supply to the 

time delay block is correct (PCc_PSU_MON (4.2.5.4.4)). 

4.3.6.9 Cell Voltage Operating Area – Architecture 2 Plausibility Cross-checks 

4.3.6.9.1 PCc_HW_MONITOR 

The LTC 6801 acts as a complete hardware monitor and is independent to the microcontroller based 

system. It has the benefit of being configured in hardware for voltage limits etc. As this acts as a 

safety mechanism, the configuration links would have to be tested in production to ensure they 

were correctly set. This may be an optical inspection initially but most likely require an in-circuit test 

or end of line functional test to prove the safety mechanism operation. 

4.3.6.9.2 PCc_5kHzSelf_Test 

The 5 kHz self-test is a closed loop test in the Module Management system. The microcontroller is 

the source of the 5kHz signal. This is only generated as long as the microcontroller is functioning 

correctly and the software sequencing and timing is correct. The 5kHz signal then drives the internal 

logic in the LTC6801. The PCc_5kHzSelf_Test ensures that the output is valid only when the input is 

valid. 
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4.3.6.9.3 PCc6801_Self_Test 

The LTC6801 monitors the cell voltages and temperatures to ensure that they are within range and 

all the internal self-tests are performed. These are driven by the 5kHz clock signal from the 

microcontroller. 

4.3.6.10 Cell Voltage Operating Area – Architecture 2 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 59 and the LFM calculation shown in Table 60. 
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Table 59: Maintain OA Architecture 2 SPFM Calculation 
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Connections

C’c’_AI_0V001 Connection 2)C1 0.6 Y 0.6 45% 0.2700 Y PCc6801_Self_Test 72.00% 0.0756

C’c’_AI_0V Connection 2)C2 0.05 Y 0.05 45% 0.0225 Y PCc6801_Self_Test 72.00% 0.0063

HW Monitor

C’c’_AI_0V001 Measurement 2)M3 24 Y 24 45% 10.8000 Y  PCc6801_Self_-Test 64.83% 3.79836

C’c’_AI_0V001 Transducer 2)T3 25 Y 25 45% 11.2500 Y
6801 Internal functionality, Don't 

claim 5kHz as not independently 

proved to be periodic, PCc_PSU_Mon

72.70% 3.071615625

SPI ADC Inputs

C’c’_AI_0V001 Measurement 2)M1 102 0 45% 0.0000

SPI ADC Internal

VMEAS_AI_TX Transducer 1)T1 50 0 45% 0.0000

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 0 45% 0.0000

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 0 45% 0.0000

M'm'_TRIP_FO_1Hz Measurement 2)M4 3.5 Y 3.5 45% 1.5750 0.00% 0

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 0 45% 0.0000

C'c'_OA_0V001 Parameter 1)P2 4.5 0 45% 0.0000

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 45% 0.4500 Y PCc_PSU_Mon 98.28% 0.00774

M'm'_TRIP_DI_V Output 2)O3 25 Y 25 45% 11.2500 Y PCc_PSU_Mon 59.16% 4.5945

Power Supply General - PSU 1)PSU1 20 Y 20 45% 9.0000 Y PCc_PSU_Mon 98.51% 0.13455

Module Management Outputs

M’m’_TRIP_DO_V Connection 2)C5 0.05 Y 0.05 45% 0.0225 Y 0.00% 0.0225

M’m’_TRIP_DP Data 4)D11 3 0 45% 0.0000

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 45% 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 45% 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 45% 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0.0000

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 45% 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 45% 0.0000

Power Supply General - PSU 1)PSU2 20 0 45% 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 45% 0.0000

String Management Inputs

M’m’_TRIP_DO_V Connection 2)C6 0.05 Y 0.05 45% 0.0225 Y 0.00% 0.0225

M’m’_TRIP_DP Data 4)D11 3 0 45% 0.0000

String Management Internal

SAFETY_OK_DI_V Measurement 2)M5 4 Y 4 45% 1.8000 Y 0.00% 1.8

M’m’_OK_DLY_DI_V Transducer 2)T4 8 Y 8 45% 3.6000 Y 0.00% 3.6

Power Supply General - PSU 1)PSU3 10 Y 10 45% 4.5000 Y 4.5

String Management Outputs

HVPOS1P_DHSO Output 1)O1 20 0 45% 0.0000 0.00%

HVNEGN_DLO_V Output 1)O2 20 Y 20 45% 9.0000 Y 0.00% 9

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 2)A6 15 Y 15 45% 6.7500 Y Refer to element reference 0.00% 6.75

String Hardware Logic outputs

HVPOS1N_DLO_V Output 2)O5 20 0 45% 0.0000 0.00%

HVNEGP_DHO_V Output 2)O6 20 Y 20 45% 9.0000 Y 9

Coils

HVPOS1N_DHSO Actuator 2)A4 30 0 100% 0.0000 0.00%

HVNEGP_DHSO Actuator 2)A7 30 Y 30 100% 30.0000 Y 30

505.15 206.25 SPFM = 63.0% 76.38
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Table 60: Maintain OA Architecture 2 LFM Calculation 

 

As expected this results in a reduction in the SPFM percentage from 81.6% to 63% as 

implementation of the diagnostic functionality is harder to achieve in hardware and, as in 

architecture 1, this is a functional implementation rather than one targeted to specifically address 

functional safety. The increase in LFM is largely due to the increase in single point faults (as indicated 

by the lower SPFM). 

This highlights another important aspect of the PCc method. When starting a new project, several 

approaches have to be taken into account. For a full production intent design then there is no doubt 

that a full design lifecycle process (including the application of BS ISO 26262 guidelines) must be 

followed. However, in an early proof of concept design, a compromise can be made between 
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Connections

C’c’_AI_0V001 Connection 2)C1 0.6 Y 0.6 45% 0.1944 Y 100.00% 0.1944 0.1944

C’c’_AI_0V Connection 2)C2 0.05 Y 0.05 45% 0.0162 Y 100.00% 0.0162 0.0162

HW Monitor

C’c’_AI_0V001 Measurement 2)M3 24 Y 24 45% 7.00164 y 100.00% 7.0016 7.00164

C’c’_AI_0V001 Transducer 2)T3 25 Y 25 45% 8.178384375 y 100.00% 8.1784 8.178384375

SPI ADC Inputs

C’c’_AI_0V001 Measurement 2)M1 102 0 45% 0 0.0000

SPI ADC Internal

VMEAS_AI_TX Transducer 1)T1 50 0 45% 0 0.0000

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 0 45% 0 0.0000

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 0 45% 0 0.0000

M'm'_TRIP_FO_1Hz Measurement 2)M4 3.5 Y 3.5 45% 1.575 0.0000

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 0 45% 0 0.0000

C'c'_OA_0V001 Parameter 1)P2 4.5 0 45% 0 0.0000

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 45% 0.44226 Y 100.00% 0.4423 0.44226

M'm'_TRIP_DI_V Output 2)O3 25 Y 25 45% 6.6555 Y 100.00% 6.6555 6.6555

Power Supply General - PSU 1)PSU1 20 Y 20 45% 8.86545 Y 100.00% 8.8655 8.86545

Module Management Outputs

M’m’_TRIP_DO_V Connection 2)C5 0.05 Y 0.05 45% 0 0.0000

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 45% 0 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 45% 0 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 45% 0 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 45% 0 0.0000

Power Supply General - PSU 1)PSU2 20 0 45% 0 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 45% 0 0.0000

String Management Inputs

M’m’_TRIP_DO_V Connection 2)C6 0.05 Y 0.05 45% 0 0.0000

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

String Management Internal

SAFETY_OK_DI_V Measurement 2)M5 4 Y 4 45% 0 Y 100.00% 0.0000 0

M’m’_OK_DLY_DI_V Transducer 2)T4 8 Y 8 45% 0 Y 100.00% 0.0000 0

Power Supply General - PSU 1)PSU3 10 Y 10 45% 0 Y 100.00% 0.0000 0

String Management Outputs

HVPOS1P_DHSO Output 1)O1 20 0 45% 0 0.0000

HVNEGN_DLO_V Output 1)O2 20 Y 20 45% 0 y 100.00% 0.0000 0

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 2)A6 15 Y 15 45% 0 y 100.00% 0.0000 0

String Hardware Logic outputs

HVPOS1N_DLO_V Output 2)O5 20 0 45% 0 0.0000

HVNEGP_DHO_V Output 2)O6 20 Y 20 45% 0 y 100.00% 0.0000 0

Coils

HVPOS1N_DHSO Actuator 2)A4 30 0 100% 0 0.0000

HVNEGP_DHSO Actuator 2)A7 30 Y 30 100% 0 y 100.00% 0.0000 0

505.15 206.25 LFM = 75.9% 31.35
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allocation of safety aspects to hardware or software. For example, there may be less effort in 

designing a hardware safety monitor around a system that ensures safety is achieved, irrespective of 

actions taken in the software. This may provide software / controls engineers greater scope to 

develop innovative ideas / test new algorithms without the onerous task of validating each new 

control concept with the knowledge that the system will always be safe due to hardware detection 

and shutdown methods. As the system is developed, a decision can be made to reduce hardware 

costs (a cost per unit) and move safety into the software with the associated validation / verification 

costs which can be amortised over the production volume. The PCc method gives a route to assess 

the approaches in a quantified way. 

The logical approach to progress this architecture is to combine the software and hardware to 

improve diagnostic coverage and hence increase the architectural metrics. 

4.3.6.11 Cell Voltage Operating Area – Architecture 3 

Measurement of the cell voltages using a combination of an accurate (AFE) as discussed in 4.3.6.1 

with a diverse hardware shutoff mechanism (Figure 25). This is expected to provide improved 

diagnostics as there are now effectively two monitoring systems, one in software and one in 

hardware.  

Accurate measurements are now available for accurate control of the cell voltages but if this system 

fails a hardware shutoff mechanism will deploy rendering the system into a safe state. 
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Figure 25: Maintain OA - Concept Architecture Candidate 3 

 



 

 Page 168 of 458 A.R. Williams 
 

4.3.6.12 Cell Voltage Operating Area – Architecture 3 Classified Signals 

All of the element signals used in Architecture Candidate 3 (Figure 25) have been discussed 

previously, no new signals are used but the signals from Architecture 1 (4.3.6.2) and Architecture 2 

(4.3.6.7) are combined. 

4.3.6.13 Cell Voltage Operating Area – Architecture 3 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.3.6.14. Table 61 

acts as a cross reference to the appendices for the associated diagnostic coverage calculations which 

also detail each PCc used in the calculation. 

Table 61: BMS Architecture 3 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix E3 – BMS – Architecture 3 DC% Claims 

3)T3 Table 147: BMS - Architecture 3 Transducer 3 

 

4.3.6.13.1 Element ‘3)T3’ 

The PCc6801_Self_Test (4.3.6.9.3) is now confirmed by on-line monitoring as the data is also 

available from the LTC6803 AFE. 

4.3.6.14 Cell Voltage Operating Area – Architecture 3 Plausibility Cross-checks 

No additional PCcs are used, however the integrity of the self-tests is improved. 

4.3.6.15 Cell Voltage Operating Area – Architecture 3 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 62 and the LFM calculation shown in Table 63. 
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Table 62: Maintain OA Architecture 3 SPFM Calculation 
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Connections

C’c’_AI_0V001 Connection 1)C1 0.6 Y 0.6 45% Y PCc_6803_Self_Test

C’c’_AI_0V Connection 1)C2 0.05 Y 0.05 45% Y PCc_6803_Self_Test

HW Monitor

C’c’_AI_0V001 Measurement 2)M3 24 Y 24 45% Y  PCc6801_Self_-Test

C’c’_AI_0V001 Transducer 3)T3 25 Y 25 45% Y
6801 Internal functionality, Don't 

claim 5kHz as not independently 

proved to be periodic. PCc_PSU_Mon

BATT'b'_PO_PC Actuator A5 0 45%

SPI ADC Inputs

C’c’_AI_0V001 Measurement 2)M1 102 Y 102 45% Y OA Window, PCc_6803_Self_Test

SPI ADC Internal

VMEAS_AI_TX Transducer 1)T1 50 Y 50 45% Y
PCc_OA_Window, PCc_6803_Self_Test, 

PCc_PSU_Mon

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 45% Y
PCc_Data_Checksum, 

PCc_Poll_Response_Time

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 45% Y
PCc_Data_Checksum, 

PCc_Poll_Response_Time

M'm'_TRIP_FO_1Hz Measurement 2)M4 3.5 Y 3.5 45% Y

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 45% Y
PCc_RAM_Test, PCc_Code_Sea, 

PCc_Micro_Test, PCc_PSU_Mon

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 45% Y
PCc_RAM_Test, PCc_Code_Sea, 

PCc_Micro_Test, PCc_PSU_Mon

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 45% Y PCc_PSU_Mon

M'm'_TRIP_DI_V Output 2)O3 25 Y 25 45% Y PCc_PSU_Mon, PCC_OA_TRIP

Power Supply General - PSU 1)PSU1 60 Y 60 45% Y PCc_PSU_Mon

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 3 Y 3 45% Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time

M’m’_TRIP_DO_V Connection 2)C5 0.05 Y 0.05 45% Y

M’m’_TRIP_DP Data 4)D11 3 0 45%

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 45%

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 45%

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 45%

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45%

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 45%

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 45%

Power Supply General - PSU 1)PSU2 40 0 45%

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 45%

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 45% Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time

M’m’_TRIP_DO_V Connection 2)C6 0.05 Y 0.05 45% Y

M’m’_TRIP_DP Data 4)D11 3 0 45%

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 45% Y
PCc_RAM_Test, PCc_Code_Sea, 

PCc_Micro_Test, PCc_PSU_Mon

SAFETY_OK_DI_V Measurement 2)M5 4 Y 4 45% Y

M’m’_OK_DLY_DI_V Transducer 2)T4 8 Y 8 45% Y PCc_PSU_Mon

Power Supply General - PSU 1)PSU3 40 Y 40 45% Y PCc_PSU_Mon

String Management Outputs

HVPOS1P_DHO_V Output 1)O1 20 Y 20 45% Y PCc_PSU_Mon

HVNEGN_DLO_V Output 1)O2 20 0 45%

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 2)A6 12 Y 12 45% Y PCc_PSU_Mon

String Hardware Logic outputs

HVPOS1N_DLO_V Output 2)O5 20 Y 20 45% Y PCc_PSU_Mon

HVNEGP_DHO_V Output 20 Y 20 45% Y PCc_PSU_Mon

Coils

HVPOS1P_DHO_V Actuator 1)A1 15 Y 15 100% Y PCc_PSU_Mon

HVPOS1N_DHSO Actuator 2)A4 15 Y 15 100% Y PCc_PSU_Mon

HVNEGN_DLO_V Actuator 1)A2 15 Y 15 100% Y

HVNEGP_DHO_V Actuator 2)A7 15 Y 15 100% Y PCc_PSU_Mon

610.15 508.25 SPFM = 77.6%
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Table 63: Maintain OA Architecture 3 LFM Calculation 
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Connections

C’c’_AI_0V001 Connection 1)C1 0.6 Y 0.6 45% 0.1134 Y 100.00% 0.1134 PCc6801_Self_Test partial 10.00% 0.10206

C’c’_AI_0V Connection 1)C2 0.05 Y 0.05 45% 0.0162 Y 100.00% 0.0162 PCc6801_Self_Test partial 10.00% 0.01458

HW Monitor

C’c’_AI_0V001 Measurement 2)M3 24 Y 24 45% 7.00164 y 100.00% 7.0016 7.00164

C’c’_AI_0V001 Transducer 3)T3 25 Y 25 45% 8.178384375 y 100.00% 8.1784 8.178384375

BATT'b'_PO_PC Actuator A5 0 45% 0 y 100.00% 0.0000 0

SPI ADC Inputs

C’c’_AI_0V001 Measurement 2)M1 102 Y 102 45% 45.080145 y 100.00% 45.0801 PCc6801_Self_Test partial 10.00% 40.5721305

SPI ADC Internal

VMEAS_AI_TX Transducer 1)T1 50 Y 50 45% 21.99099375 y 100.00% 21.9910 PCc6801_Self_Test partial 10.00% 19.79189438

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 45% 1.225692 Y 100.00% 1.2257 PCc6801_Self_Test partial 10.00% 1.1031228

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 45% 1.225692 Y 100.00% 1.2257 PCc6801_Self_Test partial 10.00% 1.1031228

M'm'_TRIP_FO_1Hz Measurement 2)M4 3.5 Y 3.5 45% 0 Y 100.00% 0.0000 0

0

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 45% 1.905069375 Y 100.00% 1.9051 Wdog 90.00% 0.190506938

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 45% 1.911027938 Y 100.00% 1.9110 Wdog 90.00% 0.191102794

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 45% 0.44226 Y 100.00% 0.4423 0.44226

M'm'_TRIP_DI_V Output 2)O3 25 Y 25 45% 6.6555 Y 100.00% 6.6555 6.6555

Power Supply General - PSU 1)PSU1 60 Y 60 45% 26.59635 Y 100.00% 26.5964 Wdog 90.00% 2.659635

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 3 Y 3 45% 1.296405 Y 100.00% 1.2964 PCc6801_Self_Test partial 10.00% 1.1667645

M’m’_TRIP_DO_V Connection 2)C5 0.05 Y 0.05 45% 0 0.0000

0

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 45% 0 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 45% 0 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 45% 0 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 45% 0 0.0000

Power Supply General - PSU 1)PSU2 40 0 45% 0 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 45% 0 0.0000

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 45% 2.59281 Y 100.00% 2.5928 PCc6801_Self_Test partial 10.00% 2.333529

M’m’_TRIP_DO_V Connection 2)C6 0.05 Y 0.05 45% 0 0.0000

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 45% 3.81013875 Y 100.00% 3.8101 Wdog 90.00% 0.381013875

SAFETY_OK_DI_V Measurement 2)M5 4 Y 4 45% 0 Y 100.00% 0.0000 0

M’m’_OK_DLY_DI_V Transducer 2)T4 8 Y 8 45% 0 Y 100.00% 0.0000 0

Power Supply General - PSU 1)PSU3 40 Y 40 45% 17.7309 Y 100.00% 17.7309 Wdog 90.00% 1.77309

String Management Outputs

HVPOS1P_DHO_V Output 1)O1 20 Y 20 45% 0 Y 100.00% 0.0000 PCc6801_Self_Test partial 10.00% 0

HVNEGN_DLO_V Output 1)O2 20 0 45% 0 y 100.00% 0.0000 0

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 2)A6 12 Y 12 45% 0 y 100.00% 0.0000 0

String Hardware Logic outputs

HVPOS1N_DLO_V Output 2)O5 20 Y 20 45% 0 y 100.00% 0.0000 0

HVNEGP_DHO_V Output 20 Y 20 45% 0 y 100.00% 0.0000 0

Coils

HVPOS1P_DHO_V Actuator 1)A1 15 Y 15 100% 0 Y 100.00% 0.0000 PCc6801_Self_Test partial 10.00% 0

HVPOS1N_DHSO Actuator 2)A4 15 Y 15 100% 0 y 100.00% 0.0000 0

HVNEGN_DLO_V Actuator 1)A2 15 Y 15 100% 0 y 100.00% 0.0000 0

HVNEGP_DHO_V Actuator 2)A7 15 Y 15 100% 0 y 100.00% 0.0000 0

610.15 508.25 LFM = 76.2% 93.66
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This significantly increases the SPFM over the hardware only design but now that we have an 

increase in hardware componentry over the original software design the SPFM is lower than 

Architecture 1. This is considered acceptable as the design now offers a number of advantages: 

1) Accurate monitoring and control can be achieved in software, the vehicle driver warned as 

cell capacity approaches minimum and a controlled system shutdown actioned in software, 

if required. 

2) There is an independent backup; if the software fails to shut down the system in a controlled 

way, the hardware can act and shut down the system. This would not be as controlled but 

would render the system safe. 

The LFM has improved over both earlier designs as expected as we now have two independent 

systems. 

4.3.6.16 Cell Voltage Operating Area – Architecture 4 

Architecture 4 improves detection of any failures in the battery microcontroller by utilising a 5kHz 

signal generated by the microcontroller to drive the hardware shutoff mechanism (Figure 26). If this 

signal fails then the hardware mechanism will shut down the system irrespective of when the cell 

voltages had deviated from their normal operating area. By ensuring that the battery 

microcontroller only generates this 5kHz signal if it is running correctly, any diagnosable critical 

faults in the microcontroller can independently shut down the system. One such case would be 

when the battery microcontroller determined that the operating area had been exceeded, the string 

controller notified but the string controller but the system hadn’t taken the appropriate action. The 

5kHz signal also has a self-test facility so that the output of the hardware shut off mechanism can be 

monitored in the trip state when the 5 kHz is not present. 
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Figure 26: Maintain OA - Concept Architecture Candidate 4 
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4.3.6.17 Cell Voltage Operating Area – Architecture 4 Classified Signals 

All of the signals used in Architecture Candidate 4 (Figure 26) that have been discussed previously 

are not duplicated in this section. Only new signals or those with increased diagnostic coverage are 

discussed. 

4.3.6.17.1 HW Monitor 

4.3.6.17.1.1 A5 – M’m’_FO_1Hz_1 

The hardware monitor uses the M’m’_FO_1Hz_1 signal as a clock input to the hardware monitor 

(LTC6803). 

4.3.6.17.2 SPI ADC Inputs 

4.3.6.17.3 Module Management Inputs 

4.3.6.17.3.1 M4 – M’m’_TRIP_FO_1Hz 

The measurement of the trip signal based on the hardware monitor transducer output.  

4.3.6.17.4 Module Management Internals 

4.3.6.17.4.1 P16 - M’m’_TEST_DP 

The signal M’m’_TEST_DP is the internal parameter value used to control the output.  

4.3.6.17.4.2 P17 – M’m’_HWM_TRIP_DP 

The internal parameter that indicates that the hardware monitor has tripped. 

4.3.6.17.4.3 P18 - M’m’_TRIP_DP  

The signal M’m’_TRIP_DP used to indicate to the String Management system that the hardware 

monitor has tripped. 

4.3.6.17.5 Module Management Outputs 

4.3.6.17.5.1 O7 - M’m’_FO_1Hz 

The signal M’m_TEST_DP is used to determine the value of the output in Hz. In this example it is 

assumed that this is bi-state 0 Hz or 5 kHz. Theoretically, additional diagnostics can be performed by 

varying this signal frequency and duty cycle to ensure correct operation of the hardware monitor 

(LTC6801). 

4.3.6.17.5.2 D11 - M’m’_TRIP_DP 

The signal M’m’_TRIP_DP transmitted from the Module Management CAN Bus interface. 
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4.3.6.17.6 String Management Inputs 

4.3.6.17.6.1 D11 - M’m’_TRIP_DP  

M’m’_TRIP_DP received at the String Management CAN bus interface. 

4.3.6.17.7 String Management Internal 

4.3.6.17.7.1 P14 – S’s’_TRIP_DP / S’s’_OA_TRIP_DP 

An internal parameter that indicates that the string has tripped. This uses a combination of signals. 

M’m’_TRIP_DP is monitored for each module in turn and if any module has tripped (exceeded the 

operating area window for a given voltage profile) as determined by the hardware monitor then the 

string trip flag will be set (S’s_TRIP_DP).  

This can be further modified by the operating area trip S’s_OA_TRIP_DP (software controlled) which 

is set if any one of the modules has exceeded is voltage / temperature profile (M’m_OA_TRIP_DP). 

4.3.6.18 Cell Voltage Operating Area – Architecture 4 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.3.6.19. Table 64 

acts as a cross reference to the appendices for the associated diagnostic coverage calculations which 

also detail each PCc used in the calculation. 

Table 64: BMS Architecture 4 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix E4 – BMS – Architecture 4 DC% Claims 

4)A5 Table 148: BMS - Architecture 4 Actuator 5 

4)D11 Table 149: BMS - Architecture 4 Data 11 (subset 1) 

Table 150: BMS - Architecture 4 Data 11 (subset 2)  

4)M4 Table 151: BMS - Architecture 4 Measurement 4 

4)O7 Table 152: BMS - Architecture 4 Output 7 

4.3.6.18.1 Element ‘4)A5’ 

This drives the differential actuator to the LTC6801. This converts the differential input into the clock 

that is used by the hardware monitor to run the LTC6801. A limited amount of test can now be 

achieved by the PCc_5kHzSelf_Test (4.3.6.9.2). 

4.3.6.18.1 Element ‘4)D11’ 

This is the status of the hardware monitor trip output from the module management to the string 

management. As this is over CAN the diagnostics are comprehensive. 



 

 Page 175 of 458 A.R. Williams 
 

4.3.6.18.2 Element ‘4)M4’ 

Diagnostics is now improved for this input as the PCc_5kHzSelf_Test (4.3.6.9.2) itself is monitored. 

There is some limitation in that this is all contained within the Module Management system i.e. no 

independence. 

4.3.6.18.1 Element ‘4)O7’ 

The differential output from the microcontroller. This output can now be validated by the 

PCc_5kHzSelf_Test (4.3.6.9.2). Also, it is a differential output from the microcontroller and so 

additional integrity is provided by the configuration of the microcontroller. This allows one output to 

be driven by the monitoring software in the microcontroller (i.e. only driven when the safety 

monitoring software is valid) and the other output can be driven by the normal control software.  

4.3.6.19 Cell Voltage Operating Area – Architecture 4 Plausibility Cross-checks 

No additional Plausibility checks are introduced in this architecture. 

4.3.6.20 Cell Voltage Operating Area – Architecture 4 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 65 and the LFM calculation shown in Table 66.  
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Table 65: Maintain OA Architecture 4 SPFM Calculation 
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Connections

C’c’_AI_0V001 Connection 1)C1 0.6 Y 0.6 45% 0.2700 Y PCc_6803_Self_Test 42.00% 0.1566

C’c’_AI_0V Connection 1)C2 0.05 Y 0.05 45% 0.0225 Y PCc_6803_Self_Test 72.00% 0.0063

HW Monitor

C’c’_AI_0V001 Measurement 2)M3 24 Y 24 45% 10.8000 Y
PCc6801_Self_Test, 

PCc_5kHzSelft_Test
64.83% 3.79836

C’c’_AI_0V001 Transducer 3)T3 25 Y 25 45% 11.2500 Y
6801 Internal functionality, Don't 

claim 5kHz as not independently 

proved to be periodic. PCc_PSU_Mon

72.70% 3.071615625

BATT'b'_PO_PC Actuator 4)A5 0.5 0 45% 0.0000

SPI ADC Inputs

C’c’_AI_0V001 Measurement 2)M1 102 Y 102 45% 45.9000 Y PCc_OA_Window, PCc_6803_Self_Test 98.21% 0.819855

SPI ADC Internal

VMEAS_AI_TX Transducer 1)T1 50 Y 50 45% 22.5000 Y PCc_OA_Window, PCc_6803_Self_Test 97.74% 0.50900625

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 45% 1.3500 Y
PCc_Data_Checksum, 

PCc_Poll_Response_Time
90.79% 0.124308

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 45% 1.3500 Y
PCc_Data_Checksum, 

PCc_Poll_Response_Time
90.79% 0.124308

M'm'_TRIP_FO_1Hz Measurement 4)M4 3.5 Y 3.5 45% 1.5750 Y PCc_5kHzSelft_Test 44.64% 0.87192

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 45% 2.0250 Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test

94.08% 0.119930625

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 45% 2.0250 Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test, CRC on CAL Tables

94.37% 0.113972063

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 45% 0.4500 Y PCc_PSU_Mon, PCc_5kHzSelft_Test 98.28% 0.00774

M'm'_TRIP_DI_V Output 2)O3 25 Y 25 45% 11.2500 Y PCc_PSU_Mon, PCC_OA_TRIP 59.16% 4.5945

Power Supply General - PSU 1)PSU1 60 Y 60 45% 27.0000 Y PCc_PSU_Mon 98.51% 0.40365

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 3 Y 3 45% 1.3500 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.053595

M’m’_TRIP_DO_V Connection 2)C5 0.05 Y 0.05 45% 0.0225 Y 0.00% 0.0225

BATT’b’_PO_PC Output 4)O7 0.5 0 45% 0.0000 PCc_5kHzSelf_Test 97.52%

M’m’_TRIP_DP Data 4)D11 3 Y 3 45% 1.3500 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.053595

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 45% 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 45% 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 45% 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0.0000

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 45% 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 45% 0.0000

Power Supply General - PSU 1)PSU2 20 0 45% 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 45% 0.0000

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 45% 2.7000 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.10719

M’m’_TRIP_DO_V Connection 2)C6 0.05 Y 0.05 45% 0.0225 Y 0.00% 0.0225

M’m’_TRIP_DP Data 4)D11 3 Y 3 45% 1.3500 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.053595

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 45% 4.0500 Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test

94.08% 0.23986125

SAFETY_OK_DI_V Measurement 2)M5 4 Y 4 45% 1.8000 Y 0.00% 1.8

M’m’_OK_DLY_DI_V Transducer 2)T4 8 Y 8 45% 3.6000 Y PCc_PSU_Mon 0.00% 3.6

Power Supply General - PSU 1)PSU3 40 Y 40 45% 18.0000 Y PCc_PSU_Mon 98.51% 0.2691

String Management Outputs

HVPOS1P_DHO_V Output 1)O1 20 Y 20 45% 9.0000 Y PCc_PSU_Mon 0.00% 9

HVNEGN_DLO_V Output 1)O2 20 0 45% 0.0000

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 2)A6 12 Y 12 45% 5.4000 Y PCc_PSU_Mon 0.00% 5.4

String Hardware Logic outputs

HVPOS1N_DLO_V Output 2)O5 20 Y 20 45% 9.0000 Y 0.00% 9

HVNEGP_DHO_V Output 2)O6 20 Y 20 45% 9.0000 Y 0.00% 9

Coils

HVPOS1P_DHO_V Actuator 1)A1 15 Y 15 100% 15.0000 Y PCc_PSU_Mon 0.00% 15

HVPOS1N_DHSO Actuator 2)A4 15 Y 15 100% 15.0000 Y PCc_PSU_Mon 0.00% 15

HVNEGN_DLO_V Actuator 1)A2 15 Y 15 100% 15.0000 Y 15

HVNEGP_DHO_V Actuator 2)A7 15 Y 15 100% 15.0000 Y PCc_PSU_Mon 0.00% 15

591.15 514.25 SPFM = 78.0% 113.34
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Table 66: Maintain OA Architecture 4 LFM Calculation 
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Connections

C’c’_AI_0V001 Connection 1)C1 0.6 Y 0.6 45% 0.1134 Y 100.00% 0.1134 PCc_HW_MONITOR with PCc6801_Self_Test30.00% 0.07938

C’c’_AI_0V Connection 1)C2 0.05 Y 0.05 45% 0.0162 Y 100.00% 0.0162 PCc_HW_MONITOR with PCc6801_Self_Test30.00% 0.01134

HW Monitor

C’c’_AI_0V001 Measurement 2)M3 24 Y 24 45% 7.00164 y 100.00% 7.0016 7.00164

C’c’_AI_0V001 Transducer 3)T3 25 Y 25 45% 8.178384375 y 100.00% 8.1784 8.178384375

BATT'b'_PO_PC Actuator 4)A5 0.5 0 45% 0 y 100.00% 0.0000 0

SPI ADC Inputs

C’c’_AI_0V001 Measurement 2)M1 102 Y 102 45% 45.080145 Y 100.00% 45.0801 PCc_HW_MONITOR with PCc6801_Self_Test30.00% 31.5561015

SPI ADC Internal

VMEAS_AI_TX Transducer 1)T1 50 Y 50 45% 21.99099375 Y 100.00% 21.9910 PCc_HW_MONITOR with PCc6801_Self_Test30.00% 15.39369563

SPI ADC Outputs 3 45% 3 1.225692

VMEAS_AI_TX Data 1)D1 3 Y 3 45% 1.225692 Y 100.00% 1.2257 PCc_HW_MONITOR with PCc6801_Self_Test30.00% 0.8579844

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 45% 1.225692 Y 100.00% 1.2257 PCc_HW_MONITOR with PCc6801_Self_Test30.00% 0.8579844

M'm'_TRIP_FO_1Hz Measurement 4)M4 3.5 Y 3.5 45% 0.70308 Y 100.00% 0.7031 Wdog 90.00% 0.070308

0

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 45% 1.905069375 Y 100.00% 1.9051 Wdog 90.00% 0.190506938

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 45% 1.911027938 Y 100.00% 1.9110 Wdog 90.00% 0.191102794

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 45% 0.44226 Y 100.00% 0.4423 0.44226

M'm'_TRIP_DI_V Output 2)O3 25 Y 25 45% 6.6555 Y 100.00% 6.6555 6.6555

Power Supply General - PSU 1)PSU1 60 Y 60 45% 26.59635 Y 100.00% 26.5964 Wdog 90.00% 2.659635

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 3 Y 3 45% 1.296405 Y 100.00% 1.2964 PCc_HW_MONITOR with PCc6801_Self_Test30.00% 0.9074835

M’m’_TRIP_DO_V Connection 2)C5 0.05 Y 0.05 45% 0 0.0000

BATT’b’_PO_PC Output 4)O7 0.5 0 45% 0 0.0000

M’m’_TRIP_DP Data 4)D11 3 Y 3 45% 1.296405 Y 100.00% 1.2964 1.296405

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 45% 0 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 45% 0 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 45% 0 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 45% 0 0.0000

Power Supply General - PSU 1)PSU2 20 0 45% 0 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 45% 0 0.0000

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 45% 2.59281 Y 100.00% 2.5928 PCc_HW_MONITOR with PCc6801_Self_Test30.00% 1.814967

M’m’_TRIP_DO_V Connection 2)C6 0.05 Y 0.05 45% 0 0.0000

M’m’_TRIP_DP Data 4)D11 3 Y 3 45% 1.296405 Y 100.00% 1.2964 1.296405

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 45% 3.81013875 Y 100.00% 3.8101 Wdog 90.00% 0.381013875

SAFETY_OK_DI_V Measurement 2)M5 4 Y 4 45% 0 Y 100.00% 0.0000 0

M’m’_OK_DLY_DI_V Transducer 2)T4 8 Y 8 45% 0 Y 100.00% 0.0000 0

Power Supply General - PSU 1)PSU3 40 Y 40 45% 17.7309 Y 100.00% 17.7309 Wdog 90.00% 1.77309

String Management Outputs

HVPOS1P_DHO_V Output 1)O1 20 Y 20 45% 0 Y 100.00% 0.0000 PCc_HW_MONITOR with PCc6801_Self_Test30.00% 0

HVNEGN_DLO_V Output 1)O2 20 0 45% 0 y 100.00% 0.0000 0

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 2)A6 12 Y 12 45% 0 y 100.00% 0.0000 0

String Hardware Logic outputs

HVPOS1N_DLO_V Output 2)O5 20 Y 20 45% 0 y 100.00% 0.0000 0

HVNEGP_DHO_V Output 2)O6 20 Y 20 45% 0 y 100.00% 0.0000 0

Coils

HVPOS1P_DHO_V Actuator 1)A1 15 Y 15 100% 0 Y 100.00% 0.0000 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0

HVPOS1N_DHSO Actuator 2)A4 15 Y 15 100% 0 y 100.00% 0.0000 0

HVNEGN_DLO_V Actuator 1)A2 15 Y 15 100% 0 y 100.00% 0.0000 0

HVNEGP_DHO_V Actuator 2)A7 15 Y 15 100% 0 y 100.00% 0.0000 0

591.15 514.25 LFM = 79.6% 81.62
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A negligible increase in SPFM from 77.6% to 78% is achieved through the improvement in the self-

test diagnostic coverage. The LFM also increases from 76.2% to 79.8% now that the hardware safety 

mechanism is tested i.e. it can be proved to work periodically rather than it being dormant and only 

called into action when required. 

4.3.6.21 Cell Voltage Operating Area – Architecture 5 

To improve the self-test on the 5kHz output the self-test function has been moved to the string 

controller (Figure 27). This means that the shut off mechanism can be tested through the Module 

Management microcontroller, the hardware shut off mechanism and back through to the logic in the 

string ECU. 

The self-test is monitored through a safety timer (M’m’_SAFETY_TIME_DP) to ensure: 

1) That the test is run periodically. 

2) That the periodicity is correct within a tolerance. 
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Figure 27: Maintain OA - Concept Architecture Candidate 5 
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4.3.6.22 Cell Voltage Operating Area – Architecture 5 Classified Signals 

For clarity, only signals for this candidate architecture diagram (Figure 27) are discussed in this 

section. The relevant PCcs that are applied are discussed in subsequent sections. 

4.3.6.22.1 Module Management Inputs 

4.3.6.22.1.1 D12 – M’m_TEST_DP 

The signal M’m’_TEST_DP is the test request which is now sourced from the string management 

system as a request to the Module Management system over the CAN Bus interface. 

4.3.6.22.1.2 P19 - M’m’_TEST_DP 

The signal M’m’_TEST_DP is the internal parameter value used to control the output oscillator 

M’m’_FO_1Hz.  

4.3.6.22.1.3 P23 - M’m’_SAFETY_TIME_DP 

The signal M’m’_SAFETY_TIME_DP is the internal parameter value used to monitor the timing of the 

self-test. This timer is independent from the test request which is triggered from the String 

Management system. 

4.3.6.22.1.4 P22 - M’m’_TRIP_DI_V_1 

The signal M’m’_TRIP_DI_V_1 is the internal parameter used to test the hardware monitor and 

provides the NOT TRIPPED or TRIPPED state. 

4.3.6.22.1.5 P25 - M’m’_TRIP_DP  

The signal M’m’_TRIP_DP is used to indicate to the String Management system that the hardware 

monitor has tripped. It can also be used by the 5 kHz monitor to set the TRIPPED state if the self-test 

is not performed in a timely manner. 

4.3.6.22.2 String Management Internal 

4.3.6.22.2.1 P20 – M’m’_TEST_DP 

The signal M’m’_TEST_DP is the internal parameter value used to control the output oscillator via 

the CAN Bus interface between the String Management system and the Module Management 

system. 

4.3.6.22.2.2 P21 – M’m’_OK_DI_V 

The signal M’m’_OK_DI_V is the internal parameter value used for the PcC_5kHZSelf_Test which has 

now moved from the Module Management controller to the String Management system to offer 

independence. 
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4.3.6.22.3 String Management Outputs 

4.3.6.22.3.1 D12 – M’m’_TEST_DP 

The signal M’m’_TEST_DP is the test request which is now output from the String Management 

system as a request to the Module Management system over the CAN Bus interface. 

4.3.6.23 Cell Voltage Operating Area – Architecture 5 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.3.6.24. Table 67 

acts as a cross reference to the appendices for the associated diagnostic coverage calculations which 

also detail each PCc used in the calculation. 

Table 67: BMS Architecture 5 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix E5 – BMS – Architecture 5 DC% Claims 

5)A5 Table 153: BMS - Architecture 5 Actuator 5 

5)A6 Table 154: BMS - Architecture 5 Actuator 6 

5)C5 Table 155: BMS - Architecture 5 Connection 5 

5)C6 Refer to 5)C5 as similar techniques used 

5)D12 Table 156: BMS - Architecture 5 Data 12 (subset 1) 

Table 157: BMS - Architecture 5 Data 12 (subset 2) 

5)M5 Table 158: BMS - Architecture 5 Measurement 5 

5)O3 Table 159: BMS - Architecture 5 Output 3 

5)T3 Table 160: BMS - Architecture 5 Transducer 3 

5)T4 Table 161: BMS - Architecture 5 Transducer 4 

4.3.6.23.1 Element ‘5)A5’ 

Additional diagnostics using the PPc_5kHzSelf_Test (4.3.6.9.2) to be monitored by the 

PCc_5kHzST_Monitor (4.3.6.24.1) allow any delay in the self-test to be monitored. This is allocated 

to an independent microcontroller with separate time bases so high integrity is achieved. 

4.3.6.23.2 Element ‘5)A6’ 

Diagnostics are significantly increased by inclusion of the self-test monitor PCc_5kHzST_Monitor 

(4.3.6.24.1). As the positive and negative contactors are independent, having additional diagnostics 

devoted to the negative contactor offers improved detection capability. 
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4.3.6.23.3 Element ‘5)C5’, ‘5)C6’ 

As the connections are now monitored by PCc_5kHzSelf_Test (4.3.6.9.2) and, as a secondary 

measure, checked for timing by PCc_5kHzST_Monitor (4.3.6.24.1) diagnostic coverage is significantly 

increased. 

4.3.6.23.4 Element ‘5)D12’ 

Normal CAN diagnostics are applied to this data element. 

4.3.6.23.5 Element ‘5)M5’ 

As this is part of the closed loop trip signal it is effectively covered by PCc_5kHzSelf_Test. 

4.3.6.23.6 Element ‘5)O3’ 

As this is part of the closed loop trip signal it is effectively covered by PCc_5kHzSelf_Test. 

4.3.6.23.7 Element ‘5)T3’ 

Diagnostics are increased by a combination of the PCc6801_Self_Test and the PCc_5kHzSelf_Test 

now being performed independently in the String Management microcontroller. The combination 

improves failure detection. 

4.3.6.23.8 Element ‘5)T4’ 

Increased diagnostics are achieved by the monitoring of the PCc_5kHzSelf_Test in the String 

Management microcontroller. 

4.3.6.24 Cell Voltage Operating Area – Architecture 5 Plausibility Cross-checks 

4.3.6.24.1 PCc_5kHzST_Monitor 

To ensure that the PCc_5kHzSelf_Test is completed regularly and within a time window tolerance, a 

separate monitor is included. This monitoring PCc is performed in the Module Management 

microcontroller which has its own power supply and timing crystal and so is completely independent 

to the PCc_5kHzSelf_test function which is performed in the String Management microcontroller. 

4.3.6.25 Cell Voltage Operating Area – Architecture 5 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 68 and the LFM calculation shown in Table 69.  
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Table 68: Maintain OA Architecture 5 SPFM Calculation 
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Connections

C’c’_AI_0V001 Connection 1)C1 0.6 Y 0.6 45% Y PCc_6803_Self_Test 42.00% 0.1566

C’c’_AI_0V Connection 1)C2 0.05 Y 0.05 45% Y PCc_6803_Self_Test 72.00% 0.0063

HW Monitor

C’c’_AI_0V001 Measurement 2)M3 24 Y 24 45% Y PCc_6803_Self_Test 64.83% 3.79836

C’c’_AI_0V001 Transducer 5)T3 25 Y 25 45% Y OA Window, PCC 6803 Self Test 97.54% 0.276778125

BATT'b'_PO_PC Actuator 5)A5 0.5 0 45% PCc_5kHzSelft_Test 99.00%

SPI ADC Inputs

C’c’_AI_0V001 Measurement 2)M1 102 Y 102 45% Y PCc_OA_Window, PCc_6803_Self_Test 98.21% 0.819855

SPI ADC Internal

VMEAS_AI_TX Transducer 1)T1 50 Y 50 45% Y PCc_OA_Window, PCc_6803_Self_Test 97.74% 0.50900625

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 45% Y
PCc_Data_Checksum, 

PCc_Poll_Response_Time
90.79% 0.124308

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 45% Y
PCc_Data_Checksum, 

PCc_Poll_Response_Time
90.79% 0.124308

M'm'_TRIP_FO_1Hz Measurement 4)M4 3.5 Y 3.5 45% Y PCc_5kHzSelft_Test 44.64% 0.87192

M’m’_TEST_DP Data 5)D12 3 Y 3 45% Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.053595

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 45% Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test

94.08% 0.119930625

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 45% Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test, CRC on CAL Tables

94.37% 0.113972063

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 45% Y 98.28% 0.00774

M'm'_TRIP_DI_V Output 5)O3 25 Y 25 45% Y PCc_PSU_Mon 98.26% 0.19603125

Power Supply General - PSU 1)PSU1 60 Y 60 45% Y PCc_PSU_Mon 98.51% 0.40365

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 3 Y 3 45% Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.053595

M’m’_TRIP_DO_V Connection 5)C5 0.05 Y 0.05 45% Y PCc_5kHzSelf_Test 99.00% 0.000225

BATT’b’_PO_PC Output 4)O7 0.5 0 45% PCc_5kHzSelf_Test 97.52%

M’m’_TRIP_DP Data 4)D11 3 0 45%

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 45%

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 45%

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 45%

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45%

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 45%

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 45%

Power Supply General - PSU 1)PSU2 20 0 45%

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 45%

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 45% Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.10719

M’m’_TRIP_DO_V Connection 5)C6 0.05 Y 0.05 45% Y 0.00% 0.0225

M’m’_TRIP_DP Data 4)D11 3 0 45%

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 45% Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test

94.08% 0.23986125

SAFETY_OK_DI_V Measurement 5)M5 4 Y 4 45% Y PCc_5kHzSelf_Test 79.82% 0.363222

M’m’_OK_DLY_DI_V Transducer 5)T4 8 Y 8 45% Y PCc_PSU_Mon,PCc_5kHzSelf_Test 80.34% 0.707733

Power Supply General - PSU 1)PSU3 40 Y 40 45% Y PCc_PSU_Mon 98.51% 0.2691

String Management Outputs

HVPOS1P_DHO_V Output 1)O1 20 Y 20 45% Y PCc_PSU_Mon 0.00% 9

HVNEGN_DLO_V Output 1)O2 20 0 45%

M’m’_TEST_DP Data 5)D12 3 Y 3 45% Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.053595

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 5)A6 12 Y 12 45% Y PCc_PSU_Mon 98.28% 0.09288

String Hardware Logic outputs

HVPOS1N_DLO_V Output 2)O5 20 Y 20 45% Y PCc_PSU_Mon 0.00% 9

HVNEGP_DHO_V Output 2)O6 20 Y 20 45% Y PCc_PSU_Mon 0.00% 9

Coils

HVPOS1P_DHO_V Actuator 1)A1 15 Y 15 100% Y PCc_PSU_Mon 0.00% 15

HVPOS1N_DHSO Actuator 2)A4 15 Y 15 100% Y PCc_PSU_Mon 0.00% 15

HVNEGN_DLO_V Actuator 1)A2 15 Y 15 100% Y 15

HVNEGP_DHO_V Actuator 2)A7 15 Y 15 100% Y PCc_PSU_Mon 0.00% 15

597.15 514.25 SPFM = 81.2% 96.49
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Table 69: Maintain OA Architecture 5 LFM Calculation 

 

The independence between the two systems (the module management and string management) has 

significantly improved the SPFM value from 78% to 81.2% and LFM from 79.8% to 84.4%. The self-

test is now independently monitored and the timing of the self-test is also independently monitored. 
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Connections

C’c’_AI_0V001 Connection 1)C1 0.6 Y 0.6 45% 0.1134 Y 100.00% 0.1134 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.031752

C’c’_AI_0V Connection 1)C2 0.05 Y 0.05 45% 0.0162 Y 100.00% 0.0162 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.004536

HW Monitor

C’c’_AI_0V001 Measurement 2)M3 24 Y 24 45% 7.00164 y 100.00% 7.0016 7.00164

C’c’_AI_0V001 Transducer 5)T3 25 Y 25 45% 10.97322188 y 100.00% 10.9732 10.97322188

BATT'b'_PO_PC Actuator 5)A5 0.5 0 45% 0 y 100.00% 0.0000 0

SPI ADC Inputs

C’c’_AI_0V001 Measurement 2)M1 102 Y 102 45% 45.080145 Y 100.00% 45.0801 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 12.6224406

SPI ADC Internal

VMEAS_AI_TX Transducer 1)T1 50 Y 50 45% 21.99099375 Y 100.00% 21.9910 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 6.15747825

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 45% 1.225692 Y 100.00% 1.2257 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.34319376

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 45% 1.225692 Y 100.00% 1.2257 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.34319376

M'm'_TRIP_FO_1Hz Measurement 4)M4 3.5 Y 3.5 45% 0.70308 Y 100.00% 0.7031 Wdog 90.00% 0.070308

M’m’_TEST_DP Data 5)D12 3 Y 3 45% 1.296405 0.0000

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 45% 1.905069375 Y 100.00% 1.9051 Wdog 90.00% 0.190506938

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 45% 1.911027938 Y 100.00% 1.9110 Wdog 90.00% 0.191102794

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 45% 0.44226 Y 100.00% 0.4423 0.44226

M'm'_TRIP_DI_V Output 5)O3 25 Y 25 45% 11.05396875 Y 100.00% 11.0540 11.05396875

Power Supply General - PSU 1)PSU1 60 Y 60 45% 26.59635 Y 100.00% 26.5964 Wdog 90.00% 2.659635

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 3 Y 3 45% 1.296405 Y 100.00% 1.2964 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.3629934

M’m’_TRIP_DO_V Connection 5)C5 0.05 Y 0.05 45% 0.022275 0.0000

BATT’b’_PO_PC Output 4)O7 0.5 0 45% 0 0.0000

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 45% 0 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 45% 0 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 45% 0 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 45% 0 0.0000

Power Supply General - PSU 1)PSU2 20 0 45% 0 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 45% 0 0.0000

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 45% 2.59281 Y 100.00% 2.5928 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.7259868

M’m’_TRIP_DO_V Connection 5)C6 0.05 Y 0.05 45% 0 0.0000

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 45% 3.81013875 Y 100.00% 3.8101 Wdog 90.00% 0.381013875

SAFETY_OK_DI_V Measurement 5)M5 4 Y 4 45% 1.436778 Y 100.00% 1.4368 1.436778

M’m’_OK_DLY_DI_V Transducer 5)T4 8 Y 8 45% 2.892267 Y 100.00% 2.8923 2.892267

Power Supply General - PSU 1)PSU3 40 Y 40 45% 17.7309 Y 100.00% 17.7309 Wdog 90.00% 1.77309

String Management Outputs

HVPOS1P_DHO_V Output 1)O1 20 Y 20 45% 0 Y 100.00% 0.0000 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0

HVNEGN_DLO_V Output 1)O2 20 0 45% 0 y 100.00% 0.0000 0

M’m’_TEST_DP Data 5)D12 3 Y 3 45% 1.296405 0.0000

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 5)A6 12 Y 12 45% 5.30712 y 100.00% 5.3071 5.30712

String Hardware Logic outputs

HVPOS1N_DLO_V Output 2)O5 20 Y 20 45% 0 y 100.00% 0.0000 0

HVNEGP_DHO_V Output 2)O6 20 Y 20 45% 0 y 100.00% 0.0000 0

Coils

HVPOS1P_DHO_V Actuator 1)A1 15 Y 15 100% 0 Y 100.00% 0.0000 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0

HVPOS1N_DHSO Actuator 2)A4 15 Y 15 100% 0 y 100.00% 0.0000 0

HVNEGN_DLO_V Actuator 1)A2 15 Y 15 100% 0 y 100.00% 0.0000 0

HVNEGP_DHO_V Actuator 2)A7 15 Y 15 100% 0 y 100.00% 0.0000 0

597.15 514.25 LFM = 84.4% 64.96



 

 Page 185 of 458 A.R. Williams 
 

It is believed that improvements in the diagnostic coverage of the low voltage measurement system 

will be difficult to obtain. However, there is still no coverage on the high voltage measurement and 

there is an obvious route to validate this against the sum of the individual cell voltages as discussed 

in architecture 6. 

4.3.6.26 Cell Voltage Operating Area – Architecture 6 

Building on Architecture 5, Architecture 6 (Figure 28) adds an additional cross check (PCc 

HVPOSBATT) between the high voltage measurements and the cell voltage measurements.  

This allows verification between the voltage measured across the string (summation of the module 

voltages internal to the string contactors) and that measured across the load on the output side of 

the contactors. The module voltages are in turn the sum of the individual cell voltages. 
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Figure 28: Maintain OA - Concept Architecture Candidate 6 
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4.3.6.27 Cell Voltage Operating Area – Architecture 6 Classified Signals  

Any new signals or signals with increased diagnostic coverage are detailed in this section.  

4.3.6.27.1 Module Management Internals 

4.3.6.27.1.1 P5 - M’m’_AI_0V1 

The signal M’m’_AI_0V1 is the module voltage with a resolution of 0.1V. It is calculated based on the 

sum of voltages equation (see equation 19) from each of the individual cells (C’c’_AI_0V001) in the 

module. 

𝑴′𝒎′_𝑨𝑰_𝟎𝑽𝟏 =  ∑ 𝑪′𝒄′_𝑨𝑰_𝟎𝑽𝟎𝟎𝟏
′𝒄′=𝟏𝟐

′𝒄′=𝟏
 

Where ‘c’ is the number of cells and the maximum (12) for the LTC6803 is used in this 

example. 

 ( 19 ) 

4.3.6.27.2 Module Management Outputs 

4.3.6.27.2.1 D4 - M’m’_AI_0V1 

The signal M’m’_AI_0V1 transmitted from the Module Management CAN Bus interface. 

4.3.6.27.2.2 D11 - M’m’_TRIP_DP 

The signal M’m’_TRIP_DP transmitted from the Module Management CAN Bus interface. 

4.3.6.27.2.3 C5 - M’m’_TRIP_DI_V_1 

The hard-wired output from the module management that indicates to the String Management that 

the hardware monitor has tripped.  

4.3.6.27.3 HV Measurement Inputs 

4.3.6.27.3.1 C3 - S’s’_HVPOS_AI_1V 

S’s’_HVPOS_AI_1V is the high voltage positive voltage at the output of the contactor. This allows 

voltages to be measured before and after contactor opening / closuring. It is purely used for 

diagnostics as far as functional safety is concerned. 

4.3.6.27.3.2 C4 - S’s’_HVBUS_AI_1V 

S’s’_HVBUS_AI_1V is the positive high voltage at the output of the battery (before the contactor). 

This allows voltages to be measured before either of the contactors have been closed and after 
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either contactor has been closed. It is purely used for diagnostics as far as functional safety is 

concerned. 

4.3.6.27.4 HV Measurement Internal 

4.3.6.27.4.1 PSU2 - Power Supply 

The internal power supply for the HV Measurement system and any other voltages required by the 

measurement system, this would typically include isolated power supplies (DC-DC converters) to 

isolate the HV from the LV (chassis referenced systems) and the local microcontroller supplies along 

with analogue references etc. 

4.3.6.27.4.2 M2 - S’s’_HVPOS_AI_1V 

The voltage measurement for S’s’_HVPOS_AI_1V.  

4.3.6.27.4.3 M6 - S’s’_HVBUS_AI_1V 

The voltage measurement for S’s’_HVBUS_AI_1V. 

4.3.6.27.4.4 T2 - S’s’_HVPOS_AI_1V 

The conversion mechanism for S’s’_HVPOS_AI_1V is classed as a transducer due to the scaling 

involved to convert the high voltage to low voltage for use in the analogue to digital converters and 

the isolation required between high and low voltage as the low voltage is referenced to the chassis 

of the vehicle but the high voltage is isolated.  

4.3.6.27.4.5 T2 - S’s’_HVBUS_AI_1V 

The conversion mechanism for S’s’_HVBUS_AI_1V is classed as a transducer due to the scaling and 

isolation involved. The transducer is classed as shared between S’s’_HVPOS_AI_V and 

S’s’_HVBUS_AI_V. 

4.3.6.27.4.6 P7 - S’s’_HVPOS_AI_1V 

The internal parameter for S’s’_HVPOS_AI_1V as a scaled voltage value with a resolution of 1V. 

4.3.6.27.5 HV Measurement Outputs 

4.3.6.27.5.1 D7 - S’s’_HVPOS_AI_1V 

S’s’_HVPOS_AI_1V transmitted data on the CAN Bus interface. 

4.3.6.27.6 String Management Inputs 

4.3.6.27.6.1 D6 - M’m’_AI_0V1 

The signal M’m’_AI_0V1 received at the String Management CAN bus interface. 
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4.3.6.27.6.2 D9 - S’s’_HVPOS_AI_1V 

S’s’_HVPOS_AI_1V received at the String Management CAN bus interface. 

4.3.6.27.7 String Management Internal 

4.3.6.27.7.1 P9 – M’m’_AI_0V1 

The internal parameter M’m’_AI_0V1 used by the String Management application. 

4.3.6.27.7.2 P10 – S’s_HVPOS_AI_1V 

The internal value S’s’_HVPOS_AI_1V used by the String Management application. 

4.3.6.27.7.3 P12 – S’s’_HVPOS_AI_1V 

An internal value used in the String Management system. This is also likely to be transmitted onto 

the CAN bus for diagnostic purposes and is not considered further as part of the safety critical 

analysis. 

4.3.6.27.7.4 P11 – S’s’_DIAG_DP 

If the plausibility check PCc_HVPOSBATT (4.3.6.29.1) detects failures then the S’s’_Diag_DP flag is set 

which can provide a redundant path to open the contactors via O2 – HVPOS1N_DLO_V. 

4.3.6.27.8 String Management Outputs 

4.3.6.27.8.1 O2 - HVNEGN_DLO_V 

The low side drive of the high voltage negative contactor. 

4.3.6.27.9 Coils 

4.3.6.27.9.1 A2 - HVNEGN_DLO_V 

The negative side of the high voltage negative contactor coil. 

4.3.6.28 Cell Voltage Operating Area – Architecture 6 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.3.6.29. Table 70 

acts as a cross reference to the appendices for the associated diagnostic coverage calculations which 

also detail each PCc used in the calculation. 
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Table 70: BMS Architecture 6 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix E7 – BMS – Architecture 7 DC% Claims 

6)A1 Table 162: BMS - Architecture 6 Actuator 1 

6)A2 Refer to 6)A1 as similar techniques used 

6)A4 Refer to 6)A1 as similar techniques used 

6)A7 Refer to 6)A1 as similar techniques used 

6)C1 Table 163: BMS - Architecture 6 Connection 1 

6)C2 Refer to 6)C1 as similar techniques used 

6)M1 Table 164: BMS - Architecture 6 Measurement 1 

6)M3 Table 165: BMS - Architecture 6 Measurement 3 

6)O1 Table 166: BMS - Architecture 6 Output 1 

6)O2 Refer to 6)O1 as similar techniques used 

6)O5 Refer to 6)O1 as similar techniques used 

6)O6 Refer to 6)O1 as similar techniques used 

6)T1 Table 167: BMS - Architecture 6 Transducer 1 

6)T3 Table 168: BMS - Architecture 6 Transducer 3 

 

4.3.6.28.1 Element ‘6)A1’, ‘6)A2’, ‘6)A4’, ‘6)A7’ 

Diagnostics are now significantly increased due to the ability to monitor the contactors before and 

after operation. 

4.3.6.28.2 Element ‘6)C1’ 

PCc_HVPosBatt also allows additional diagnostics on the Cell measurement side. Although the HV 

measurement is not as accurate as the AFE cell measurement it can still provide suitable diagnostics. 

4.3.6.28.3 Element ‘6)C2’ 

Identical argument to ‘6)C1’ (4.3.6.28.2). 

4.3.6.28.4 Element ‘6)M1’ 

A combination of PCcs are now used to diagnose appropriate failure modes in the measurement side 

of the AFE. This combination gives a higher confidence level in the PCc. 

4.3.6.28.5 Element ‘6)M3’ 

Again, a combination of PCcs allows an increase in confidence that the hardware monitor is working 

correctly. 
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4.3.6.28.6 Element ‘6)O1’, ‘6)O2’, ‘6)O5’, ‘6)O6’ 

As this output is directly connected to the contactor and feedback is available from the contactor 

output, diagnostics are increased. 

4.3.6.28.7 Element ‘6)T1’, ‘6)T3’ 

A combination of the PCcs now allows changes to be monitored i.e. increases or decreases in cell 

voltages will be reflected in changes at the Battery HV measurement. Slight delays may occur due to 

the independent measurement systems but averaging and a time window will adequately 

compensate for this and overall, contribute to a high level of diagnostic coverage. 

4.3.6.29 Cell Voltage Operating Area – Architecture 6 Plausibility Cross-checks 

4.3.6.29.1 PCc_HVPOSBATT 

This PCc is specific to the application (rather than the more generic PCcs discussed earlier for the Cell 

Management system). A measurement is made of the HV battery voltage once the negative 

contactor has been closed. It permits a PCc against the sum of the individual module voltages, which 

are in turn calculated from the sum of the individual block voltages. As this is a high voltage 

measurement, the accuracy is likely to be reduced. The measurement is of sufficient integrity to 

validate the sum of the module voltages and the string voltage prior to closing the positive contactor 

and applying string voltage to the Bus. By careful sequencing of this test, several failure modes can 

be detected. 

4.3.6.30 Cell Voltage Operating Area – Architecture 6 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 71 and the LFM calculation shown in Table 72.  
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Table 71: Maintain OA Architecture 6 SPFM Calculation 
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Connections

C’c’_AI_0V001 Connection 6)C1 0.6 Y 0.6 40% 0.2400 Y PCc_6803_Self_Test, PCc_HVPosBatt 99.00% 0.0024

C’c’_AI_0V Connection 6)C2 0.05 Y 0.05 40% 0.0200 Y PCc_6803_Self_Test, PCc_HVPosBatt 99.00% 0.0002

HW Monitor

C’c’_AI_0V001 Measurement 6)M3 24 Y 24 40% 9.6000 Y PCc_6803_Self_Test, PCc_HVPosBatt 98.58% 0.136392

C’c’_AI_0V001 Transducer 6)T3 25 Y 25 40% 10.0000 Y
OA Window, PCC 6803 Self Test, 

PCc_HVPosBat
98.18% 0.181675

BATT'b'_PO_PC Actuator 5)A5 0.5 Y 0.5 40% 0.2000 Y PCc_5kHzSelft_Test 99.00% 0.002

SPI ADC Inputs

C’c’_AI_0V001 Measurement 6)M1 102 Y 102 40% 40.8000 Y
PCc_OA_Window, PCc_6803_Self_Test, 

PCc_HVPosBatt
98.58% 0.579666

SPI ADC Internal

VMEAS_AI_TX Transducer 6)T1 50 Y 50 40% 20.0000 Y PCc_OA_Window, PCc_6803_Self_Test 97.94% 0.41285

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 40% 1.2000 Y
PCc_Data_Checksum, 

PCc_Poll_Response_Time
90.79% 0.110496

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 40% 1.2000 Y
PCc_Data_Checksum, 

PCc_Poll_Response_Time
90.79% 0.110496

M'm'_TRIP_FO_1Hz Measurement 4)M4 3.5 Y 3.5 40% 1.4000 Y PCc_5kHzSelft_Test 44.64% 0.77504

M’m’_TEST_DP Data 5)D12 3 Y 3 40% 1.2000 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.04764

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 40% 1.8000 Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test

94.08% 0.106605

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 40% 1.8000 Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test, CRC on CAL Tables

94.37% 0.1013085

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 40% 0.4000 Y 98.28% 0.00688

M'm'_TRIP_DI_V Output 5)O3 25 Y 25 40% 10.0000 Y PCc_PSU_Mon 98.26% 0.17425

Power Supply General - PSU 1)PSU1 60 Y 60 40% 24.0000 Y PCc_PSU_Mon 98.51% 0.3588

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 3 Y 3 40% 1.2000 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.04764

M’m’_TRIP_DO_V Connection 5)C5 0.05 Y 0.05 40% 0.0200 Y PCc_5kHzSelf_Test 99.00% 0.0002

BATT’b’_PO_PC Output 4)O7 0.5 Y 0.5 40% 0.2000 Y PCc_5kHzSelf_Test 97.52% 0.00497

M’m’_TRIP_DP Data 4)D11 3 0 45% 0.0000

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 40% 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 40% 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 40% 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0.0000

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 40% 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 40% 0.0000

Power Supply General - PSU 1)PSU2 20 0 40% 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 40% 0.0000

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 40% 2.4000 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.09528

M’m’_TRIP_DO_V Connection 5)C6 0.05 Y 0.05 40% 0.0200 Y PCc_5kHzSelf_Test 99.00% 0.0002

M’m’_TRIP_DP Data 4)D11 3 0 45% 0.0000

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 40% 3.6000 Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test

94.08% 0.21321

SAFETY_OK_DI_V Measurement 5)M5 4 Y 4 40% 1.6000 Y PCc_5kHzSelf_Test 79.82% 0.322864

M’m’_OK_DLY_DI_V Transducer 5)T4 8 Y 8 40% 3.2000 Y PCc_PSU_Mon,PCc_5kHzSelf_Test 80.34% 0.629096

Power Supply General - PSU 1)PSU3 40 Y 40 40% 16.0000 Y PCc_PSU_Mon 98.51% 0.2392

String Management Outputs

HVPOS1P_DHO_V Output 1)O1 20 Y 20 45% 9.0000 Y PCc_PSU_Mon 0.00% 9

HVNEGN_DLO_V Output 1)O2 20 0 45% 0.0000

M’m’_TEST_DP Data 5)D12 3 Y 3 45% 1.3500 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.053595

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 5)A6 12 Y 12 40% 4.8000 Y PCc_PSU_Mon, PCc_HVPOSBAT 98.28% 0.08256

String Hardware Logic outputs

HVPOS1N_DLO_V Output 2)O5 20 Y 20 45% 9.0000 Y PCc_PSU_Mon 0.00% 9

HVNEGP_DHO_V Output 2)O6 20 Y 20 45% 9.0000 Y PCc_PSU_Mon 0.00% 9

Coils

HVPOS1P_DHO_V Actuator 1)A1 15 Y 15 100% 15.0000 Y PCc_PSU_Mon 0.00% 15

HVPOS1N_DHSO Actuator 2)A4 15 Y 15 100% 15.0000 Y PCc_PSU_Mon 0.00% 15

HVNEGN_DLO_V Actuator 1)A2 15 Y 15 100% 15.0000 Y 15

HVNEGP_DHO_V Actuator 2)A7 15 Y 15 100% 15.0000 Y PCc_PSU_Mon 0.00% 15

597.15 515.25 SPFM = 82.2% 91.80
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Table 72: Maintain OA Architecture 6 LFM Calculation 
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Connections

C’c’_AI_0V001 Connection 6)C1 0.6 Y 0.6 40% 0.2376 Y 100.00% 0.2376 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.066528

C’c’_AI_0V Connection 6)C2 0.05 Y 0.05 40% 0.0198 Y 100.00% 0.0198 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.005544

HW Monitor

C’c’_AI_0V001 Measurement 6)M3 24 Y 24 40% 9.463608 y 100.00% 9.4636 PCc_HVPOSBATT 40.00% 5.6781648

C’c’_AI_0V001 Transducer 6)T3 25 Y 25 40% 9.818325 y 100.00% 9.8183 PCc_HVPOSBATT 40.00% 5.890995

BATT'b'_PO_PC Actuator 5)A5 0.5 Y 0.5 40% 0.198 y 100.00% 0.1980 PCc_HVPOSBATT 40.00% 0.1188

SPI ADC Inputs

C’c’_AI_0V001 Measurement 6)M1 102 Y 102 40% 40.220334 Y 100.00% 40.2203 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 11.26169352

SPI ADC Internal

VMEAS_AI_TX Transducer 6)T1 50 Y 50 40% 19.58715 Y 100.00% 19.5872 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 5.484402

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 40% 1.089504 Y 100.00% 1.0895 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.30506112

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 40% 1.089504 Y 100.00% 1.0895 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.30506112

M'm'_TRIP_FO_1Hz Measurement 4)M4 3.5 Y 3.5 40% 0.62496 Y 100.00% 0.6250 Wdog 90.00% 0.062496

M’m’_TEST_DP Data 5)D12 3 Y 3 40% 1.15236 0.0000

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 40% 1.693395 Y 100.00% 1.6934 Wdog 90.00% 0.1693395

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 40% 1.6986915 Y 100.00% 1.6987 Wdog 90.00% 0.16986915

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 40% 0.39312 Y 100.00% 0.3931 0.39312

M'm'_TRIP_DI_V Output 5)O3 25 Y 25 40% 9.82575 Y 100.00% 9.8258 9.82575

Power Supply General - PSU 1)PSU1 60 Y 60 40% 23.6412 Y 100.00% 23.6412 Wdog 90.00% 2.36412

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 3 Y 3 40% 1.15236 Y 100.00% 1.1524 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.3226608

M’m’_TRIP_DO_V Connection 5)C5 0.05 Y 0.05 40% 0.0198 0.0000

BATT’b’_PO_PC Output 4)O7 0.5 Y 0.5 40% 0.19503 0.0000

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 40% 0 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 40% 0 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 40% 0 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 40% 0 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 40% 0 0.0000

Power Supply General - PSU 1)PSU2 20 0 40% 0 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 40% 0 0.0000

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 40% 2.30472 Y 100.00% 2.3047 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.6453216

M’m’_TRIP_DO_V Connection 5)C6 0.05 Y 0.05 40% 0.0198 0.0000

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 40% 3.38679 Y 100.00% 3.3868 Wdog 90.00% 0.338679

SAFETY_OK_DI_V Measurement 5)M5 4 Y 4 40% 1.277136 Y 100.00% 1.2771 1.277136

M’m’_OK_DLY_DI_V Transducer 5)T4 8 Y 8 40% 2.570904 Y 100.00% 2.5709 2.570904

Power Supply General - PSU 1)PSU3 40 Y 40 40% 15.7608 Y 100.00% 15.7608 Wdog 90.00% 1.57608

String Management Outputs

HVPOS1P_DHO_V Output 1)O1 20 Y 20 45% 0 Y 100.00% 0.0000 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0

HVNEGN_DLO_V Output 1)O2 20 0 45% 0 y 100.00% 0.0000 0

M’m’_TEST_DP Data 5)D12 3 Y 3 45% 1.296405 0.0000

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 5)A6 12 Y 12 40% 4.71744 y 100.00% 4.7174 4.71744

String Hardware Logic outputs

HVPOS1N_DLO_V Output 2)O5 20 Y 20 45% 0 y 100.00% 0.0000 0

HVNEGP_DHO_V Output 2)O6 20 Y 20 45% 0 y 100.00% 0.0000 0

Coils

HVPOS1P_DHO_V Actuator 1)A1 15 Y 15 100% 0 Y 100.00% 0.0000 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0

HVPOS1N_DHSO Actuator 2)A4 15 Y 15 100% 0 y 100.00% 0.0000 0

HVNEGN_DLO_V Actuator 1)A2 15 Y 15 100% 0 y 100.00% 0.0000 0

HVNEGP_DHO_V Actuator 2)A7 15 Y 15 100% 0 y 100.00% 0.0000 0

597.15 515.25 LFM = 87.4% 53.55
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Increases in SPFM are minimal but the LFM increase is significant (81.6% to 87.4%) as there are no 

longer dormant faults in the HV measurement system. The main limitation now is on the outputs 

from the system i.e. the HV connection from the battery pack to the High Voltage bus on the vehicle. 

No diagnostic coverage is provided on the contactor outputs from the system meaning that the 

intent to shut down the system is of high integrity but the final output channels may fail to shut 

down the system in a safe way. This deficiency is reviewed and analysed in the next architecture. 

4.3.6.31 Cell Voltage Operating Area – Architecture 7 

In architecture 7 (Figure 29) PCc POSCON is included to check the state of the contactor. This allows 

a number of tests to be performed based on the status of the string state machine (STR’s’_SM). For 

example, if a cell has exceeded its voltage operating area, the sting state machine will trip and open 

the positive contactor. PCc _POSCON is then used to verify that the contactor has opened which will 

prevent further discharge to the load or charge from the charger. If this fails, additional measures 

can be taken, such as, opening the negative contactor giving an additional redundant safety action. 
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Figure 29: Maintain OA - Concept Architecture Candidate 7 
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4.3.6.32 Cell Voltage Operating Area – Architecture 7 Classified Signals 

New signals and those with increased diagnostic coverage are discussed below.  

4.3.6.32.1 HV Measurement Internal 

4.3.6.32.1.1 T2 - S’s’_HVBUS_AI_1V 

The conversion mechanism for S’s’_HVBUS_AI_1V is classed as a transducer due to the scaling and 

isolation involved. The transducer is classed as shared between S’s’_HVPOS_AI_V and 

S’s’_HVBUS_AI_V. 

4.3.6.32.1.2 P17 - S’s’_HVBUS_AI_1V 

The internal parameter for S’s’_HVBUS_AI_1V as a scaled voltage value with a resolution of 1V. 

4.3.6.32.2 HV Measurement Outputs 

4.3.6.32.2.1 D8 - S’s’_HVBUS_AI_1V 

S’s’_HVBUS_AI_1V is transmitted data on the CAN Bus interface. 

4.3.6.32.3  String Management Inputs 

4.3.6.32.3.1 D10 - S’s’_HVBUS_AI_1V 

S’s’_HVBUS_AI_1V received at the String Management CAN bus interface. 

4.3.6.32.4 String Management Internal 

4.3.6.32.4.1 P15 – S’s’_HVBUS_AI_1V 

The internal value S’s’_HVBUS_AI_1V used by the String Management application. 

4.3.6.32.4.2 P13 – S’s’_SM_DP 

S’s’_SM_DP is an internal value that represents the enumerated current state of the String 

Management system. This is determined by the application and used for all of the main control 

sequencing between the String Management and Module Management system state machines (SM). 

4.3.6.33 Cell Voltage Operating Area – Architecture 7 Diagnostic Coverage 

Each of the elements used are individually referenced and described in this section with the 

diagnostic coverage achieved by each of the plausibility checks detailed section 4.3.6.34. Table 73 

acts as a cross reference to the appendices for the associated diagnostic coverage calculations which 

also detail each PCc used in the calculation. 



 

 Page 197 of 458 A.R. Williams 
 

Table 73: BMS Architecture 7 Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix E5 – BMS – Architecture 5 DC% Claims 

7)A1 Table 169: BMS - Architecture 7 Actuator 1 

7)A2 Refer to 7)A1 as similar techniques used 

7)A4 Refer to 7)A1 as similar techniques used 

7)A7 Refer to 7)A1 as similar techniques used 

7)O1 Table 170: BMS - Architecture 7 Output 1 

7)O2 Refer to 7)O1 as similar techniques used 

7)O5 Refer to 7)O1 as similar techniques used 

7)O6 Refer to 7)O1 as similar techniques used 

4.3.6.33.1 Element ‘7)A1’, ‘7)A1’, ‘7)A4’, ‘1)A7’ 

There is no change in the analysis for this actuator. The increase in the PCc claim is achieved by a 

better definition of the failure modes and the complexity of the actuator and output. At this stage it 

has been decided to use a simple contactor without any low power modes (economisers) and so all 

failure modes are identified. This removed the proportion of failures that may require further 

detailed analysis which gives a slightly higher PCc claim. 

4.3.6.33.2 Element ‘7)O1’, ‘7)O2’, ‘7)O5’, ‘7)O6’ 

PCc_POSCON is now used to check the output voltages as the contactors are sequenced through 

their connection and disconnection phases. This gives a higher confidence level that all faults are 

now detected to (98.5%).  

4.3.6.34 Cell Voltage Operating Area – Architecture 7 Plausibility Cross-checks 

4.3.6.34.1.1 PCc_POSCON 

The bus voltage (STR's'_BUS_AI_V) is measured once both of the contactors are energised (HVNEG is 

energised AND HVPOS1 energised). STR's'_BUS_AI_V is measured between HVNEG_BUS_AI_V and 

HVPOS1_BUS_AI_V, this is an independent measurement to the cell voltages and module voltages.  

As the measurement is outside of the Battery Management System (BMS) it may be necessary to 

have additional electronics to ensure that there is no leakage path from the inside of the String / 

Pack to the outside world. This may be as simple as a reed relay controlled by the microcontroller (as 

used in the initial detailed design). 

By enabling the contactors in a specific sequence, contactor faults can be detected on both the 

positive and negative side. This can also be used as a preventative technique to ensure that 
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contactors are not closed if the battery voltage is significantly different to the HV BUS. This is not 

considered a safety issue but more of method to prolong contactor life. It can also aid workshop 

maintenance when diagnosing reported problems with the systems. 

4.3.6.35 Cell Voltage Operating Area – Architecture 7 Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 74 and the LFM calculation shown in Table 75.  
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Table 74: Maintain OA Architecture 7 SPFM Calculation 
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Connections

C’c’_AI_0V001 Connection 6)C1 0.6 Y 0.6 40% 0.2400 Y PCc_6803_Self_Test, PCc_HVPosBatt 99.00% 0.0024

C’c’_AI_0V Connection 6)C2 0.05 Y 0.05 40% 0.0200 Y PCc_6803_Self_Test, PCc_HVPosBatt 99.00% 0.0002

HW Monitor

C’c’_AI_0V001 Measurement 6)M3 24 Y 24 40% 9.6000 Y PCc_6803_Self_Test, PCc_HVPosBatt 98.58% 0.136392

C’c’_AI_0V001 Transducer 6)T3 25 Y 25 40% 10.0000 Y
OA Window, PCC 6803 Self Test, 

PCc_HVPosBat
98.18% 0.181675

BATT'b'_PO_PC Actuator 5)A5 0.5 0 40% 0.0000 PCc_5kHzSelft_Test 99.00%

SPI ADC Inputs

C’c’_AI_0V001 Measurement 6)M1 102 Y 102 40% 40.8000 Y
PCc_OA_Window, PCc_6803_Self_Test, 

PCc_HVPosBatt
98.58% 0.579666

SPI ADC Internal

VMEAS_AI_TX Transducer 6)T1 50 Y 50 40% 20.0000 Y PCc_OA_Window, PCc_6803_Self_Test 97.94% 0.41285

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 40% 1.2000 Y
PCc_Data_Checksum, 

PCc_Poll_Response_Time
90.79% 0.110496

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 40% 1.2000 Y
PCc_Data_Checksum, 

PCc_Poll_Response_Time
90.79% 0.110496

M'm'_TRIP_FO_1Hz Measurement 4)M4 3.5 Y 3.5 40% 1.4000 Y PCc_5kHzSelft_Test 44.64% 0.77504

M’m’_TEST_DP Data 5)D12 3 Y 3 40% 1.2000 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.04764

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 40% 1.8000 Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test

94.08% 0.106605

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 40% 1.8000 Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test, CRC on CAL Tables

94.37% 0.1013085

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 40% 0.4000 Y 98.28% 0.00688

M'm'_TRIP_DI_V Output 5)O3 25 Y 25 40% 10.0000 Y PCc_PSU_Mon 98.26% 0.17425

Power Supply General - PSU 1)PSU1 60 Y 60 40% 24.0000 Y PCc_PSU_Mon 98.51% 0.3588

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 3 Y 3 40% 1.2000 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.04764

M’m’_TRIP_DO_V Connection 5)C5 0.05 Y 0.05 40% 0.0200 Y PCc_5kHzSelf_Test 99.00% 0.0002

BATT’b’_PO_PC Output 4)O7 0.5 N 0 40% 0.0000 PCc_5kHzSelf_Test 97.52%

M’m’_TRIP_DP Data 4)D11 3 0 45% 0.0000

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 40% 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 40% 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 40% 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0.0000

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 40% 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 40% 0.0000

Power Supply General - PSU 1)PSU2 20 0 40% 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 40% 0.0000

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 40% 2.4000 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.09528

M’m’_TRIP_DO_V Connection 5)C6 0.05 Y 0.05 40% 0.0200 Y PCc_5kHzSelf_Test 99.00% 0.0002

M’m’_TRIP_DP Data 4)D11 3 0 45% 0.0000

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 40% 3.6000 Y
Program sequence in state machines , 

Scheduled RAM test, Scheduled SW 

self test

94.08% 0.21321

SAFETY_OK_DI_V Measurement 5)M5 4 Y 4 40% 1.6000 Y PCc_5kHzSelf_Test 79.82% 0.322864

M’m’_OK_DLY_DI_V Transducer 5)T4 8 Y 8 40% 3.2000 Y PCc_PSU_Mon,PCc_5kHzSelf_Test 80.34% 0.629096

Power Supply General - PSU 1)PSU3 40 Y 40 40% 16.0000 Y PCc_PSU_Mon 98.51% 0.2392

String Management Outputs

HVPOS1P_DHO_V Output 7)O1 20 Y 20 40% 8.0000 Y PCc_PSU_Mon, PCc_POSCON 98.51% 0.1196

HVNEGN_DLO_V Output 7)O2 20 Y 20 40% 8.0000 Y PCc_PSU_Mon, PCc_POSCON 98.51% 0.1196

M’m’_TEST_DP Data 5)D12 3 Y 3 45% 1.3500 Y
PCc_Data_Checksum, PCc_Frame_Seq, 

PCc_Poll_Response_Time
96.03% 0.053595

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 6)A6 12 Y 12 40% 4.8000 Y PCc_PSU_Mon 98.28% 0.08256

String Hardware Logic outputs

HVPOS1N_DLO_V Output 7)O5 20 Y 20 40% 8.0000 Y PCc_PSU_Mon, PCc_POSCON 98.51% 0.1196

HVNEGP_DHO_V Output 7)O6 20 Y 20 40% 8.0000 Y PCc_PSU_Mon, PCc_POSCON 98.51% 0.1196

Coils

HVPOS1P_DHO_V Actuator 7)A1 15 y 15 100% 15.0000 Y PCc_PSU_Mon, PCc_HVPosBatt 84.86% 2.27175

HVPOS1N_DHSO Actuator 7)A4 15 y 15 100% 15.0000 Y PCc_PSU_Mon, PCc_HVPosBatt 84.86% 2.27175

HVNEGN_DLO_V Actuator 7)A2 15 y 15 100% 15.0000 Y PCc_PSU_Mon, PCc_HVPosBatt 84.86% 2.27175

HVNEGP_DHO_V Actuator 7)A7 15 y 15 100% 15.0000 Y PCc_PSU_Mon, PCc_HVPosBatt 84.86% 2.27175

597.15 534.25 SPFM = 97.3% 14.35
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Table 75: Maintain OA Architecture 7 LFM Calculation 
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Connections

C’c’_AI_0V001 Connection 6)C1 0.6 Y 0.6 40% 0.2376 Y 100.00% 0.2376 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.066528

C’c’_AI_0V Connection 6)C2 0.05 Y 0.05 40% 0.0198 Y 100.00% 0.0198 PCc_HW_MONITOR with PCc6801_Self_Test72.00% 0.005544

HW Monitor

C’c’_AI_0V001 Measurement 6)M3 24 Y 24 40% 9.463608 y 100.00% 9.4636 PCc_HVPOSBATT 80.00% 1.8927216

C’c’_AI_0V001 Transducer 6)T3 25 Y 25 40% 9.818325 y 100.00% 9.8183 PCc_HVPOSBATT 80.00% 1.963665

BATT'b'_PO_PC Actuator 5)A5 0.5 0 40% 0 y 100.00% 0.0000 PCc_HVPOSBATT 80.00% 0

SPI ADC Inputs

C’c’_AI_0V001 Measurement 6)M1 102 Y 102 40% 40.220334 Y 100.00% 40.2203 PCc_Batt_Bus_Compare 99.00% 0.40220334

SPI ADC Internal

VMEAS_AI_TX Transducer 6)T1 50 Y 50 40% 19.58715 Y 100.00% 19.5872 PCc_Batt_Bus_Compare 99.00% 0.1958715

SPI ADC Outputs

VMEAS_AI_TX Data 1)D1 3 Y 3 40% 1.089504 Y 100.00% 1.0895 PCc_Batt_Bus_Compare 99.00% 0.01089504

Module Management Inputs

VMEAS_AI_TX Data 1)D2 3 Y 3 40% 1.089504 Y 100.00% 1.0895 PCc_Batt_Bus_Compare 99.00% 0.01089504

M'm'_TRIP_FO_1Hz Measurement 4)M4 3.5 Y 3.5 40% 0.62496 Y 100.00% 0.6250 Wdog 90.00% 0.062496

M’m’_TEST_DP Data 5)D12 3 Y 3 40% 1.15236 0.0000

Module Management Internals

C’c’_AI_0V001 Parameter 1)P1 4.5 Y 4.5 40% 1.693395 Y 100.00% 1.6934 Wdog 90.00% 0.1693395

C'c'_OA_0V001 Parameter 1)P2 4.5 Y 4.5 40% 1.6986915 Y 100.00% 1.6987 Wdog 90.00% 0.16986915

M'm'_TRIP_DI_V Actuator 2)A3 1 Y 1 40% 0.39312 Y 100.00% 0.3931 0.39312

M'm'_TRIP_DI_V Output 5)O3 25 Y 25 40% 9.82575 Y 100.00% 9.8258 9.82575

Power Supply General - PSU 1)PSU1 60 Y 60 40% 23.6412 Y 100.00% 23.6412 Wdog 90.00% 2.36412

Module Management Outputs

M’m’_OA_TRIP_DP Data 1)D3 3 Y 3 40% 1.15236 Y 100.00% 1.1524 PCc_Batt_Bus_Compare 99.00% 0.0115236

M’m’_TRIP_DO_V Connection 5)C5 0.05 Y 0.05 40% 0.0198 0.0000

BATT’b’_PO_PC Output 4)O7 0.5 N 0 40% 0 0.0000

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

HV Measurement Inputs

S’s’_HVPOS_AI_1V Connection 1)C3 0.05 0 40% 0 0.0000

S’s’_HVBUS_AI_1V Connection 1)C4 0.05 0 40% 0 0.0000

HV Measurement Internal

S’s’_HVPOS_AI_1V Measurement 1)M2 4.9 0 40% 0 Y 0.0000 0

S’s’_HVPOS_AI_1V, HVPOS_BUS_AI_VTransducer 1)T2 14 0 40% 0 0.0000

S’s’_HVBUS_AI_1V Measurement 1)M6 4.9 0 45% 0 0.0000

S’s’_HVPOS_AI_1V, Parameter 1)P7 9 0 40% 0 0.0000

Power Supply General - PSU 1)PSU2 20 0 40% 0 0.0000

HV Measurement Outputs

S’s’_HVPOS_AI_1V Data 1)D7 3 0 40% 0 0.0000

String Management Inputs

M’m’_OA_TRIP_DP Data 1)D5 6 Y 6 40% 2.30472 Y 100.00% 2.3047 PCc_Batt_Bus_Compare 99.00% 0.0230472

M’m’_TRIP_DO_V Connection 5)C6 0.05 Y 0.05 40% 0.0198 0.0000

M’m’_TRIP_DP Data 4)D11 3 0 45% 0 0.0000

String Management Internal

S’s’_TRIP_DP Parameter 1)P8 9 Y 9 40% 3.38679 Y 100.00% 3.3868 Wdog 90.00% 0.338679

SAFETY_OK_DI_V Measurement 5)M5 4 Y 4 40% 1.277136 Y 100.00% 1.2771 1.277136

M’m’_OK_DLY_DI_V Transducer 5)T4 8 Y 8 40% 2.570904 Y 100.00% 2.5709 2.570904

Power Supply General - PSU 1)PSU3 40 Y 40 40% 15.7608 Y 100.00% 15.7608 Wdog 90.00% 1.57608

String Management Outputs

HVPOS1P_DHO_V Output 7)O1 20 Y 20 40% 7.8804 Y 100.00% 7.8804 PCc_Batt_Bus_Compare 99.00% 0.078804

HVNEGN_DLO_V Output 7)O2 20 Y 20 40% 7.8804 y 100.00% 7.8804 7.8804

M’m’_TEST_DP Data 5)D12 3 Y 3 45% 1.296405 0.0000

String Hardware Logic Inputs

M’m’_OK_DLY_DI_V Actuator 6)A6 12 Y 12 40% 4.71744 y 100.00% 4.7174 4.71744

String Hardware Logic outputs

HVPOS1N_DLO_V Output 7)O5 20 Y 20 40% 7.8804 y 100.00% 7.8804 7.8804

HVNEGP_DHO_V Output 7)O6 20 Y 20 40% 7.8804 y 100.00% 7.8804 7.8804

Coils

HVPOS1P_DHO_V Actuator 7)A1 15 y 15 100% 12.72825 Y 100.00% 12.7283 PCc_Batt_Bus_Compare 99.00% 0.1272825

HVPOS1N_DHSO Actuator 7)A4 15 y 15 100% 12.72825 y 100.00% 12.7283 PCc_Batt_Bus_Compare 99.00% 0.1272825

HVNEGN_DLO_V Actuator 7)A2 15 y 15 100% 12.72825 y 100.00% 12.7283 PCc_Batt_Bus_Compare 99.00% 0.1272825

HVNEGP_DHO_V Actuator 7)A7 15 y 15 100% 12.72825 y 100.00% 12.7283 PCc_Batt_Bus_Compare 99.00% 0.1272825

597.15 534.25 LFM = 89.9% 52.28
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The SPFM is now 97.3%, i.e. capable of being used to satisfy the safety goal at ASIL C and the LFM is 

89.9% which again matches the ASIL C requirement and only 0.1% below that required for ASIL D. 

This architecture satisfies a generic requirement for ASIL C for a BMS. Each vehicle application would 

have to be individually assessed but the Company investigating this system had performed a safety 

element out of context assessment and determined that ASIL C was required for the safety goal to 

maintain the cells within their operating area. 

Having such a significant increase in SPFM on the final architecture poses the question ‘Should this 

diagnostic capability have been added into the first architecture?’ The reason for adding in this 

diagnostic capability late in the design is: 

1) There are external methods in which the output of the BMS can be verified i.e. any external 

load on the HV bus can have a measurement system capable of verifying whether the 

contactors are open or closed. Although this is an independent system it was felt that it 

would complicate the overall vehicle design in that requirements would have to be placed 

on external systems and these tracked throughout a project. This makes the system less 

generic and harder to apply to different vehicle applications, especially when these are proof 

of concept designs. 

2) To make the measurements, there are a number of measurement points that have to be 

added in hardware, all of which have to be isolated from the low voltage (12V) system. 

3) The checks need to be sequenced which is not an insignificant amount of software 

development to ensure all of the failure modes can be diagnosed correctly. 

4) Performing tests in sequence adds delays for closing and opening contactors to allow time 

for voltages to increase or decrease (in a normal start-up / shutdown sequence). Delays are 

considered a disadvantage in terms of starting and stopping the vehicle. However, the 

increase in safety achieved compared to a minor inconvenience would not prevent this 

sequence being implemented. 

The PCc method would allow the designer to go back and run this analysis if necessary, i.e. take 

architecture 3 and add the contactor diagnostics as implement in architecture 7 and determine the 

projected SPFM and LFM architectural metrics. This was not performed as part of this work as the 

design was felt to satisfy all requirements for a generic (safety element out of context) design. 

4.3.7 Results 

The PCc analysis has taken the design through seven different candidate architectures with each one 

providing predicted SPFM and LFM values. To determine the accuracy of these predictions the final 
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SPFM and LFM values must be calculated. The process is the same as that discussed in 4.2.6, 

however, the number of components involved makes this a major task. The full analysis contains 

more than 2000 component failure modes to be analysed for architecture 7. Architectures 1 to 6 

offer some reduction in these numbers but the task is of similar complexity. For brevity, only the 

Architecture 7 calculations are included in the appendices. The full SPFM calculations for 

Architecture 7 are shown in Appendix E8 – BMS SPFM Calculation – Architecture 7 and the LFM 

calculations in Appendix E9 – BMS LFM Calculation – Architecture 7. 

The results are summarised below (Table 76). This shows the comparison between the SPFM and 

LFM predicted values achieved for each candidate architecture using the PCc method against the full 

SPFM and LFM values calculated as per the standard (BSI, 2011e). 

Table 76: Battery Management System Calculation Comparison 

 

Before examining the detail of the results, it is very important to emphasise that when the PCc 

examples were being developed and calculated the effort required was very low compared to that of 

the full calculations. Ignoring the gathering / calculation of the failure rate data, simply analysing 

each component failure mode and determining the applicable diagnostic coverage for one of the 

SPFM LFM

PCC 81.60% 71.95%

Full 82.53% 71.43%

Error -0.93% 0.51%

PCC 62.97% 75.86%

Full 58.43% 76.36%

Error 4.53% -0.50%

PCC 77.58% 76.25%

Full 75.58% 77.64%

Error 2.00% -1.39%

PCC 77.96% 79.64%

Full 75.68% 81.68%

Error 2.28% -2.04%

PCC 81.24% 84.45%

Full 79.69% 83.49%

Error 1.55% 0.96%

PCC 82.18% 87.35%

Full 80.48% 88.43%

Error 1.70% -1.07%

PCC 97.31% 89.94%

Full 97.09% 90.30%

Error 0.22% -0.36%

Architecture 6

Architecture 7

Architecture 1

Architecture 2

Architecture 3

Architecture 4

Architecture 5
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architectures took more than six man-months effort. This reduced for each subsequent architecture, 

but still required a significant amount of time. 

The normal process would be to try and increase the SPFM and LFM architectural metrics with each 

iterative design. However, with the ease that a system can be quantified with the PCc method it was 

decided to analyse a software-based solution (Architecture 1) and a hardware based solution 

(Architecture 2) just to understand the differences. From architecture 3 onwards the normal process 

in improving the design was followed. The PCc quantification showed this to be the case as each 

iteration from architecture 3 onwards gave an improvement in both SPFM and LFM. 

It is interesting that the SPFM dipped significantly moving from the software technique (Architecture 

1) to the hardware technique (Architecture 2) but this is where several points need to be considered: 

1) The SPFM achievable in hardware is typically lower as it is not possible to utilise as many 

different techniques with a simple hardware-based system 

2) If the violation of the safety goal due to random hardware failures was analysed the 

probability of failure for the hardware system is likely to be significantly low as it uses a 

completely independent system. This may have driven the design in terms of failure rates 

but not (as indicated) be sufficiently robust in terms of architectural metrics. 

3) The hardware system would be limited din how it could be configured compared to the 

software system where calibration tables could be downloaded into the microcontroller and 

modified as required. 

4) Improvements are evident by utilising a combined approach. This is also likely to result in an 

overall improvement in the probability of random hardware failures as the hardware based 

system remains independent to the software based system. 

These results were mirrored in the full design results for SPFM and LFM. The worst-case error in 

SPFM was 4.53% for architecture 2, the hardware based solution. This was due to optimistic 

assumptions in the PCc design that failure modes would be covered. In the final implementation it 

was not possible to justify these claims without resorting to additional software based diagnostics. 

As the aim of the architecture was to rely on hardware the additional software functionality was not 

included. 

From architecture 3 onwards the worst case SPFM error is 2.28% and the worst case LFM error is -

2.4%. In general, the PCc SPFM values are optimistic (see Figure 30) and the PCc LFM values 

pessimistic (see Figure 31). All the results are within acceptable limits and decisions can be made 

based on the PCc results to select the design to take forwards. 
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Figure 30: SPFM Comparison for the BMS 

 

Figure 31: LFM Comparison for the BMS 

The main point is that the average increases in architectural metrics for each iterative design 

architecture 3 onwards) provided by the PCc method agrees with the average increases in the full 

SPFM and LFM values. In no cases does an increase in the PCc values result in a decrease when the 

full design calculations are completed. 

The closeness of result is considered to be the based on the same discussion for the isolation 

measurement system (4.2.6). 
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4.4 Fuel Cell Control System 

A Fuel Cell Control system was chosen as it is a relatively complex control system where a large 

number of control elements interact and all are required in order to deliver a controlled power 

output from the system.  

In order to apply the method in a different way, the approach with the fuel cell is to examine the 

system as described in 4.4.2 and look at the possible PCcs that can be applied based on an 

assumption of sensors, actuators, microcontroller and published data on fuel cell control system 

control as discussed by Kunusch et al (Kunusch C, 2012). The data is quite restricted but not 

dissimilar to that available when considering new technology or proof of concept. Generally, at initial 

discussion, engineers would have an idea that the ASIL level required would be high (ASIL ‘C’ or ASIL 

‘D’) based on hydrogen leakage and explosion even without performing a detailed HARA, this in turn 

leads to a preliminary design to be considered. What is not normally possible is an analysis to 

determine what ASIL can be achieved with the final system based on this limited amount of 

information. 

In the majority of applications, whether this is for stationary power or for automotive applications, 

the Fuel Cell system would normally provide energy via a DCDC converter into a small battery in 

order to provide a buffered output to the load. An example is discussed by (Yu X., 2007) showing 

various examples aimed at electric power applications. Similar architectures are applicable to 

automotive applications. 

The fuel cell control system needs to control or monitor a number of parameters: 

1) Hydrogen supply 

2) Air supply 

3) Cell temperatures 

4) Voltage output 

5) Output current limit 

6) Cell voltage monitoring 

7) Exhaust dilution of hydrogen 

Failures of the any above may lead to violation of several different safety goals but when considered 

for delivering energy into the load all play a role. Depending on the application i.e. range extension 

or motive power in automotive applications the ASIL target for controlled output will vary.  
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Many of the safety issues relating to fuel cell powered vehicles have been researched (The 

International Consortium for Fire, Safety, Health and the Environment, 2011). This shows the wide 

range of issues from storage of hydrogen, the voltage output, refuelling the vehicle and the 

requirements for early leak detection. 

The PCc estimation for the fuel cell control system was performed based on a few different 

assumptions: 

1) No additional safety features will be included in the PCc analysis other than those that can 

be achieved with existing sensors / measurements. 

2) Estimations would need to be made for failure rates where necessary as many components 

did not have failure rate data available from manufacturers. 

3) Diagnostic coverage would be realistic based on available diagnostics available with the 

microcontroller and existing feedback means 

The above makes the quantification realistic as a first pass estimate of achievable SPFM and LFM on 

a theoretical design that can be used for proof of concept.  

4.4.1 Safety Goal Definition 

4.4.1.1 Aim – Maintain the power output within the Fuel Cell System Operating Range. 

When performing a hazard identification study on a Fuel Cell system there are likely to be a number 

of hazards relating to the control of hydrogen, the mixing of hydrogen and air in the exhaust dilution 

system, temperature control of the cells, operating voltage of the cells etc. Some of these are likely 

to have relatively high ASIL targets due to the high severity and exposure classifications and limited 

controllability. One safety goal that impacts on these control sub-systems is that of maintaining the 

required power output. For general motive power applications, for example, a range extender, this 

has a lower ASIL as the severity of a failure in this system is likely to result in reduced range rather 

than total loss of drive (subject to a full failure mode analysis). If consideration was being given to a 

drone then a higher ASIL is likely to result as due to weight restrictions it may only have sufficient 

battery power to land safely without the additional range coverage provided by the fuel cell. 

This raises an interesting question regarding what architectural metrics can be achieved with an 

initial concept design. This is at the initial idea stage when deciding whether it is viable setting up a 

Research and Development project. PCc quantification metrics can be applied in this situation in 

order to assess likely architectural changes in a design in order to achieve a required ASIL. Without 

PCc quantification, this measure would be very difficult to predict and may take many months of 

obtaining accurate information and detailed architecture design and analysis at the hardware 
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component level. With PCc quantification this process can be achieved in approximately 120 hours 

and based on previous results the predication will be sufficiently accurate to base a decision on 

whether to initiate the project and take the design through a full BS ISO 26262 development process 

or else consider different architectures. 

4.4.1.2 Safety Goal. 

Persons shall not be exposed to any unreasonable risk due to the fuel cell not being able to supply 

power at the demanded voltage / current targets. 

This assumes that the power demand by the load fall within the operating range of the Fuel Cell 

system. 

4.4.2 System Description 

The Fuel cell system diagram is shown in Figure 32. Each of the sub-systems involved in supplying 

power according to the safety goal are described in more detail below. 
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Figure 32: Fuel Cell System Diagram 

4.4.2.1 Cell 1,2,3…c 

These are the individual voltage measurements, like those used for Battery Management Systems. 

An initial review shows that analogue front end (AFE) devices from MAXIM such as the 

MAX14920/14921 (Maxim Integrated, 2014) or Linear Technology such as the LTC6804-1/LTC6804-2 

(Linear Technology, 2016) multi-cell battery monitors. Both have similar characteristics, however 

discussions with Linear Technology indicate availability of functional safety relevant data that would 

be useful in a fully compliant development process. Both companies also have devices specific for 

fuel cell monitoring but this data is only available through a non-disclosure agreement (NDA) and so 

not included in this Thesis. 

Cell voltage monitoring is critical as it can be used to detect a number of failures. This can initially 

exhibit as losses in efficiency but ultimately lead to catastrophic cell failure (Rama, 2008). 
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Temperature measurement is initially estimated to use simple Negative Temperature Coefficient 

(NTC) thermistors. 

4.4.2.2 Cell Control 

This handles conversion of data from the AFE (4.4.2.1) to a form suitable for processing by the Stack 

Control (4.4.2.7) sub-system. For high integrity systems, a companion chip from Linear Technology, 

the LTC6820 (Linear Technology, 2013) isoSPI device is suitable. 

4.4.2.3 Inlet Control, Exhaust Control and Stack Fans 

These sub-systems make up the air control path. The fans pull the air through the system with the 

path being an inlet filter, inlet control such as a louvre or iris, though the fuel cell, through the fan 

and finally out through the exhaust control which again may be a louvre or iris. Air control is 

required to provide sufficient oxygen to the fuel cell stack and also control the temperature of the 

stack. 

4.4.2.4 Hydrogen (H2) Valve, Hydrogen Pressure and Purge valve 

The hydrogen valve and purge valve control the flow of hydrogen into the fuel cell stack and allow 

purging of the hydrogen into the exhaust dilution system. As the hydrogen has a high moisture 

content the purge valve also allows any collected water to be expelled as part of the hydrogen 

purge. The hydrogen pressure sensor allows pressure within the stack to be monitored.  

4.4.2.5 Dilution Fan 

As hydrogen is vented as part of the hydrogen pressure control. In order to maintain hydrogen 

safety, it is important that the hydrogen can’t accumulate in quantities that would exceed the 

regulation for fuel cells (BSI, 2012). This is achieved with a dilution fan that forces air through the 

exhaust ducting and allows the hydrogen to disburse to ambient at very low concentration levels. 

4.4.2.6 Hydrogen (H2) Sensor 

Monitoring of hydrogen concentrations in the exhaust is possible (AMS AG, 2015), although 

generally expensive for high reliability sensors that are not prone to poisoning by contaminants in 

the air and suitable for use in automotive applications. The lower flammability limit of hydrogen 

(BOC, 2015) is 4% by volume and so continuous monitoring may offer a solution to failures in 

dilution or the purge valve etc. 

4.4.2.7 Stack Control 

The Stack Control is effectively the main Fuel cell system controller and is responsible for the overall 

management. All inputs and outputs are routed to this either directly or via communications 

networks such as LIN bus or CAN bus. 
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There are assorted options for the microcontroller. The choice is constrained by the usual input / 

output pin functionality, performance and cost. In terms of functional safety, other factors need to 

be considered depending on the ASIL target. As this exercise is to determine what can be achieved 

with a conceptual design and it is known that some of the ASIL targets will be C or D a reasonable 

assumption is that dual-core architecture configuration (Leteinturier, 2008), for example, a lock-step 

microcontroller will be required. Lock-steps have a high immunity to random hardware failures due 

to their two cores that operate out of phase by a fixed number of clock cycles and are physically at 

90O to each other. This gives a high level of immunity to transient and common cause failures as it 

would be very unlikely for both cores to be affected in a way that was not detected by the 

comparator that verifies the outputs from the two cores have the same results (once back in phase). 

Lock-step microcontrollers have many additional diagnostic functions such as Cyclic Redundancy 

Check (CRC) hardware, peripheral diagnostics, memory protection and often a companion chip with 

an intelligent question / answer window watchdog. 

Several manufacturers have comparable solutions such as Renesas (Renesas Electronics Europe, 

2016), Infineon (Infineon Technologies AG, 2014) and Texas Instruments (Texas Instruments, 2014).  

For the purposes of this design the Texas Instruments Hercules TMS570 (see 4.2.5.4.3) was selected. 

4.4.2.8 DCDC Converter 

In a vehicle application the DCDC converter couples the two power sources (Karaki S, 2015) which in 

this case are the fuel cell and the battery. The DCDC converter primarily feeds a battery or during 

peak vehicle power requirements the energy may be delivered directly to the propulsion system. 

This imposes a number of requirements on the battery such as continuous power, peak power, 

charge rates for regenerative braking (Markel T, 2003). This in turn imposes requirements on the 

fuel cell to deliver power. 

Another operation not discussed by the authors above, where the battery is required to maintain 

power to the vehicle is during fuel cell recovery methods. This is achieved by eliminating air supply 

to the fuel cells and applying a load to the fuel cell outputs (Choo, 2015).  

4.4.3 Fault Consideration 

As the approach was being applied to concept with limited definition, it was decided not to perform 

an FMEA but rely on PCcs developed from two approaches: 

• Failure modes that would be detected by diagnostic techniques described in ISO 26262 Part 

5 (BSI, 2011e). 
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• Standard PCc techniques that had been developed in previous designs i.e. the Isolation 

Tester (4.2) and Cell Management system (4.3). This is based on the fact that PCcs would be 

developed to be generic so that they can be re-used on future projects, for example 

monitoring range on a sensor or monitoring current and voltage on an output that is driving 

an actuator. 

4.4.4 System Analysis 

To aid discussion in the Thesis, the system design was broken down into a number of sub-systems: 

1) Voltage and current based measurement and control. 

2) Air flow and temperature control. 

3) Hydrogen delivery control, dilution and fuel cell purging. 

4) Control parameters and data. 

5) High Voltage Interlock (HVIL) and Isolation testing. 

Each sub-system is discussed below. 
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4.4.4.1 Voltage and Current Based Measurement and Control Classified Signals 

The system diagram for signals and elements relating to this sub-system are shown in Figure 33. 
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Figure 33: Voltage and Current Sub-system 
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To perform the analysis many signals are defined which are connected between the critical 

elements. For clarity, only signals for this sub-system (Figure 33) are defined in this section. 

4.4.4.1.1 Cell1,2,3….’c’. 

4.4.4.1.1.1 C1 – CELL’c’_AI_0V0001 

The connection to each of the cells to facilitate individual voltage measurement. Note a common 0V 

connection is assumed through the frame for cell and stack measurement and so not included as a 

separate connection in this architecture. 

4.4.4.1.1.2 C2 – STACK’s’_AI_0V0001 

The connection to the top of the stack ‘s’ to facilitate individual stack voltage measurement. 

4.4.4.1.1.3 C3 – CELL’c’_AI_0C1 

The connection to each of the cells to facilitate temperature measurement. Thermal analysis may 

indicate that cells can be monitored as groups in a more cost-effective design but this is not assumed 

in this architecture. 

4.4.4.1.2 Cell Control. 

4.4.4.1.2.1 M1 and D1– CELL’c’_AI_0V0001 

The measurement (M1) by the AFE of each of the individual cell voltages. This is made available to 

the Stack Control system as data (D1) over an SPI connection. 

4.4.4.1.2.2 M23 and D2– STACK’s’_AI_0V0001 

The measurement (M23) by the cell control system of the overall stack voltage which is then 

transmitted over SPI (D2). 

4.4.4.1.2.3 M20 and D30 – CELL’c’_AI_0C1 

The temperatures of the cells are measured (M20) and the cell control system converts this to a 

calibrated temperature representing the overall stack temperature. The calibration is based on 

previous thermal analysis and the assembly pattern on the individual cells within the stack. Data is 

transmitted over SPI (D30). 

4.4.4.1.3 Stack Control Inputs. 

4.4.4.1.3.1 D3 and P1– CELL’c’_AI_0V0001 

The data (D3) received and converted to an internal array of parameters (P1) representing individual 

cell (‘1’ to ‘c’) voltages. 
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4.4.4.1.3.2 D4 and P2– STACK’s’_AI_0V0001 

The data (D4) received and converted to an internal array of parameters (P2) representing individual 

stack (‘1’ to ‘s’) voltages. 

4.4.4.1.3.3 D29 and P46 – CELL’c’_AI_0C1 

The data (D29) received and converted to an internal array of parameters (P46) representing 

individual stack (‘1’ to ‘s’) temperatures. 

4.4.4.1.3.4 M2 and P4 – STACK’s’_AI_0V1 

The measurement (M2) by the Stack Control system of the overall stack voltage which is then 

converted to an internal array of parameters (P4) representing each individual stack (‘1’ to ‘s’) 

voltage. 

4.4.4.1.3.5 M3 and P5 – FCS_HVPOS_INT_AI_0V1 

The measurement (M3) for the stack total voltage internal to the Fuel cell system (prior to the HV 

contactors) which is then converted to an internal parameter (P5) representing the output voltage. 

4.4.4.1.3.6 M4 and P6 – FCS_HVPOS_EXT_AI_0V1 

The measurement (M4) for the stack total voltage external to the Fuel Cell system (on the output of 

the HV contactors) which is then converted to an internal parameter (P6) representing the output 

voltage. This is also capable of measuring the load voltage prior to closing or after opening the 

contactors. 

4.4.4.1.3.7 M18 and P47 – STACK’s’_AI_0A001 

The measurement (M18) of each individual stack (‘1’ to ‘s’) current converted to an internal 

parameter (P47). 

4.4.4.1.3.8 M19 and P48 – FCS_AI_0A001 

The measurement (M19) of the total FCS current converted to an internal parameter (P48). 

4.4.4.1.4 Stack Control Internal. 

4.4.4.1.4.1 P49 – CONTACTOR_TRIP_DP 

An internal parameter (P49) that indicates that a contactor has tripped. The trip status is defined 

further as each of the applicable PCcs are discussed. 

4.4.4.1.4.2 P7 – FCS_STATE_DP 

An internal parameter (P7) representing the main state machine enumerated type for the Fuel Cell 

system. This is used for all monitoring and control functions for starting up, running and shutting 

down the Fuel Cell system. 
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4.4.4.1.4.3 P51 – HVPOS_PRECHG_DMD_DP 

An internal parameter (P51) indicating the demand for a pre-charge. When set, the Fuel Cell Control 

System (FCCS) will pre-charge the HV bus supplying the load with a limited current. This is designed 

to limit the inrush current and protect any capacitor banks in the DCDC converter. 

4.4.4.1.4.4 P55 – V_PLAUSIBILITY_DP 

An internal parameter (P55) which is set when the voltage plausibility PCc fails. 

4.4.4.1.4.5 P57 – CAL_WINDOW_DP_0V001 

An internal calibration structure (P57) which is used to determine minimum and maximum voltage 

ranges for the stacks (‘1’ to ‘s’). 

4.4.4.1.4.6 P3 – STACK’s'_OA_TRIP_DP 

An internal parameter (P3) which is used indicate when a stack (‘1’ to ‘s’) voltage is outside of its 

operating area. 

4.4.4.1.4.7 P54 – A_PLAUSIBILITY_DP 

An internal parameter (P54) which is set when the current (Amperes) plausibility PCc fails. 

4.4.4.1.5 Stack Control Outputs. 

4.4.4.1.5.1 O1 and P56 – HVNEG_DHO_V 

An internal parameter (P56) indicating that the stack controller watchdog monitor has tripped. This 

independently opens the HVNEG_DHO_V contactor (O1). 

4.4.4.1.5.2 O2 and P3 – HVPOS_DHO_V 

An internal parameter (P3) that will open the contactor (HVPOS_DHO_V (O2)) if the stack ’s’ voltage 

is outside of its operating area. Under normal circumstances the contactor will open and close under 

the command of the main state machine (FCS_STATE_DP). 

4.4.4.1.5.3 O17 and P50 – HVPOS_PRECHG_DHO_V 

This output delivers limited current to the HVPOS output (HVPOS_AO_V) as demanded by the 

FCS_STATE_DP. 

4.4.4.1.6 HV Control. 

4.4.4.1.6.1 A1 - HVNEG_DHO_V and C4 – HVNEG_AO_V 

The actuator (A1) is the main negative contactor used to switch the negative side of the High Voltage 

output to the load (DCDC). 
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4.4.4.1.6.2 A2 - HVPOS_DHO_V and C5 – HVPOS_AO_V 

The actuator (A2) is the main positive contactor used to switch the positive side of the High Voltage 

output to the load (DCDC). 

4.4.4.1.6.3 A10 – HVPOS_PRECHG_DHO_V 

The output that self-limits current to HVPOS output (HVPOS_AO_V) as demanded by the 

FCS_STATE_DP. The self-limit can be achieved by a Positive Temperature Coefficient (PTC) resistor. 

4.4.4.1.6.4 C24 – STACK’s’_AI_0V1 

The connection (C24) for the overall stack voltage 

4.4.4.1.6.5 C25 - FCS_HVPOS_INT_AI_0V1 

The connection (C25) for the stack total voltage internal to the FCCS. 

4.4.4.1.6.6 C26 – FCS_HVPOS_EXT_AI_0V1 

The connection (C26) for the stack total voltage external to the FCCS. 

4.4.4.1.6.7 T7 – STACK’s’_AI_0A001 

The current sensor (T7) for each individual stack (‘1’ to ‘s’) current. 

4.4.4.1.6.8 T8 – FCS_AI_0A001 

The current sensor (T8) for the total FCS current. 

4.4.4.1.7 DCDC. 

4.4.4.1.7.1 C32 – HVNEG_AO_V 

The connection (C32) to the DCDC converter. This is effectively outside of the boundary of the FCCS 

but critical to successful operation in an automotive application. 

4.4.4.1.7.2 C31 – HVPOS_AO_V 

The connection (C31) to the DCDC converter. This is effectively outside of the boundary of the FCCS 

but critical to successful operation in an automotive application. 

4.4.4.1.8 Hybrid Control 

This is shown for completeness in the FCCS diagram but not required as part of the safety case for 

the FCCS as the Hybrid Control lies outside of the FCS boundary. 

4.4.4.2 Air Flow and Temperature Control Classified Signals 

The air flow and temperature related elements and signals are shown in Figure 34. 
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Figure 34: Air Flow and Temperature Control Sub-system 

4.4.4.2.1 Inlet air Control. 

4.4.4.2.1.1 A12 and D33 – FCS_AIR_IN_PO_0PC1 

The PWM output that controls the angular position of the air input to the fuel cell stack. The 0.1% 

duty cycle resolution provides 1000 available steps for control. 
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4.4.4.2.1.2 T10 and D34 – FCS_AIR_IN_PO_0PC1 

The FCS_AIR_IN_POS_AI_1Dg signal provides feedback on the control. The actual control loop runs 

on temperature control and so the feedback is used as a plausibility check rather than having to 

match the accuracy of the PWM output. 

4.4.4.2.2 Exhaust Control. 

4.4.4.2.2.1 A13 and D35 – STACK’s’_EXHAUST_PO_0PC1 

The PWM output that controls the angular position of the air exhaust the for each fuel cell stack. The 

0.1% duty cycle resolution provides 1000 available steps for control. 

4.4.4.2.2.2 T11 and D36 – STACK’s’_EXHAUST_POS_AI_1Dg 

The STACK’s’_EXHAUST_POS_AI_1Dg signal provides feedback on the control for each individual fuel 

cell stack. The actual control loop runs on temperature control and so the feedback is used as a 

plausibility check rather than having to match the accuracy of the PWM output. 

4.4.4.2.3 Stack Fans. 

4.4.4.2.3.1 A3 and C6 – STACK’s’_FAN’f’_DHO_V 

The high side digital output that controls power to the fan for an individual fuel cell stack. 

4.4.4.2.3.2 A4 and C7 – STACK’s’_FAN’f’_PO_0PC1 

Often, to maintain an evenly distributed air flow across the stack a number of fans (1 to ‘f’) are used 

to control air flow. The PWM output that controls the individual fan speed to fan ‘f’ the for each 

individual fuel cell stack ‘s’. The 0.1% duty cycle resolution provides 1000 available steps for control. 

4.4.4.2.3.3 T1 and C8 – STACK’s’_FAN’f’_FI_1HZ 

The STACK’s’_FAN’f’_FI_1HZ signal provides feedback on the fan speed of each individual fan. This 

allows diagnostics in terms of fan running / not running and actual speed. 

4.4.4.2.4  Cathode Air Pressure. 

4.4.4.2.4.1 T6 and C23 – CATHODE_AIR_AI_0Pa1 

The cathode air pressure is effectively the air pressure at the input to the Fuel Cell system and can 

be used to determine pressure drop across the filters. 

4.4.4.2.5 Cell Temperature. 

4.4.4.2.5.1 T2 and C9 – STACK’s’_TEMP’t’_AI_0C1 

The stack (1 to ‘s’) is an overall stack temperature measurement. This depends on the position the 

transducer is mounted in the stack; typically, calibration allows it to be used to interpolate individual 

cell temperatures.  
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4.4.4.2.6 Inlet Air Temperature. 

4.4.4.2.6.1 T12 and C28 – INLET_AIR_AI_0C1 

The system inlet air temperature is an average temperature for the air being drawn into the Fuel Cell 

system. As this is ambient air from the surroundings, the temperature is assumed to be 

representative of the air temperature flowing into each stack (1 to ‘s’). 

4.4.4.2.7 Outlet Air Temperature. 

4.4.4.2.7.1 T13 and C29 – OUTLET_AIR_AI_0C1 

This is purely a monitor for diagnostic purposes and not used for control so an average for all of the 

stacks (1 to ‘s’) is used. 

4.4.4.2.8 Stack Control Inputs. 

4.4.4.2.8.1 D39 and P62 – FCS_AIR_IN_POS_AI_1Dg 

CAN data converted to an internal parameter for the FCS_AIR_IN_POS_AI_1Dg signal. 

4.4.4.2.8.2 D40 and P60 – STACK’s’_EXHAUST_POS_1Dg 

CAN data converted to an internal parameter for the STACK’s’_EXHAUST_POS_1Dg signal. 

4.4.4.2.8.3 M21 and P65 – STACK’s’_FAN’f’_AfbI_0V1 

Measurement of the STACK’s’_FAN’f’_AfbI_0V1 voltage feedback signal and conversion to an 

internal parameter for fan actuator diagnostic purposes. 

4.4.4.2.8.4 M22 and P66 – STACK’s’_FAN’f’_AfbI_0A1 

Measurement of the STACK’s’_FAN’f’_AfbI_0A1 current feedback signal and conversion to an 

internal parameter for fan actuator diagnostic purposes. 

4.4.4.2.8.5 M6 and P20 – STACK’s’_FAN’f’_FI_1HZ 

Measurement of the STACK’s’_FAN’f’_FI_1HZ speed signal and conversion to an internal parameter 

for fan speed / air flow diagnostic purposes. 

4.4.4.2.8.6 M17 and P45 – CATHODE_AIR_AI_0Pa1 

Measurement of the CATHODE_AIR_AI_0Pa1 signal and conversion to an internal parameter for 

cathode air pressure diagnostic purposes. 

4.4.4.2.8.7 M7 and P21 – STACK’s’_TEMP’t’_AI_0C1 

Measurement of the STACK’s’_TEMP’t’_AI_0C1 signal and conversion to an internal parameter for 

monitoring stack temperature as part of the temperature control loop. 
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4.4.4.2.8.8 M24 and P70 – INLET_AIR_AI_0C1 

Measurement of the INLET_AIR_AI_0C1 signal and conversion to an internal parameter for 

monitoring inlet air temperature for diagnostic purposes. 

4.4.4.2.8.9 M25and P71 – OUTLET_AIR_AI_0C1 

Measurement of the OUTLET_AIR_AI_0C1 signal and conversion to an internal parameter for 

monitoring outlet air temperature for diagnostic purposes. 

4.4.4.2.9 Stack Control Internals. 

4.4.4.2.9.1 P58 - FCS_AIR_IN_PO_1Dg 

An internal parameter in degrees that is converted to a PWM value to control the inlet air damper.  

4.4.4.2.9.2 P72 - STACK’s’_EXHAUST_PO_1Dg 

An internal parameter in degrees that is converted to a PWM value to control the outlet (exhaust) 

air damper.  

4.4.4.2.9.3 P17 - STACK’s’_FAN’f’_SPEED  

An internal parameter for controlling the fan speed digital outputs for power and the PWM outputs 

for speed control. This would be linked to the main FCCS state machines and temperature control 

loops. 

4.4.4.2.9.4 P22 - FCS_WARNING 

In order to simplify the diagrams, the FCS warning is a genic signal used to indicate a warning in the 

system. This would use all of the diagnostic routes to maintain a full warning / error list and these 

would either shut down or reduce power output – both of which deviate the safety goals and so a 

single warning flag is considered sufficient for the PCc analysis. 

4.4.4.2.10 Stack Control Outputs. 

4.4.4.2.10.1 P61 and D37 – FCS_AIR_IN_PO_0PC1 

Internal parameter for the FCS_AIR_IN_PO_0PC1 signal output on CAN.  

4.4.4.2.10.2 P59 and D38 – STACK’s’_EXHAUST_PO_0PC1 

Internal parameter for the STACK’s’_EXHAUST_PO_0PC1 signal output on CAN.  

4.4.4.2.10.3 P18 and O6 – STACK’s’_FAN’f’_DHO_V 

Internal parameter for the STACK’s’_FAN’f’_DHO_V signal which drives the power output to the fan 

(1 to ‘f’) on each stack. This provides an independent shutdown path to the PWM outputs. 
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4.4.4.2.10.4 P19 and O7– STACK’s’_FAN’f_PO_0PC1 

Internal parameter for the STACK’s’_FAN’f_PO_0PC1 signal which drives the PWM output to the fan 

(1 to ‘f’) on each stack for speed / air flow control.  

4.4.4.3 Hydrogen Delivery Control, Dilution and Fuel Cell Purging Classified Signals 

The hydrogen delivery related elements and signals are shown in Figure 35. 

 

Figure 35: Hydrogen Control Sub-system 

4.4.4.3.1 Hydrogen Valve (H2_VALVE) 

4.4.4.3.1.1 C12 and A7 - H2_VALVE_PO_0PC1 

The connection (C12) for the hydrogen valve (A7). 
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4.4.4.3.1.2 C13 and A7 - H2_VALVE_SO_0V 

The 0V return (C13) for the hydrogen valve (A7). 

4.4.4.3.2 Hydrogen Pressure (H2_PRESSURE) 

4.4.4.3.2.1 C19 and T3 - H2_PRESS_AI_0Pa1 

The H2_PRESS_AI_0Pa1 measure at the input to the Fuel Cell system. This allows diagnostics to be 

performed on the hydrogen valve. 

4.4.4.3.3 Purge Valve (PURGEVALVE’s’) 

4.4.4.3.3.1 C14 and A8 - STACK’s’_PURGE_VALVE_DHO_V 

The connection (C14) and purge value (A8) for the STACK’s’_PURGE_VALVE_DHO_V signal allowing 

hydrogen to be purged from the system. 

4.4.4.3.3.2 C15 and A8 - PURGE_VALVES_SO_0V 

The PURGE_VALVES_SO_0V is the 0V return signal for the purge valve. 

4.4.4.3.3.3 C18 and T14 - STACK’s’_PURGE_POS’s’_DHI_V 

The STACK’s’_PURGE_POS’s’_DHI_V signal indicates the position (open or closed) of the purge valve 

which is used to diagnose possible problems with the purge valve control including mechanical 

failures that prevent the purge valve from closing. 

4.4.4.3.3.4 C16 and A14 - STACK’s’_PURGE_HEAT’s’_DHO_V 

The STACK’s’_PURGE_HEAT’s’_DHO_V controls the heater in the purge valve to ensure that it can be 

opened / closed correctly in in very low ambient (freezing) conditions. 

4.4.4.3.3.5 C17 and A14 - STACK’s’_PURGE_HEAT’s’_SO_0V 

The STACK’s’_PURGE_HEAT’s’_SO_0V return signal for the purge valve heater. 

4.4.4.3.4 Dilution Fan (DILUTION_FAN)) 

4.4.4.3.4.1 C30 and A9 - DILUTION_FAN_SO_0V 

The 0V return for the dilution fan. 

4.4.4.3.4.2 C20 and A9 - DILUTION_FAN_PO_0PC1 

The speed control for the dilution fan. 

4.4.4.3.4.3 C21 and T4 - DILUTION_FAN_FI_1HZ 

Monitoring of the dilution fan speed for diagnostic purposes. 
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4.4.4.3.5 H2 Concentration (H2_SENSOR) 

4.4.4.3.5.1 C22 and T5 - H2_AI_0PC1 

The transducer (hydrogen sensor) that measures hydrogen concentration in the exhaust. Typically 

measures low concentrations of hydrogen as a percentage of the lower explosive limit (LEL). 

4.4.4.3.6 Stack Control Inputs (STACK_ CONTROL) 

4.4.4.3.6.1 P33 and M8 - H2_VALVE_AfbI_0V1 

Voltage monitoring (H2_VALVE_AfbI_0V1) of the supply to the hydrogen valve. 

4.4.4.3.6.2 P34 and M9 - H2_VALVE_AfbI_0A001 

Current monitoring (H2_VALVE_AfbI_0A001) of the hydrogen valve. 

4.4.4.3.6.3 P40 and M15 - H2_PRESS_AI_0Pa1  

The H2_PRESS_AI_0Pa1 as measured at the input to the Fuel Cell system converted to a scaled 

parameter for internal diagnostics. 

4.4.4.3.6.4 P37 and M13 - STACK’s’_PURGE_VALVE_AfbI_0V1 

Voltage monitoring (STACK’s’_PURGE_VALVE_AfbI_0V1) for each stack purge valve. 

4.4.4.3.6.5 P38 and M14 - STACK’s’_PURGE_VALVE_Afb_0A001 

Current monitoring (STACK’s’_PURGE_VALVE_Afb_0A001) for each stack purge valve. 

4.4.4.3.6.6 P39 and M12 - STACK’s’_PURGE_POS’s’_DHI_V 

Measurement of the purge valve position feedback switch converted to an internal parameter 

(STACK’s’_PURGE_POS’s’_DHI_V). 

4.4.4.3.6.7 P43 and M16 - DILUTION_FAN_FI_1HZ 

Measurement of the dilution fan speed and conversion to an internal parameter 

(DILUTION_FAN_FI_1HZ) for diagnostic purposes. 

4.4.4.3.6.8 P44 and D10 - H2_AI_0PC1 

THE CAN data received from the hydrogen sensor to use as the hydrogen percentage (H2_AI_0PC1) 

parameter. 

4.4.4.3.7 Stack control Internals (STACK_ CONTROL) 

4.4.4.3.7.1 P31 - H2_VALVE_PWM_DP 

The control parameter for the hydrogen valve PWM demand. Closely related to the fuel cell state 

machine to determine the operational requirements for the hydrogen valve. 
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4.4.4.3.7.2 P56 - SAFE_DP 

The safety output from the watchdog. If the monitor (PCc_WDOG) determines that the 

microcontroller is not working correctly or the software detects a serious malfunction 

(FCS_FAULT_DP) and requires shutting down of the system (in an uncontrolled way i.e.no warning to 

the vehicle driver) the SAFE_DP parameter is set which will drop out the external control valves 

forcing the system to shut down into a safe state. 

4.4.4.3.7.3 P30 - FCS_FAULT_DP 

Set when the software (generally through PCcs) determines that the system is malfunctioning and 

wishes to initiate an uncontrolled shutdown of the system. If control can still be maintained (even at 

reduced power) or the fault is not serious then normally the FCCS would shut down in a controlled 

manner. 

4.4.4.3.7.4 P35 - STACK’s’_PURGE_VALVE_DEMAND_DP 

The control demand for the purge valve for each stack (1 to ‘s’). 

4.4.4.3.7.5 P67 - STACK’s’_PURGE_HEAT_DEMAND_DP 

The control demand for the purge valve heaters for each stack (1 to ‘s’).  

4.4.4.3.7.6 P41 - DILUTION_FAN_DEMAND_DP 

The control demand for the dilution fan. 

4.4.4.3.8 Stack control Outputs (STACK_ CONTROL) 

4.4.4.3.8.1 P32 and O10 - H2_VALVE_PO_0PC1 

The H2_VALVE_PO_0PC1 signal controls the opening of the H2 valve. 

4.4.4.3.8.2  P56 - SAFE_DP and O11 - H2_VALVE_SO_0V 

The H2_VALVE_SO_0V switches the 0V to the hydrogen valve based on the safety signal (SAFE_DP). 

This provides a second method for closing the valve should the H2_VALVE_PO_0PC1 (4.4.4.3.1.1) 

fail. 

4.4.4.3.8.3 P36 and O12 - STACK’s’_PURGE_VALVE_DHO_V 

Based on the purge valve demand derived from the FCCS state machine, the purge valve will 

periodically be requested to open for a pre-determined period. 

4.4.4.3.8.4 P56 - SAFE_DP and O13 - PURGE_VALVES_SO_0V 

The redundant path to close the purge valve if required. 
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4.4.4.3.8.5 P68 and O14 - STACK’s’_PURGE_HEAT’s’_DHO_V 

Based on ambient temperatures this purge valve heater for each stack (1 to ‘s’) will be controlled 

based on temperature and operating conditions. 

4.4.4.3.8.6 P56 - SAFE_DP and O15 - PURGE_HEAT_SO_0V 

The redundant path to turn off the purge valve heater if required. 

4.4.4.3.8.7 P30 and O19 - DILUTION_FAN_SO_0V 

The redundant path to turn off the dilution fan if required. 

4.4.4.3.8.8 P42 and O16 - DILUTION_FAN_PO_0PC1 

The speed control for the dilution fan based on the FCCS state machine and hydrogen 

concentrations assumed and measured in the exhaust i.e. purge control will normally pre-trigger 

increased dilution fan speed. 
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4.4.4.4 High Voltage Interlock (HVIL) and Isolation Testing Classified Signals 

The HVIL and Isolation Testing signals and elements are shown in Figure 36 

 

Figure 36: HVIL and Isolation Testing Signals and Elements 
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4.4.4.4.1 Stack Control Internals (STACK CONTROL) 

4.4.4.4.1.1 P16 - ISOT_ST_TIMER_DP 

To run the self-test an internal timer is required to trigger the test. This is set by the parameter 

ISOT_ST_TIMER_DP. 

4.4.4.4.2 Stack Control Outputs (STACK CONTROL) 

4.4.4.4.2.1 P8, P13 - - STACK’s'_HVIL_TRIP_DP and O1 - HVNEG_DHO_V 

If an internal trip occurs that requires that the high voltage output to disconnect, parameter 

STACK’s'_HVIL_TRIP_DP will be set which will disable the output HVNEG_DHO_V. 

4.4.4.4.2.2 P14 - ISOL_TEST_DHO_V_DP and O5 - ISOL_TEST_DHO_V 

The isolation self-test will wait for a time trigger and then request a self-test of the isolation 

monitoring system via the parameter ISOL_TEST_DHO_V_DP and which drives the output 

ISOL_TEST_DHO_V. 

4.4.4.4.2.3 O3 - HVIL_OUT_DHO_V_DP and A15 - HVIL_OUT_AO_0V01 

The HVIL system is driven by the stack controller. The circuit is enabled on by the output 

HVIL_OUT_DHO_V_DP which drives an actuator which is current controlled output 

(HVIL_OUT_AO_0V01) to improve diagnostic capability. 

4.4.4.4.2.4 P53 - ISOT_AI_1KR_DP and D27 - FCS_1KR_DP_TX 

The Isolation Tester provides an input to the stack controller (4.4.4.4.3.1), if the PCC_Isot_ST is 

satisfied then this value is converted to parameter ISOT_AI_1KR_DP ready to be output over CAN 

(FCS_1KR_DP_TX). 

4.4.4.4.3 Stack Control Inputs (STACK CONTROL) 

4.4.4.4.3.1 M5 and P15 - ISOT_AI_1KR 

The measurement of the isolation value. Various isolation monitoring systems exist but for this study 

a voltage input is assumed as per the design discussed in section 4.2. This is converted to a scaled 

resistance value (ISOT_AI_1KR). 

4.4.4.4.3.2 M26 and P9 - HVIL_OUT_AfbI_0V01 

As the HVIL circuit is current controlled a known voltage can be monitored (M26) back into the stack 

controller for diagnostic purposes (HVIL_OUT_AfbI_0V01). 
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4.4.4.4.3.3 M27 and P10 - HVIL_MID_AI_0V01 

The high voltage interlock system has the possibility to diagnose which stack (1 to ‘s’) has tripped. In 

this application with two stacks in series (‘s’ = 2) then one HVIL_MID_AI_0V01 voltage feedback is 

required to determine which stack has an interlock problem. 

4.4.4.4.3.4 M28 and P11 - HVIL_IN_AI_0V01 

The return HVIL voltage is monitored (M28) and converted to a voltage parameter 

(HVIL_IN_AI_0V01) and used to determine if the HVIL has tripped and if so, where in the high voltage 

output circuit this has occurred. 

4.4.4.4.3.5 M29 and P12 - HVIL_OK_HDI_V 

Rather than rely on software processing entirely for the HVIL circuit and additional window 

comparator with a delay is used (M29) to generate a digital input parameter (HVIL_OK_HDI_V) that 

can be additionally be used for diagnostics. 

4.4.4.4.4 High Voltage Control (HV CONTROL) 

4.4.4.4.4.1 A11 - ISOL_TEST_DHO_V 

This is classed as an actuator as it is via an opto-isolator to ensure electrical isolation between the 

HV system and the low voltage control system. 

4.4.4.4.5 Isolation Teser (ISOLATION) 

4.4.4.4.5.1 04 - ISOT_AI_1KR 

The output from the isolation monitoring system used to pass the isolation resistance value 

(ISOT_AI_1KR) to the Stack Control system. Note: T4 is considered outside of the scope of this item 

as it is an independent standalone unit as discussed in section 4.2. 

4.4.4.4.6 High Voltage DCDC Converter (DCDC) 

4.4.4.4.6.1 C32 - HVNEG_AO_V 

Input connection to the DCDC converter for the high voltage negative rail. 

4.4.4.4.6.2 C31 - HVPOS_AO_V 

Input connection to the DCDC converter for the high voltage positive rail. 

4.4.4.4.6.3  C33 - HVIL_OUT_AO_0V01 

Connection out to the DCDC converter for the HVIL. 

4.4.4.4.6.4 C34 - HVIL_MID_AI_0V01 

Mid-point connection (between stack 1 and stack 2 for the HVIL. 
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4.4.4.4.6.5 C35 - HVIL_IN_AI_0V01 

Return connection for the HVIL. 

4.4.4.4.7 Hybrid Control (HYBRID CONTROL) 

4.4.4.4.7.1 D28 - FCS_1KR_DP_TX 

The isolation resistance measurement for the FCCS. Note this includes the input side to the DCDC 

converter once the HV contactors have closed. 

4.4.4.5 Control Parameters and Data Classified Signals 

Figure 37  shows the Control Parameters. 
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Figure 37: Control Parameters and Data 
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4.4.4.5.1 Stack Control Inputs (STACK CONTROL) 

4.4.4.5.1.1 D5 and P63 - FCS_CMD_DP_RX 

The data received from the Hybrid Control unit. This sets requirements to start up, deliver power 

and shut down etc. thus allowing the FCS to react to demands. 

4.4.4.5.2 Stack Control Outputs (STACK CONTROL) 

4.4.4.5.2.1 P64 and D6 - FCS_STATUS_DP_RX 

The internal parameter for the FCS status. This is based on the main FCCS state machine covering 

power up self-tests, start-up states, contactor status, running mode and shutdown states etc. This 

continually informs the hybrid controller about the FCCS state so that it can make decisions. For 

example, once it knows the contactors are closed it can increase load to the DCDC converter based 

on additional control parameters discussed in this section. 

4.4.4.5.2.2 P52 - DATA_PLAUSIBILITY_FAULT_DP 

Any error in data reception / transmission generates parameters that indicate the status of the 

relevant data parameter. Including all of these parameters in this concept design would significantly 

increase complexity (and violate the aim of the concept analysis). Instead, a single parameter is used 

which supports all of the diagnostic techniques applied to the data; this is sufficient for the concept 

analysis and also elicits requirements for the subsequent system design. 

4.4.4.5.2.3 D11 - FCS_0A001_DP_TX 

The actual output current drawn from the FCS and delivered to the DCDC converter. This does not 

include any parasitic losses within the FCCS.  

4.4.4.5.2.4  D12 - FCS_0V01_DP_TX 

The actual output voltage of the FCS, i.e. the voltage expected at the input to the DCDC converter 

assuming no voltage drop in the cables that interconnect the two systems. 

4.4.4.5.2.5 D13 - FCS_1W0_DP_TX 

The power of the complete FCS. This includes any parasitic losses in the FCCS. If the hybrid control 

system requires an output power value, it can use the current and voltage signals discussed 

previously. 

4.4.4.5.2.6 D14 - FCS_MAX_DCH_0A01_DP_TX 

The maximum discharge current that can be drawn from the FCS. The hybrid controller should obey 

this limit for full control to be maintained. If, for any reason, the FCS needs to de-rate or wishes to 

open contactors (i.e. reduce switching current of the contactors) then it can communicate this to the 

hybrid controller. 
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4.4.4.5.2.7 D15 - FCS_MIN_DCH_0V001_DP_TX 

In some instances, the hybrid controller may choose to ignore the maximum discharge current limit, 

in which case it may draw more current but should still obey the minimum voltage limit for 

discharge. 

4.4.4.5.2.8 D16 - STACK’s’_AI_0A001_DP_TX 

The current for each stack (1 to ‘s’). Normally with series connected stacks this current will be 

identical, however in some cases a stack may be switched out of circuit. Having independent signals 

for each stack allows this operation to be monitored. It also allows additional diagnostics on the data 

should this be required by the hybrid controller. It is also useful if stacks are wired in parallel – in 

which case each stack may provide a slightly different current output. 

4.4.4.5.2.9 D17 - STACK’s’_AI_0V01_DP_TX 

The individual stack voltage. As the stacks are typically in series, each stack may have a slightly 

different output voltage which can be monitored with each stack (‘s’) voltage signal. If the stacks are 

configured in parallel then the voltage signals would be identical (within measurement tolerance 

limits). 

4.4.4.5.2.10 D18 - STACK’s’_1W0_DP_TX 

An individual power rating for each stack based on the individual current and voltage measurements 

discussed previously. 

4.4.4.6 Diagnostic Coverage 

Each of the elements are individually referenced and described in this section with the diagnostic 

coverage achieved by each of the plausibility checks detailed section 4.4.4.7 through to 4.4.4.11. 

Table 77 acts as a cross reference to the appendices for the associated diagnostic coverage 

calculations which also detail each PCc used in the calculation. 

Table 77: FCCS Element Cross Reference to Diagnostic Coverage Claims 

Element Diagnostic Coverage Calculation Table Reference in 

Appendix F – FCCS – Candidate Architecture DC% Claims 

A1 Table 171: FCCS - Actuator 1 

A2 Table 172: FCCS - Actuator 2 

A3 Table 173: FCCS - Actuator 3 

A4 Table 174: FCCS - Actuator 4 

A7 Table 175: FCCS - Actuator 7 

A8 Table 176: FCCS - Actuator 8 
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Element Diagnostic Coverage Calculation Table Reference in 

Appendix F – FCCS – Candidate Architecture DC% Claims 

A9 Table 177: FCCS - Actuator 9 

A10 Table 178: FCCS - Actuator 10 

A12 Table 179: FCCS - Actuator 12 

A13 Table 180: FCCS - Actuator 13 

C1 Table 181: FCCS - Connection 1 

C4 Table 182: FCCS - Connection 4 

C5 Table 183: FCCS - Connection 5 

C6 Table 184: FCCS - Connection 6 

C7 Table 185: FCCS - Connection 7 

C9 Table 186: FCCS - Connection 9 

C12 Table 187: FCCS - Connection 12 

C13 Table 188: FCCS - Connection 13 

C14 Table 189: FCCS - Connection 14 

C15 Table 190: FCCS - Connection 15 

C20 Table 191: FCCS - Connection 20 

C22 Table 192: FCCS - Connection 22 

C24 Table 193: FCCS - Connection 24 

C25 Refer to C24 as similar techniques used 

C26 Table 194: FCCS - Connection 26 

C30 Table 195: FCCS - Connection 30 

D1, D3 – D38 Table 196: FCCS - Data 1 (subset 1) 

Table 197: FCCS - Data 1 (subset 2) 

M1 Table 198: FCCS - Measurement 1 

M2 Table 199: FCCS - Measurement 2 

M3 Refer to M2 as similar techniques used 

M4 Table 200: FCCS - Measurement 4 

M7 Table 201: FCCS - Measurement 7 

M18 Table 202: FCCS - Measurement 18 

M19 Refer to M18 as similar techniques used 

01 Table 203: FCCS - Output 1 

02 Table 204: FCCS - Output 2 
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Element Diagnostic Coverage Calculation Table Reference in 

Appendix F – FCCS – Candidate Architecture DC% Claims 

06 Table 205: FCCS - Output 6 

07 Table 206: FCCS - Output 7 

O10 Table 207: FCCS - Output 10 

O11 Table 208: FCCS - Output 11 

O12 Table 209: FCCS - Output 12 

O13 Table 210: FCCS - Output 13 

O16 Table 211: FCCS - Output 16 

O17 Table 212: FCCS - Output 17 

O19 Table 213: FCCS - Output 19 

P7 Table 214: FCCS - Parameter 7 (subset 1) 

Table 215: FCCS - Parameter 7 (subset 2) 

Table 216: FCCS - Parameter 7 (subset 3) 

P57 Table 217: FCCS - Parameter 57 (subset 1) 

Table 218: FCCS - Parameter 57 (subset 2) 

Table 219: FCCS - Parameter 57 (subset 3) 

PSU Table 220: FCCS - PSU 

T2 Table 221: FCCS - Transducer 2 

T5 Table 222: FCCS - Transducer 5 

T7 Table 223: FCCS - Transducer 7 

T8 Table 224: FCCS - Transducer 8 

Note – not all element references are used as some element references were assigned and then not 

used as the development of the FCCS proof of concept design progressed. Re-allocation of obsolete 

references was avoided throughout the project for clarity. 

4.4.4.6.1 Element ‘1)A1’ 

The negative contactor is monitored by PCc_HVHEG (4.4.4.7.5) to ensure correct opening and closing 

by online feedback and PCc_PSU_Mon (4.2.5.4.4) to ensure that the power supply to the actuator is 

within limits. 

4.4.4.6.2 Element ‘1)A2’ 

The positive contactor is monitored by PCc_HVPOS (4.4.4.7.6) to ensure correct opening and closing 

by online feedback and PCc_PSU_Mon (4.2.5.4.3) to ensure that the power supply to the actuator is 

within limits. 
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4.4.4.6.3 Element ‘1)A3’ 

Limited coverage is given by PCc_FAN’s’_SPEED (4.4.4.8.4). PCc_FAN’s’_POWER (4.4.4.8.3) is not 

used in this case as only the output is monitored not the actual load. This element can be further 

analysed by a detailed FMEA to provide a more detailed model that may allow the PCc claim to be 

increased. For example, understanding failure modes in the fan as the control signals tend to 

indicate an internal power supply control and speed control circuit. 

4.4.4.6.4 Element ‘1)A4’ 

The claim is increased for the PWM output as this is directly related to the feedback signal which can 

monitor the change in PWM directly by PCc_FAN’s’_SPEED (4.4.4.8.4) and a known transfer function 

applied. 

4.4.4.6.5 Element ‘1)A7’ 

Diagnostic coverage on the hydrogen valve is high due to PCc_H2_VALVE (4.4.4.9.1). 

4.4.4.6.6 Element ‘1)A8’ 

PCc_STACK’s’_PURGE_VALVE (4.4.4.9.2) provides relatively good diagnostics, however, there are 

concerns that a single digital input, although an independent monitor, does not give a true analogue 

feedback over the mechanical range of the valve. This may limit the accuracy of detection and allow 

incorrect indication of fully open (which may prove not to be an issue) or fully closed (which may 

lead to a slow release of hydrogen into the exhaust system). 

4.4.4.6.7 Element ‘1)A9’ 

PCc_DILUTION (4.4.4.9.3) provides good diagnostics based on the fact that the fan is rotating, 

however there are questions regarding the ability of the hydrogen sensor measuring a true 

representation of hydrogen in the exhaust due to mixing of gases. Further examination of a 

proposed application may allow this coverage to be increased. Also, the sensor is expensive and so 

its ability to improve safety would have to be justified against its cost with an ALARP study. 

4.4.4.6.8 Element ‘1)A10’ 

High diagnostics are achieved on the pre-charge due to the simplicity of the voltage measurements 

PCc_PSU_Mon (4.2.5.4.4) for the power supply and PCc_PRECHG (4.4.4.7.2) for the actual pre charge 

output, the independence of channels and the fact that a number of the measurements can be 

verified by external systems e.g. the DCDC converter and individual cell monitoring. 

4.4.4.6.9 Element ‘1)A12’ 

As the inlet damper is part of a temperature control loop and the position monitor, not part of the 

closed loop control it provides a reliable independent method of proving position by 
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PCc_INLET’s’_POSITION (4.4.4.8.1). In the initial concept there are questions about positional 

accuracy and the mechanical linkage between the feedback monitoring point and the actual damper 

position as some failure may potentially have limited coverage. 

4.4.4.6.10 Element ‘1)A13’ 

As the exhaust damper is part of a temperature control loop and the position monitor, not part of 

the closed loop control it provides a good independent method of proving position by 

PCc_EXHAUST’s’_POSITION (4.4.4.8.2). As above, there are questions about positional accuracy and 

the mechanical linkage between the feedback monitoring point and the actual damper position as 

some failures may potentially have limited coverage. 

4.4.4.6.11 Element ‘1)C1’ 

Coverage of 48% is achieved by PCc_OA_WINDOW (4.4.4.7.1). To increase coverage further work is 

required on the design in order to prove the connections to the cells and any interference / drift that 

can result. It is likely that this estimate is conservative and coverage can be increased following a 

more detailed investigation. 

4.4.4.6.12 Element ‘1)C4’ 

Improvement on diagnostic coverage would require additional requirements to be placed on the 

DCDC converter. As this is not confirmed at this stage no claim is made even though PCc_HVNEG 

(4.4.4.7.5) is used. As part of a production intent design, requirements can be placed on the DCDC 

converter manufacturer to provide qualified independent feedback that would prove the final 

connection. 

4.4.4.6.13 Element ‘1)C5’ 

Discussion as per Element ‘1)C4’ 4.4.4.6.12 apart from PCc_HVPOS (4.4.4.7.6) is used. 

4.4.4.6.14 Element ‘1)C6’ 

PCc_FAN’s’_POWER (4.4.4.8.3) gives high coverage of the harness up to the connector input due to 

the monitoring feedback provided on the output driver. 

4.4.4.6.15 Element ‘1)C7’ 

The connection is directly related to the feedback signal which can monitor the change in PWM 

directly by PCc_FAN’s’_SPEED (4.4.4.8.4). 
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4.4.4.6.16 Element ‘1)C9’ 

Relatively high diagnostics are achieved by knowing the characteristics of the thermocouple used 

and the fact that this can be verified within a tolerance by independent sensors using 

PCc_STACK’s’_TEMP (4.4.4.8.5). 

4.4.4.6.17 Element ‘1)C12’ 

Relatively low diagnostics are achieved by having limited characteristic knowledge of the hydrogen 

valve when controlled with a PWM signal. Further investigation may improve the diagnostic claim 

from that initially claimed by PCc_H2_VALVE (4.4.4.9.1). 

4.4.4.6.18 Element ‘1)C13’ 

See discussion 4.4.4.6.17. Further analysis of the valve is required to understand the ground 

connection with reference to the body of the valve before relying on short circuit detection. 

4.4.4.6.19 Element ‘1)C14’ 

A conservative claim for PCc_STACK’s’_PURGE_VALVE (4.4.4.9.2) failure mode coverage is made until 

full temperature characteristics and voltage / current characteristics are known for the purge valve. 

4.4.4.6.20 Element ‘1)C15’ 

See dicussion4.4.4.6.19. 

4.4.4.6.21 Element ‘1)C20’ 

A conservative claim is made using PCc_DILUTION (4.4.4.9.3) until the dilution fan control circuit is 

understood. Basic diagnostics can be covered for the connection and harness by the frequency 

feedback signal. 

4.4.4.6.22 Element ‘1)C22’ 

As this connection uses a data signal, the connection can be validated by correct communication 

with the sensor and monitored by PCc_DILUTION (4.4.4.9.3). 

4.4.4.6.23 Element ‘1)C24’, 1)C25 

This connection is comprehensively covered by the sequencing of tests and the independent 

measurement values used in PCc_V_SUM (4.4.4.7.3) and PCc_HV_WINDOW (4.4.4.7.4). 

4.4.4.6.24 Element ‘1)C26’ 

This connection is comprehensively covered by the sequencing of tests and the independent 

measurement values used by PCc_HVPOS (4.4.4.7.6). 
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4.4.4.6.25 Element ‘1)C30’ 

See discussion 4.4.4.6.21. 

4.4.4.6.26 Element ‘1)D1’ 

The SPI connection is robust and includes a number of built in diagnostics techniques as referred to 

in the Data section (4.2.5.4.1). 

4.4.4.6.27 Element ‘1)D3 to 1)D38’ 

All of these data elements have exactly the same PCc and hence diagnostic coverage as ‘1)D1’ 

(4.4.4.6.26) and so are not shown here. In some cases, additional proof may indicate a higher claim 

for coverage depending on the final protocol implemented. 

4.4.4.6.28 Element ‘1)M1’ 

Relatively low claims are made using PCc_OA_WINDOW (4.4.4.7.1) until full validation is provided by 

the manufacturer of the AFE. This is very conservative at this stage. 

4.4.4.6.29 Element ‘1)M2’, 1)M3 

Independent verification via multiple techniques PCc_V_SUM (4.4.4.7.3) and PCc_HV_WINDOW 

(4.4.4.7.4) permit a high PCc claim. 

4.4.4.6.30 Element ‘1)M4’ 

Controlled test sequences and independent verification via PCc_HVPOS (4.4.4.7.6) permit a high PCc 

claim. 

4.4.4.6.31 Element ‘1)M7’ 

Insufficient justification is available for claiming diagnostic coverage on this element. It is, however, 

used a cross check for other temperature measurements. Claiming coverage on this element as well 

would generate a circular argument and so avoided. 

4.4.4.6.32 Element ‘1)M18’, ‘1)M19’ 

High coverage is achieved through independent verification using PCc_A_SUM (4.4.4.7.7). If stacks 

were connected in parallel then diagnostic coverage may be reduced and this should be considered 

on an application by application basis. 

4.4.4.6.33 Element ‘1)O1’ 

See discussion 4.4.4.6.1. 

4.4.4.6.34 Element ‘1)O2’ 

Refer to description for Element ‘1)A2 (4.4.4.6.2). 
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4.4.4.6.35 Element ‘1)O6’ 

As PCc_FAN’s’_POWER (4.4.4.8.3) is used along with PCc_PSU_Mon (4.2.5.4.4), the intelligent high 

side drive output allows a diagnostic coverage claim of 98 %. 

4.4.4.6.36 Element ‘1)O7’ 

Refer to discussion on Element ‘1)A4’ (4.4.4.6.4). 

4.4.4.6.37 Element ‘1)O10’ 

High claim for the actual on-board output driver due to the feedback provided and monitoring by 

PCc_H2_VALVE (4.4.4.9.1) and power supply monitoring PCc_PSU_Mon (4.2.5.4.4). 

4.4.4.6.38 Element ‘1)O11’ 

No claim is made for this as it is provided as a safety shutdown. Further investigation may allow a 

claim to be made based on measurements made for ‘1)O10’ (4.4.4.6.37). The power supply is 

covered but this still leaves undiagnosed faults that require coverage even for a 60% claim. 

4.4.4.6.39 Element ‘1)O12’ 

A high claim is made for the actual on-board output driver due to the feedback provided and 

monitoring by PCc_STACK’s’_PURGE_VALVE (4.4.4.9.2) and power supply monitoring PCc_PSU_Mon 

(4.2.5.4.4). 

4.4.4.6.40 Element ‘1)O13’ 

No claim is made for this as it is provided as a safety shutdown. Further investigation may allow a 

claim to be made based on measurements made for ‘1)O12’ (4.4.4.6.39). The power supply is 

covered but this still leaves undiagnosed faults that require coverage even for a 60% claim. 

4.4.4.6.41 Element ‘1)O16’ 

High coverage is achieved on the speed control due to the frequency feedback and monitoring 

(PCc_DILUTION (4.4.4.9.3)) and power supply monitoring (PCc_PSU_Mon (4.2.5.4.4)) for the output 

driver. 

4.4.4.6.42 Element ‘1)O17’ 

See discussion on Element ‘1)A10’ (4.4.4.6.8.) 

4.4.4.6.43 Element ‘1)O19’ 

No claim is made as there is no specific feedback on the output itself. Further study may show a 

characteristic between speed (which is monitored) and failures on the output itself but this is not 

understood sufficiently at this stage relating to the 0V connection and the failure modes detectable 

by the intelligent output driver. 
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4.4.4.6.44 Element ‘1)P7’, 1)P57 

A high claim is made due to on-board diagnostics for random access memory available in the 

microcontroller (4.2.5.4.3). This would need to be verified to ensure that all the available techniques 

assumed are actually run as part of the monitoring sequences. 

4.4.4.6.45 Element ‘1)PSU’ 

The power supply, in this case, is a companion chip for the microcontroller and so provides high 

coverage on both supply rails and internal reference voltages. These are available as both digital 

signals over SPI and as analogue voltages through a multiplexer. This facilitates other tests on 

analogue inputs. It also contains a question and answer watchdog to ensure correct microcontroller 

operation. Full details are available from manufacturers once NDA’s are in place. 

4.4.4.6.46 Element ‘1)T2’ 

See discussion on Element ‘1)M7’ (4.4.4.6.31). 

4.4.4.6.47 Element ‘1)T5’ 

There is very limited coverage on the Hydrogen sensor at present. There is an argument just to use it 

for diagnostics only but also some questions around using it for control of H2 and purge to monitor 

concentration. For that reason, no claim is currently made. 

4.4.4.6.48 Element ‘1)T7’, ‘1)T8’ 

See discussion on Element ‘1)M18)’ (4.4.4.6.32). 

4.4.4.7 Voltage and Current Based Measurement and Control Plausibility Cross-checks 

A number of PCcs are used in the voltage and current measurement control system. These are 

discussed in the following sections. 

4.4.4.7.1 PCc_OA_Window / PCc_OA_TRIP 

The operating window uses one main function which ensures each of the individual cell voltages are 

within voltage limits and temperate limits. This includes an upper and a lower limit. In order to 

increase diagnostic coverage a number of internal self-tests are continually run in the AFE at the 

request of the Stack Control microcontroller. 

The internal tests are typically: 

➢ Under Voltage comparison – a flag set in the AFE against pre-programmed threshold. 

➢ Over Voltage comparison – a flag set in the AFE against pre-programmed threshold. 

➢ Sum of cells – a sum of cells measurement request made over isoSPI. 
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➢ ADSTAT command –measures sum of cells (above), internal die temperature and 5V power 

supply. 

➢ ADAX command –measures the second reference voltage. 

➢ DIAGN command –triggers a multiplexer decoder check. 

➢ CVST command –triggers a cell voltage conversion and poll check. 

➢ AXST command –triggers a general-purpose input / output conversion and poll status check. 

➢ STATST command – triggers a self-test status group conversion and poll status. 

➢ ADOW command – triggers an open wire analog to digital convertor (ADC) conversion and 

poll status check. 

The Stack Control microcontroller sequences through these comprehensive self-tests on a regular 

basis to ensure that the diagnostic tests are performed repeatedly and that results are valid. 

4.4.4.7.2 PCc_PRECHG 

To ensure that a pre-charge is completed correctly, a controlled (current limited) output charges any 

DCDC converter load capacitance. This allows a number of diagnostics to be performed. The internal 

FCS voltage is known (FCS_HVPOS_INT_AI_0V1) so by providing a known current output into a 

known load it is possible to monitor the output voltage (FCS_HVPOS_INT_AI_0V1) to determine the 

output voltage profile with respect to time. This allows the output voltage measurement circuitry to 

be checked as the voltage rises and a comparison made between input and output measurements in 

a controlled way before any significant current is made available at the output. 

4.4.4.7.3 PCc_V_SUM 

The internally measured voltage (FCS_HVPOS_INT_AI_0V1) at the Stack Control output can be 

compared against the individual stack voltages (STACK’s’_AI_0V01). In this application, there are two 

stacks, in other applications a higher multiple of stacks can be linked in series.  

4.4.4.7.4 PCc_HV_Window 

The internally measured voltage (FCS_HVPOS_INT_AI_0V1) at the Stack Control output can be 

compared against the stack voltage measured at the Cell Control system. These use independent 

measurement circuits giving a high confidence level. This can be further improved by looking at the 

individual stack voltages (STACK’s’_AI_0V01). 

4.4.4.7.5  PCc_HV_NEG 

By suitable placement of the measurement points, it is possible to examine faults on the negative 

contactor prior to closing the positive contactor. 
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4.4.4.7.6 PCc_HV_POS 

By suitable placement of the measurement points it is possible to examine faults on the positive 

contactor prior to opening the negative contactor and after the negative contactor has closed. The 

main aim with the contactor checks is to ensure that prior to closing the contactors, there are two 

independent means to open the contactors. During a drive cycle it is possible that one of these may 

fail but sufficiently unlikely that both will fail within the drive cycle and so at least one route always 

remains to disconnect the high voltage if required. 

4.4.4.7.7  PCc_A_SUM 

The internally measured current (FCS_AI_0A001) at the Stack Control output can be compared 

against the individual stack currents (STACK’s’_AI_0A001). In this application there are two stacks, in 

other applications a higher multiple of stacks could be linked in series.  As the stacks are in series, 

the current will be the same for each stack. In some applications a single stack may be shut down 

and the suggested route to measure current still provides a plausibility check between the individual 

stack current and the overall FCS current. 

4.4.4.8 Air Flow and Temperature Control Plausibility Cross-checks. 

A number of PCcs are used in the air flow and temperature control system. These are discussed in 

the following sections. 

4.4.4.8.1 PCc_INLET’s’_POSITION 

PCc between the demand for the inlet damper position and the feedback. As well as running 

periodic tests this can also be verified during start up or shut down to confirm end points for open 

and close position, rates of change of position and the characteristic curve of the damper opening 

which achieves high diagnostic coverage. 

4.4.4.8.2 PCc_OUTLET’s’_POSITION / PCc_EXHAUST’s’_POSITION 

PCc between the demand for the outlet damper position and the feedback. Similar principles are 

used to that of the inlet fan diagnostics (4.4.4.8.1). 

4.4.4.8.3  PCc_FAN’s’_POWER 

PCc that looks at the fan control power requirements based on the fan state machine and monitors 

power to each of the stack (1 to ‘s’) fans (1 to ‘f’) to ensure correct power curves. For a specific 

speed demand, at a measured voltage, the current is validated to be within a specific target range 

for given inlet and outlet damper combinations. 
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4.4.4.8.4 PCc_FAN’s’_SPEED 

PCc that looks at the fan control speed requirements based on the fan state machine and monitors 

actual speed against demand for each of the stack (1 to ‘s’) fans (1 to ‘f’) to ensure a correct speed 

tolerance. This is further enhanced by monitoring cathode air pressure. Additionally, cathode air 

pressure can be used to monitor filter particulate accumulation but this is not considered a safety 

feature for power control as it would provide a gradual increase in pressure drop which is monitored 

and controlled through maintenance. 

4.4.4.8.5 PCc_Stack’s’_Temp 

PCc that monitors pressure, fan speed and temperature to ensure that all the parameters correlate 

within a window and that changes in control demand parameters have correct results measured by 

the feedback signals. This is quite a complex monitoring function and in a final solution may be 

broken down into a number of subsystems. However, at this stage, analysing the concept it was 

considered acceptable. 

4.4.4.9 Hydrogen Delivery Control, Dilution and Purging Plausibility Cross-checks. 

Many PCcs are used in the hydrogen control system. These are discussed in the following sections. 

4.4.4.9.1 PCc_H2_VALVE 

The power to the hydrogen valve is monitored to detect faults in the coil or abnormal operating 

conditions. The current feedback is also used to maintain holding current based on voltage for the 

hydrogen valve to minimise parasitic power. 

Additional monitoring is provided by the hydrogen pressure sensor both in terms of the hydrogen 

valve and upstream mechanical pressure regulation. 

4.4.4.9.2 PCc_STACK’s’_PURGE_VALVE 

Voltage and current feedback is used to detect failures in the electrical side of the purge valve. 

Additional feedback is provided from a feedback signal in the valve that indicates whether the valve 

has opened when requested. 

4.4.4.9.3 PCc_DILUTION 

The dilution fan speed is monitored to ensure that the demand for fan speed is acted upon and that 

the fan has not stalled or is electrically open circuit. Additional feedback is provided by the hydrogen 

sensor although this is purely a secondary check on the overall hydrogen control system. 
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4.4.4.10 High Voltage Interlock (HVIL) and Isolation Testing Plausibility Cross-checks. 

A number of PCcs are used in the hydrogen control system. These are discussed in the following 

sections. 

4.4.4.10.1 PCc_HVIL_TRIP 

This PCc purely monitors software status STACK’s'_HVIL_SW_TRIP_DP against the hardware status to 

provide a software controlled shutdown prior to a hardware shutdown as provided by the hardware 

system (HVIL_OK_V_HSDI). 

4.4.4.10.2 PCc_ISOT_ST 

Providing an independent asynchronous self-test function for the isolation monitoring is a cross 

check that was developed in 4.2 and is carried over into this proof of concept. 

4.4.4.10.3 PCc_HVIL_ST 

The HVIL self-test is comprehensive. It allows test at power up, power on and continual monitoring 

for latent faults during runtime. 

4.4.4.11 Control Parameters and Data Plausibility Cross Checks 

The PCcs are covered in the sections on Data (4.2.5.4.1) and Parameters (4.2.5.4.3). 

4.4.5 Overall Analysis 

4.4.5.1 Maintain Power within Operating Area –Analysis 

The architectural metrics are calculated as discussed in 3.7.2, with the SPFM calculation shown in 

Table 78 and the LFM calculation shown in Table 79.  
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Table 78: FCCS Maintain Power SPFM Calculation 
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HV CONTROL Inputs 
           

STACK’s’_AI_0V1 Connection  1)C24 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y 

PCc_V_SUM, 

PCc_HV_WINDOW 
99% 1.4E-04 

FCS_HVPOS_INT_AI_0V1 Connection  1)C25 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y 

PCc_V_SUM, 

PCc_HV_WINDOW 
99% 1.4E-04 

FCS_HVPOS_EXT_AI_0V1 Connection  1)C26 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y PCc_HVPOS 99% 1.4E-04 

STACK’s’_AI_0A001 Transducer 1)T7 

4.0E+0

1 
Y 

4.0E+0

1 
40% 

1.6E+0

1 
Y 

PCc_A_SUM, 

PCc_PSU_MON 
98% 3.9E-01 

FCS_AI_0A001 Transducer 1)T8 

4.0E+0

1 
Y 

4.0E+0

1 
40% 

1.6E+0

1 
Y 

PCc_A_SUM, 

PCc_PSU_MON 
98% 3.9E-01 

HV CONTROL Internals 
           

HVNEG_DHO_V Actuator 1)A1 

3.0E+0

1 
Y 

3.0E+0

1 
40% 

1.2E+0

1 
Y 

PCc_HVNEG, 

PCc_PSU_MON 
72% 3.4E+00 

HVPOS_PRECHG_HDO_V Actuator 1)A10 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y 

PCc_PRECHG, 

PCc_PSU_MON 
99% 5.5E-02 

HVPOS_HDO_V Actuator 1)A2 

1.9E+0

2 
Y 

1.9E+0

2 
40% 

7.7E+0

1 
Y 

PCc_HVPOS, 

PCc_PSU_MON 
72% 2.2E+01 

HV CONTROL Outputs 
           

HVNEG_AO_V Connection  1)C4 

3.0E+0

0 
Y 

3.0E+0

0 
40% 

1.2E+0

0 
Y PCc_HVNEG 0% 1.2E+00 

HVPOS_AO_V Connection  1)C5 

3.0E+0

0 
Y 

3.0E+0

0 
40% 

1.2E+0

0 
Y PCc_HVPOS 0% 1.2E+00 
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STACK CONTROL Inputs 
         

  

STACK’s’_AI_0V1 Measurement 1)M2 

4.0E+0

0 
Y 

4.0E+0

0 
40% 

1.6E+0

0 
Y 

PCc_V_SUM, 

PCc_HV_WINDOW 
98% 3.2E-02 

FCS_HVPOS_INT_AI_0V1 Measurement 1)M3 

6.0E+0

0 
Y 

6.0E+0

0 
40% 

2.4E+0

0 
Y 

PCc_V_SUM, 

PCc_HV_WINDOW 
98% 4.8E-02 

FCS_HVPOS_EXT_AI_0V1 Measurement 1)M4 

6.0E+0

0 
Y 

6.0E+0

0 
40% 

2.4E+0

0 
Y PCc_HVPOS 98% 4.8E-02 

STACK’s’_AI_0A001 Measurement 1)M18 

6.0E+0

0 
Y 

6.0E+0

0 
40% 

2.4E+0

0 
Y PCc_A_SUM 98% 4.8E-02 

FCS_AI_0A001 Measurement 1)M19 

4.0E+0

0 
Y 

4.0E+0

0 
40% 

1.6E+0

0 
Y PCc_A_SUM 98% 3.2E-02 

CELL’c’_AI_0V0001 Data 1)D3 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

STACK’s'_AI_0V001 Data 1)D4 
8.3E-

01 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_AI_0C1 Data 1)D29 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

FCS_AIR_IN_POS_AI_1Dg Data 1)D39 
8.3E-

01 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_EXHAUST_POS_AI_

1Dg 
Data 1)D40 

8.3E-

01 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_FAN’f’_FI_HZ Measurement 1)M6 
4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_TEMP’t’_AI_0C1 Measurement 1)M7 

4.0E+0

0 
Y 

4.0E+0

0 
40% 

1.6E+0

0 
Y 

?only really have a 

range check which is 

insufficient 

0% 1.6E+00 

CATHODE_AIR_AI_0Pa1 Measurement 1)M17 
4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

H2_VALVE_AfbI_0V1 Measurement 1)M8 
4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

H2_VALVE_AfbI_0A001 Measurement 1)M9 
4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

H2_PRESS_AI_0Pa1 Measurement 1)M15 
4.0E+0

DS 
0.0E+0

40% 
0.0E+0

  Assume for initial 

analysis that this is 

0%   
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0 0 0 just used for 

diagnostics 

STACK’s’_PURGE_VALVE_AfbI

_0V1 
Measurement 1)M13 

4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_PURGE_VALVE_AfbI

_0A001 
Measurement 1)M14 

4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_PURGE_POS’s’_DHI

_V 
Measurement 1)M12 

4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

DILUTION_FAN_FI_1HZ Measurement 1)M16 
4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

H2_AI_0PC1 Data 1)D10 
8.3E-

01 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

FCS_CMD_DP_RX Data 1)D5 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

STACK’s’_FAN’f’_AfbI_0V1 Measurement 1)M21 
4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_FAN’f’_AfbI_0A1 Measurement 1)M22 
4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK CONTROL Internals 

           

SAFE_DP Parameter 1)P56 
1.6E-

01 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
  

Assume for initial 

analysis that this is 

just used for 

diagnostics 

0%   

FCS_STATE_DP Parameter 1)P7 

1.6E-

01 
Y 

1.6E-

01 
40% 

6.6E-

02 
Y 

PCc_PSU, 

PCc_RAM_TEST, 

PCc_MICRO_TEST 

97% 1.6E-03 

CAL_WINDOW_DP_0V001 Parameter 1)P57 

2.1E-

02 
Y 

2.1E-

02 
40% 

8.3E-

03 
Y 

PCc_PSU, 

PCc_RAM_TEST, 

PCc_MICRO_TEST 

98% 2.0E-04 

STACK CONTROL Outputs 

           

HVNEG_DHO_V Output 1)O1 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y 

PCc_HVNEG, 

PCc_PSU 
98% 8.7E-02 

HVPOS_DHO_V Output 1)O2 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y 

PCc_HVPOS, 

PCc_PSU 
98% 8.7E-02 
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HVPOS_PRECHG_DHO_V Output 1)O17 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y 

PCc_PRECHG, 

PCc_PSU 
98% 8.7E-02 

FCS_AIR_IN_PO_0PC1 Data 1)D37 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_EXHAUST’s’_PO

SITION, 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

97% 1.1E-02 

STACK’s’_EXHAUST_PO_0PC1 Data 1)D38 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_EXHAUST’s’_PO

SITION, 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

97% 1.1E-02 

STACK’s’_FAN’f’_DHO_V Output 1)O6 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y 

PCc_FAN’s’_POWER, 

PCc_PSU 
98% 8.7E-02 

STACK’s’_FAN’f_PO_0PC1 Output 1)O7 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y 

PCc_FAN’s’_SPEED, 

PCc_PSU 
98% 8.7E-02 

H2_VALVE_PO_0PC1 Output 1)O10 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y 

PCc_H2_VALVE, 

PCc_PSU 
98% 8.7E-02 

H2_VALVE_SO_0V Output 1)O11 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y   0% 4.8E+00 

STACK’s’_PURGE_VALVE_DH

O_V 
Output 1)O12 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y 

PCc_STACK’s’_PURG

E_VALVE, PCc_PSU 
98% 8.7E-02 

PURGE_VALVES_SO_0V Output 1)O13 
1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y   0% 4.8E+00 

STACK’s’_PURGE_HEAT’s’_DH

O_V 
Output 1)O14 

1.2E+0

1 
N 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

PURGE_HEAT_SO_0V Output 1)O15 
1.2E+0

1 
N 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

DILUTION_FAN_SO_0V Output 1)O19 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y   0% 4.8E+00 

DILUTION_FAN_PO_0PC1 Output 1)O16 

1.2E+0

1 
Y 

1.2E+0

1 
40% 

4.8E+0

0 
Y 

PCc_DILUTION, 

PCc_PSU 
98% 8.7E-02 

FCS_0A001_DP_TX Data 1)D19 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

FCS_0V01_DP_TX Data 1)D20 

8.3E-
Y 

8.3E-
40% 

3.3E-
Y PCc_DATA_CHECK, 

PCc_POLL_RESPONS

91% 3.0E-02 
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01 01 01 E 

FCS_1W0_DP_TX Data 1)D21 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

FCS_MAX_DCH_0A01_DP_TX Data 1)D22 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

FCS_MIN_DCH_0V001_DP_TX Data 1)D23 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

STACK’s’_AI_0A001_DP_TX Data 1)D24 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

STACK’s’_AI_0V01_DP_TX Data 1)D25 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

STACK’s’_1W0_DP_TX Data 1)D26 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

FCS_STATUS_DP_TX Data 1)D6 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

CELL CONTROL Inputs 
         

  

CELL’c’_AI_0V0001 Measurement 1)M1 

4.0E+0

0 
Y 

4.0E+0

0 
40% 

1.6E+0

0 
Y PCc_OA_WINDOW 35% 1.0E+00 

STACK’s’_AI_0V0001 Measurement 1)M23 
4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

CELL’c’_AI_0C1 Measurement 1)M20 
4.0E+0

0 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

CELL’c’_CVL_HSDO Data 1)D32 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

CELL CONTROL Outputs 
         

  

CELL’c’_AI_0V0001 Data 1)D1 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 
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STACK’s'_AI_0V001 Data 1)D2 
8.3E-

01 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_AI_0C1 Data 1)D30 
8.3E-

01 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Cell Inputs 
         

  

CELL’c’_AI_0V0001 Connection  1)C1 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y  PCc_OA_WINDOW 48% 7.3E-03 

CELL’c’_AI_0V0001 Connection  1)C2 
3.5E-

02 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

CELL’c’_AI_0C1 Connection  1)C3 
3.5E-

02 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Inlet Air Control Inputs 
         

  

FCS_AIR_IN_PI_0PC1 Data 1)D33 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

FCS_AIR_IN_POS_AI_1Dg Transducer 1)T10 
4.0E+0

1 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Inlet Air Control Outputs 
         

  

FCS_AIR_IN_PO_0PC1 Actuator 1)A12 

8.0E+0

1 
Y 

8.0E+0

1 
40% 

3.2E+0

1 
Y 

PCc_EXHAUST’s’_PO

SITION 
71% 9.2E+00 

FCS_AIR_IN_POS_AI_1Dg Data 1)D34 
8.3E-

01 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Exhaust Control Inputs 
         

  

STACK’s’_EXHAUST_PI_0PC1 Data 1)D35 

8.3E-

01 
Y 

8.3E-

01 
40% 

3.3E-

01 
Y 

PCc_DATA_CHECK, 

PCc_POLL_RESPONS

E 

91% 3.0E-02 

STACK’s’_EXHAUST_POS Transducer 1)T11 
4.0E+0

1 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Exhaust Control Outputs 
         

  

STACK’s’_EXHAUST_PO_0PC1 Actuator 1)A13 

8.0E+0

1 
Y 

8.0E+0

1 
40% 

3.2E+0

1 
Y 

PCc_EXHAUST’s’_PO

SITION 
71% 9.2E+00 

STACK’s’_EXHAUST_POS Data 1)D36 
8.3E-

01 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Stack Fans Inputs 
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STACK’s’_FAN’f’_HSDO Connection  1)C6 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y   99% 1.4E-04 

STACK’s’_FAN’f_PWM Connection  1)C7 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y   99% 1.4E-04 

STACK’s’_FAN’f’_HZ Transducer 1)T1 
4.0E+0

1 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_TEMP’t’_AI_0C1 Transducer 1)T2 

2.0E+0

0 
Y 

2.0E+0

0 
40% 

8.0E-

01 
Y PCc_STACK's'_TEMP 0% 8.0E-01 

Stack Fans Outputs 
         

  

STACK’s’_FAN’f’_HSDO Actuator 1)A3 

1.5E+0

1 
Y 

1.5E+0

1 
40% 

6.0E+0

0 
Y PCc_FAN's'_SPEED 59% 2.4E+00 

STACK’s’_FAN’f_PWM Actuator 1)A4 

1.0E+0

2 
Y 

1.0E+0

2 
40% 

4.0E+0

1 
Y PCc_FAN's'_SPEED 99% 4.0E-01 

STACK’s’_FAN’f’_HZ Connection  1)C8 
3.5E-

02 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_TEMP’t’_AI_0C1 Connection  1)C9 

2.0E+0

0 
Y 

2.0E+0

0 
40% 

8.0E-

01 
Y PCc_STACK's'_TEMP 81% 1.5E-01 

Cathode Air Pressure Inputs 
         

  

CATHODE_AIR_AI_0PA1 Transducer 1)T6 
4.0E+0

1 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Cathode Air Pressure Outputs 
         

  

CATHODE_AIR_AI_0PA1 Connection  1)C23 
3.5E-

02 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

H2 Valve Inputs 
         

  

H2_VALVE_PWM Connection  1)C12 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y PCc_H2_VALVE 42% 8.2E-03 

H2_VALVE_SO_0V Connection  1)C13 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y PCc_H2_VALVE 33% 9.5E-03 

H2 Valve Outputs 
         

  

H2_VALVE_PWM Actuator 1)A7 

5.0E+0

1 
Y 

5.0E+0

1 
40% 

2.0E+0

1 
Y PCc_H2_VALVE 99% 2.0E-01 

H2 Pressure Inputs 
         

  

H2_PRESS_AI_PA Transducer 1)T3 
4.0E+0

DS 
0.0E+0

40% 
0.0E+0

    0%   
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1 0 0 

H2 Pressure Outputs 
         

  

H2_PRESS_AI_PA Connection  1)C19 
3.5E-

02 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Purge Valve Inputs 
         

  

STACK’s’_PURGE_VALVE_HSD

O 
Connection  1)C14 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y 

PCc_STACK’s’_PURG

E_VALVE 
48% 7.3E-03 

PURGE_VALVES_SO_0V Connection  1)C15 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y 

PCc_STACK’s’_PURG

E_VALVE 
42% 8.2E-03 

STACK’s’_PURGE_POS’s’_DHI

_V 
Transducer 1)T14 

4.0E+0

1 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_PURGE_HEAT’s’_DH

O_V 
Connection  1)C16 

3.5E-

02 
N 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

PURGE_HEAT_SO_0V Connection 1)C17 
3.5E-

02 
N 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Purge Valve Outputs 
         

  

STACK’s’_PURGE_VALVE_DH

O_V 
Actuator 1)A8 

5.0E+0

1 
Y 

5.0E+0

1 
40% 

2.0E+0

1 
Y 

PCc_STACK’s’_PURG

E_VALVE 
71% 5.7E+00 

STACK’s’_PURGE_POS’s’_DHI

_V 
Connection 1)C18 

3.5E-

02 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

STACK’s’_PURGE_HEAT’s’_DH

O_V 
Actuator 1)A14 

5.0E+0

1 
N 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Dilution Fan Inputs 
         

  

DILUTION_FAN_PO_0PC1 Connection  1)C20 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y PCc_DILUTION 48% 7.3E-03 

DILUTION_FAN_SO_0V Connection  1)C30 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y PCc_DILUTION 48% 7.3E-03 

DILUTION_FAN_FI_1HZ Transducer 1)T4 
4.0E+0

1 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

Dilution Fan Outputs 
         

  

DILUTION_FAN_FI_HZ Connection 1)C21 
3.5E-

02 
DS 

0.0E+0

0 
40% 

0.0E+0

0 
    0%   

DILUTION_FAN_PO_0PC1 Actuator 1)A9 

1.0E+0
Y 

1.0E+0
40% 

4.0E+0
Y PCc_DILUTION 71% 1.2E+01 
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2 2 1 

H2 Sensor Inputs 
         

  

H2_AI_oPC! Transducer 1)T5 

1.0E-

02 
Y 

1.0E-

02 
40% 

4.0E-

03 
Y   0% 4.0E-03 

H2 Sensor Outputs 
         

  

H2_AI_oPC1 Connection  1)C22 

3.5E-

02 
Y 

3.5E-

02 
40% 

1.4E-

02 
Y   99% 1.4E-04 

Isolation tester 
         

  

Isot (previous calc) Isot   
9.2E+0

1 
Y 

9.2E+0

1 
40% 

3.7E+0

1 
Y   97% 1.1E+00 

High Voltage Interlock 
         

  

HVIL (estimate) HVIL   
4.0E+0

1 
Y 

4.0E+0

1 
40% 

1.6E+0

1 
Y   99% 1.6E-01 

            

   

1526.8 

 

1113.7 

     

88.1 

      

   

Single point fault 

metric   94.2% 
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Table 79: FCCS Maintain Power LFM Calculation 
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o
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e
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La
te

n
t 

m
u

lt
ip

le
-P

o
in

t 
fa

ilu
re

 r
at

e/
FI

T 

HV CONTROL 
Inputs 

             

STACK’s’_AI_0V1 
Connec
tion  

1)C
24 

3.5E-
02 

Y 
3.5E-

02 
40
% 

1.4E-
02 

Y 
50
% 

0.0E
+00 

    
7.0E-

03 

FCS_HVPOS_INT_
AI_0V1 

Connec
tion  

1)C
25 

3.5E-
02 

Y 
3.5E-

02 
40
% 

1.4E-
02 

Y 
50
% 

7.0E
-03 

PCc_HV_C_
COMP 

60
% 

2.8E-
03 

FCS_HVPOS_EXT
_AI_0V1 

Connec
tion  

1)C
26 

3.5E-
02 

Y 
3.5E-

02 
40
% 

1.4E-
02 

Y 
50
% 

7.0E
-03 

PCc_HV_C_
COMP 

60
% 

2.8E-
03 

STACK’s’_AI_0A0
01 

Transd
ucer 

1)T
7 

4.0E+
01 

Y 
4.0E+

01 
40
% 

1.6E+0
1 

Y 
50
% 

7.0E
-03 

    
7.8E+

00 

FCS_AI_0A001 
Transd
ucer 

1)T
8 

4.0E+
01 

Y 
4.0E+

01 
40
% 

1.6E+0
1 

Y 
50
% 

7.8E
+00 

    
7.8E+

00 

HV CONTROL 
Internals 

             

HVNEG_DHO_V 
Actuat
or 

1)
A1 

3.0E+
01 

Y 
3.0E+

01 
40
% 

8.6E+0
0 

Y 
50
% 

0.0E
+00 

    
4.3E+

00 

HVPOS_PRECHG_
HDO_V 

Actuat
or 

1)
A1
0 

1.2E+
01 

Y 
1.2E+

01 
40
% 

4.7E+0
0 

Y 
50
% 

4.3E
+00 

    
2.4E+

00 

HVPOS_HDO_V 
Actuat
or 

1)
A2 

1.9E+
02 

Y 
1.9E+

02 
40
% 

5.5E+0
1 

Y 
50
% 

2.4E
+00 

    
2.7E+

01 

HV CONTROL 
Outputs 

       

      

HVNEG_AO_V 
Connec
tion  

1)C
4 

3.0E+
00 

Y 
3.0E+

00 
40
% 

0.0E+0
0 

Y 
50
% 

0.0E
+00 

    
0.0E+

00 

HVPOS_AO_V 
Connec
tion  

1)C
5 

3.0E+
00 

Y 
3.0E+

00 
40
% 

0.0E+0
0 

Y 
50
% 

0.0E
+00 

    
0.0E+

00 

STACK CONTROL 
Inputs 

      

 

      

STACK’s’_AI_0V1 
Measur
ement 

1)
M
2 

4.0E+
00 

Y 
4.0E+

00 
40
% 

1.6E+0
0 

Y 
50
% 

0.0E
+00 

    
7.8E-

01 

FCS_HVPOS_INT_
AI_0V1 

Measur
ement 

1)
M
3 

6.0E+
00 

Y 
6.0E+

00 
40
% 

2.4E+0
0 

Y 
50
% 

7.8E
-01 

PCc_HV_C_
COMP 

60
% 

4.7E-
01 

FCS_HVPOS_EXT
_AI_0V1 

Measur
ement 

1)
M
4 

6.0E+
00 

Y 
6.0E+

00 
40
% 

2.4E+0
0 

Y 
50
% 

1.2E
+00 

PCc_HV_C_
COMP 

60
% 

4.7E-
01 

STACK’s’_AI_0A0
01 

Measur
ement 

1)
M
18 

6.0E+
00 

Y 
6.0E+

00 
40
% 

2.4E+0
0 

Y 
50
% 

1.2E
+00 

    
1.2E+

00 

FCS_AI_0A001 
Measur
ement 

1)
M
19 

4.0E+
00 

Y 
4.0E+

00 
40
% 

1.6E+0
0 

Y 
50
% 

1.2E
+00 

    
7.8E-

01 

CELL’c’_AI_0V000
1 

Data 
1)
D3 

8.3E-
01 

Y 
8.3E-

01 
40
% 

3.0E-
01 

    
7.8E
-01 

      

STACK’s'_AI_0V0
01 

Data 
1)
D4 

8.3E-
01 

D
S 

0.0E+
00 

40
% 

3.3E-
01 

    
0.0E
+00 
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STACK’s’_AI_0C1 Data 
1)
D2
9 

8.3E-
01 

Y 
8.3E-

01 
40
% 

3.0E-
01 

Y 
50
% 

0.0E
+00 

    
1.5E-

01 

FCS_AIR_IN_POS
_AI_1Dg 

Data 
1)
D3
9 

8.3E-
01 

D
S 

0.0E+
00 

40
% 

3.3E-
01 

    
1.5E
-01 

      

STACK’s’_EXHAU
ST_POS_AI_1Dg 

Data 
1)
D4
0 

8.3E-
01 

D
S 

0.0E+
00 

40
% 

3.3E-
01 

    
0.0E
+00 

      

STACK’s’_FAN’f’_
FI_HZ 

Measur
ement 

1)
M
6 

4.0E+
00 

D
S 

0.0E+
00 

40
% 

1.6E+0
0 

    
0.0E
+00 

      

STACK’s’_TEMP’t’
_AI_0C1 

Measur
ement 

1)
M
7 

4.0E+
00 

Y 
4.0E+

00 
40
% 

0.0E+0
0 

    
0.0E
+00 

      

CATHODE_AIR_A
I_0Pa1 

Measur
ement 

1)
M
17 

4.0E+
00 

D
S 

0.0E+
00 

40
% 

1.6E+0
0 

    
0.0E
+00 

      

H2_VALVE_AfbI_
0V1 

Measur
ement 

1)
M
8 

4.0E+
00 

D
S 

0.0E+
00 

40
% 

1.6E+0
0 

    
0.0E
+00 
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4.4.5.2 Results Evaluation 

The final values are SPFM = 94.2% and LFM = 87.2% which would mean that the architectural metrics 

can achieve ASIL B for a safety goal ‘maintain power within the required operating region’. As 

discussed in many the PCc claims for diagnostic coverage, many items have conservative claims due 

to lack of information on the transducers and actuators for this proof of concept design. However, 

there is good coverage of most elements and the analysis has uncovered the weaker areas which 

require further investigation. 

4.4.5.3 Investigation Areas. 

Many points require further investigation: 

1) Mechanical linkages reduce the claim as the feedback mechanism does not cover them 

sufficiently. This can be tackled in one of two ways: 

a. Mechanically move the feedback position so that it represents the damper positions 

rather than the mechanical link that drives the dampers. 

b. By adding further characteristic analysis so that a PCc can be developed for the 

control loop and demand positions against damper feedback. This would allow 

position to be monitored as a diagnostic element only. Characterisation will have to 

ensure that inlet and outlet failures can be correctly diagnosed. 

2) Hydrogen gas monitoring in the exhaust. At the moment there is the possibility that this is 

included in control loops for purge. If this can be removed, possibly by improved purge valve 

position monitoring then the hydrogen sensor can be purely for diagnostic purposes. It is 

likely that this can be removed from this safety goal in terms of consideration for 

maintaining the correct power. However, consideration will have to be given to other safety 

goals in terms of safe ventilation of hydrogen which may still require this sensor unless 

chemical analysis and air flow analysis can prove it was not a safety concern. 

file:///C:/Users/Andy/Documents/Andy/PhD%20Functional%20Safety/Thesis/FCS/FCS%20SG%20Maintain%20Power%20V005.xlsx%23'1)C22'!A1
file:///C:/Users/Andy/Documents/Andy/PhD%20Functional%20Safety/Thesis/FCS/FCS%20SG%20Maintain%20Power%20V005.xlsx%23'1)C22'!A1


 

 Page 260 of 458 A.R. Williams 
 

3) External measures can be increased by placing requirements on: 

a. The DCDC converter to provide independent measurement of voltage and current. If 

this is possible at an appropriate ASIL then it may be possible to remove some of the 

sensing in the FCCS in terms of voltage and current. This would depend on each 

application and only be recommended for complete removal if the DCDC converter 

system became a standard part used in every application. 

b. The hybrid controller for verification of signals from the FCCS via measurements 

after the DCDC converter in terms of power delivery. Again, this can be 

recommended as standard if a common hybrid controller was to be used. If the 

controller varied in each application, a more overall cost-efficient solution may be to 

maintain the proposed level of diagnostic coverage in the FCCS itself to reduce the 

burden of an additional functional safety impact analysis for every new application. 

4.4.5.4 Next Steps. 

This is a very early stage on the concept for a FCCS meeting BS ISO 26262 but the methods give a 

very good indication that the base control system already has relatively good architectural metrics 

even when conservative estimates are used. The next steps would be: 

1) Complete a full HARA to identify all the safety goals. 

2) Use this method for each safety goal in turn and identify the architectural metrics that can 

be claimed against each of the safety goals. 

3) Compare results for each safety goal to identify methods to improve diagnostics that either 

increase independence or provide coverage for faults that have lower coverage percentages 

at present. 

4) Develop different candidate architectures following a similar approach to that applied for 

the Isolation Tester in 4.2 and the Battery Management System in 4.3. 

4.4.5.5 PCc Method Benefits for FCCS analysis. 

The analysis has provided a very good insight into the FCCS from an architectural metrics viewpoint. 

All the work completed so far can now be taken forwards to analyse other safety goals and 

additional candidate architectures applicable to the FCCS. 

To develop a production intent solution, the final architectural metrics and failure rates for the 

actual hardware design would be obtained and used to improve the failure rates assumed for the 

lumped element blocks to mature the model. Increasing maturity levels was discussed in 3.7.3.1. 

This will further improve PCc analysis for future FCCS designs as technology improves and new 

concepts require evaluation. 
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4.5 Summary 

The method has been applied to three practical applications (4.2 to 4.4). In the first two cases, the 

Isolation Tester (4.2) and the Battery Management System (4.3) a full analysis has been performed 

to allow comparison between the predicted results using the PCc method and those achieved with 

the full analysis.  

In both cases, the method has allowed a safety goal to be selected and several candidate 

architecture proposals to be analysed. Based on the quantified analysis of each proposed 

architecture, design changes have been developed and the method applied iteratively. From these 

results, a candidate architecture has been selected to take forward into the full system design 

lifecycle. 

Confidence in the PCc prediction is demonstrated in the results comparison to the values calculated 

for the final design as shown in Figure 17 and Figure 18 for the Isolation tester and Figure 30 and 

Figure 31 for the Battery Management System. 

Considering the errors for the Isolation Tester (plotted in Figure 38) the errors are always positive 

showing the pessimistic claim for both SPFM and LFM predictions. As the SPFM and LFM claims 

improve i.e. tend towards those required for ASIL B, C and D then the errors reduce to a maximum of 

1.72 % for the SPFM and 2.01% for the LFM which is considered acceptable when choosing the 

architecture to take forwards. As the diagnostic claims rely both on a software algorithm and 

hardware capable of delivering the necessary data for the software algorithm input (and in some 

cases outputs where test patterns are used) the main criteria is to ensure that the hardware is 

capable of achieving the architectural metrics for the required ASIL attribute for the safety goal 

under consideration. 

Architectures 1 and 2 have relatively low SPFM and LFM values as the architectures have limited 

diagnostic coverage against different failures. Architecture 3 provides a significant jump (approx. 

11.6% in SPFM see 4.2.5.15). As the diagnostic coverage increases so does the SPFM and LFM and 

this also links to the reduction in error between the PCc prediction and the final design values. 
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Figure 38: Measure Isolation Resistance SPFM and LFM Errors for Candidate Architectures 

The Battery management System errors are shown in Figure 39. 

 

Figure 39: Battery Management System SPFM and LFM Errors for Candidate Architectures 

In Isolation Measurement case (Figure 38) the SPFM and LFM values are optimistic i.e. that achieved 

in the final design was slightly higher than that predicted. In the Battery Management System, the 

SPFM and LFM values vary around positive and negative. Other than architecture 2 which utilised 

the limited hardware architecture the errors are still within +/- 2.3% and as the architecture 

improves the errors reduce. In architecture 2 there is also a large bias towards the string hardware 

logic outputs and contactors which contribute a high proportion of the undiagnosed failure rate 

(20%) compared to the other safety related components in the system when analysed using the PCc 

method. In the final architecture there is a much higher level of componentry which means that 
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these components only contribute to 15% of the undiagnosed total failure rate. This may be due to 

an over simplification in the hardware only route when considered in the PCc route compared to the 

final design. Further analysis and the implications of the error values are provided in the conclusions 

(5.2). 

In the third example (4.4) the approach shows that the method can be applied very early in the 

concept stage when exploring possibilities for a new system i.e. if a company wished to embark on 

developing a fuel cell control system what level of architectural metrics can be achieved based on an 

initial design feasibility study. This application is very useful and will be used in the future when 

looking at new technology projects. An example would be autonomous vehicles, where innovative 

technology is being introduced at a high rate. In this example it would be relatively simple to 

determine PCcs required to mitigate the main failure modes identified through an FMEA on a 

preliminary design even though the detail of how this might be achieved in the final hardware is still 

to be determined.  

It may be that some PCcs defined at the concept level may not even be technically possible due to 

limitations in the hardware or software. This may lead to further research work being undertaken.  

The advantage of applying this method is that the requirement for additional research / 

development work is identified at the concept stage and not delayed until late into the hardware / 

software design when it becomes apparent that the architectural metrics cannot be achieved due to 

a limitation in applying the selected diagnostic techniques. 
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5 Conclusions 

The hypothesis made at the beginning of the research was: 

‘Complex system architectures can be analysed and compared by quantitative methods 

based on architectural metric calculations at the signal level during the concept stage of 

product development to accurately predict the single point and latent point fault metrics 

calculated for the final design’ 

The method developed during the work has shown that architectures can be quantified at the 

concept stage, multiple candidates designed and compared in a quantified way and a design concept 

selected based on the best architecture with the required level of architectural metrics.   

The method is easily understood and very efficient in analysing different concepts. 

The actual correlation between PCc predicted architectural metrics and those achieved in the design 

were sufficiently accurate to give confidence that the process determined the correct Automotive 

Safety Integrity Level for the architectural metrics parameter required for the design. 

The above is discussed in more detail below. 

5.1 Method Review and Benefits 

The PCc quantification method developed has been shown to provide: 

1) A systematic approach to define the function of interest – the system description (3.5). The 

final element classification is limited to seven classifications (3.5.2) Connections, 

Measurements, Transducers, Data, Parameters, Outputs and Actuators. This is sufficient to 

describe any control system accurately in any domain; it is not just restricted to automotive.  

2) Easily understood system diagrams (for example Figure 11 and Figure 12) specifically 

targeted at the analysis of architectural metrics are developed based on the element 

classifications. The system diagrams identify all the critical elements and lend themselves to 

analysis of the possible failures in each element. The diagrams clearly show independence 

within the system and the interfaces between arrays of systems (Figure 19). This facilitates 

discussions between different internal departments / engineering disciplines and external 

suppliers etc. 

3) Each system diagram can be annotated to show elements that can violate the safety goal 

being analysed. This clearly identifies which areas require diagnostic coverage and allows 

PCcs (3.6.3) to be developed that specifically diagnose the faults of interest. The clarity of 
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independence between systems simplifies discussions relating to ASIL decomposition of 

requirements. 

4) A technique to quantify several candidate architectures to predict Single Point Fault (3.7.1.1) 

and Latent Fault (3.7.1.4) architectural metrics.  This is achieved through two spreadsheet 

work books, one for the SPFM / LFM calculations (although broken out into two tables for 

presentation purposes in the Thesis) and a workbook that contains a macro-enabled 

worksheet for each of the seven element classifications and the power supply function. The 

element worksheets allow failure modes to be deselected if not required in the design (i.e. 

failure modes that will not violate the safety goal) and failure mode percentages to be 

reallocated based on the failure modes of interest. One or more PCcs is then used to provide 

diagnostic coverage (3.6.2). 

5) PCc claims based on known methods for diagnosing failures as defined in functional safety 

standards. Combining these methods gives a higher confidence that the final design will 

achieve the required architectural metric requirements. This method is generic and can be 

tailored to many different safety standards where architectural metrics are required to 

evaluate the capability of the system to detect failure modes. For example, it can be used for 

single point fault metrics in line with BS ISO 262622 (BSI, 2011e) or safe fail fractions as in BS 

EN 61508 part 2 (BSI, 2010). 

6) Accurate predictions of SPFM and LFM architectural metrics. This has been demonstrated 

through the comparison to results from final design solutions. 

7) PCc method that is quick to apply, with efficiency improving each time it is applied. Being 

efficient, it permits many different candidate architectures to be explored and a quantified 

comparison made between each one. For example, the Isolation Measurement Architecture 

5 (4.2.5.25) analysis required 16 elements to be considered in the calculations whereas the 

final design required analysis of 149 components. For the battery Management System 

Architecture 7 (4.3.6.35) 45 elements were analysed in the PCc analysis against 895 

components in the final design. This is a significant saving in effort especially in the concept 

stage when a fast technique is required to analyse a candidate architecture. 

8) A method that can be matured through continuous improvement as Companies complete 

additional designs. 

9) Influence on decisions as to whether to implement safety features in hardware or software. 

For a high-volume product it may be better to develop the functionality in software 

(requiring significant development time) rather than in hardware which increases 

component cost. If amortisation of software costs over the volume is cheaper than the 
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increase in hardware cost then this may be beneficial. The PCc method allows this decision 

to be made early in the design process. 

10) Early component selection. Where components offer different diagnostic techniques but a 

similar functional performance, using PCc techniques early in the process may lead to 

selection of a particular device – for example, the AFE in the BMS. 

11) A method that can be applied to IEC 61508 and ISO26262 as discussed in 3.7.1.3. 

12) Right first-time design. This will always be a matter for debate as the design process and 

final product always has compromises. The PCc method aids the concept analysis and 

significantly leads to an improved architecture. In all examples completed so far, the 

architecture developed and selected via the PCc Method has always: 

a. Delivered the required architectural metrics in the final design. 

b. Led to an architecture with well-defined independence that supports ASIL 

decomposition. 

c. Removed any iterative loops relating to system architecture design in the system 

design stage. 

d. Front loaded the project definition heavily to the concept stage. 

e. Given clear traceable diagnostic requirements based on the PCcs. 

f. Elicits requirements early in the design process. 

5.2 Accuracy of Quantification Results 

As shown in the results sections for the Isolation Tester (4.2.6) and the Battery Management System 

(4.3.7), very close correlation is achieved between the predicted SPF and LF architectural metrics 

using the PCc Quantification Method and the final analysis completed as per BS ISO26262 part 5 (BSI, 

2011e). 

Although the diagnostic coverage, SPFM and LFM percentages are quantified values their 

determination relies heavily on base data. Where possible, definitive data is used, each failure mode 

is individually assessed, this failure mode is apportioned a percentage of the overall failure rate and 

the diagnostic coverage defined. However, all of this is related to the accuracy of the base data. 

Often, with component suppliers, the data is relatively generic for a type of device. For example, an 

intelligent output driver may be based on a technology platform rather than the specific individual 

part and failure modes may be generalised. This data is sometimes predicted rather than being 

justified by field data. If field data is used, engineering judgement is required to ensure confidence 

that that the failure mode and occurrence is diagnosed and reported accurately. 
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If the variance relates to specific components then the architectural metrics for those components 

provided by the manufactures (especially for complex components) should be compared to the 

assumptions made when performing the PCC calculations. Variance can occur where the supplier has 

made different assumptions in terms of safe failures, fault detection measures etc. when performing 

their own internal analysis. Often manufactures must design the ‘element out of context’ in order to 

provide a generic component for use in many applications and it may be possible to obtain more 

accurate results by discussing the specific application. 

The outcome is that there is always a small error in the actual architectural metric results and this 

can only be improved over time as data is gathered by component suppliers, Tier 1 suppliers and 

OEMs and this information is openly shared. 

One important aspect of continuous improvement is the way in which complex semiconductors are 

being handled. In the first edition of BS ISO 26262 (BSI, 2011e), where no additional information is 

available, failure modes may be considered 50% safe and 50% leading to violation of the safety goal. 

However, in edition 2 there is a new draft ISO / DIS 26262 part 11 (ISO/DIS 26262-11, 2016) which 

offers significantly more information on failure modes relating to complex semiconductors. 

The above leads to the conclusion that the relative comparison between the architectures are 

accurate due to repetitive use of base data in each candidate architecture but that there is always a 

level of uncertainty in the absolute SPFM and LFM percentages. This is applicable both to the PCc 

predictions and the end results for the detailed design. 

5.3 Lessons Learnt 

One of the aims of the method is to significantly reduce time in the analysis process so that it can be 

conducted on multiple candidates at the concept stage. This was achieved, however, the amount of 

effort required to develop the full designs and associated architectural metrics for each candidate 

was severely underestimated. This added a considerable amount of time to the proof but could not 

be avoided as the predictions had to be verified to give merit to the developed method. This delayed 

completion of the PhD but also supports the claim that the PCc method is very efficient and ideally 

suited to concept evaluation.  

Without the PCc Method, a designer could complete the design, perform the detailed architectural 

metrics calculation and then identify a major floor in the architecture. This would significantly delay 

the project, add costs and increase time to market. 
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The naming convention was a late addition to the proposed method and really came about due to 

the difficulty in tracing signals through the design and into the final electronic circuit. This meant 

many iterations as the method developed, with changes to names so that they made sense 

schematically and could be traced reliably through the design in a logical manner. There was also 

confusion, in some cases, between the resolution of signals and whether the PCc claim was justified 

when comparing signals if the resolution was not defined. This convention was added into the 

process during the development of the BMS and retrospectively applied to the Isolation tester. This 

is now an important part of the PCc method and plays a valuable role in traceability from concept 

through to final design. 

Some confusion arose around defining elements and signals that could violate the safety goal and 

those used purely for diagnostics. To eliminate this confusion, the FCCS description contains a 

specific colour (yellow in this case) to highlight elements and signals that need to be considered as 

they form part of the diagnostics. Typically, they would not in themselves lead directly to the 

violation of the safety goal if they failed but they will contribute to an improvement in the fault 

metrics and may also impact on maintaining the system in a safe state. 

On a personal note, the work has greatly improved my research skills: 

➢ When conducting reviews all material is annotated electronically and indexed or relevant 

information recorded in a central data resource that can easily be indexed. This not only 

proved useful in the Thesis but also on other work-related projects where material has been 

reference or additional reviews performed. 

➢ Peer reviews are critical to questioning not only what work is being undertaken but why it is 

being undertaken. This allows priorities to be set and can prevent effort being spent on 

‘areas of interest’ that are maybe not as relevant as first thought. 

➢ Interdisciplinary discussions are vital. Functional safety knowledge within companies is often 

quite restricted and treated almost as a standalone function for design analysis and 

monitoring. Pulling the functional safety experts into the technology concepts very early on 

in the process really promotes discussion and a thorough investigation of all possible design 

solutions. 

5.4 Additional Benefits 

 A number of interesting benefits were detected that were not originally identified as required 

outcomes. These are discussed below. 
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5.4.1 Comparison between Design Approaches 

The Battery Management System demonstrated that two completely distinctive design approaches 

could be compared. Architecture 1 used a predominantly software based approach and architecture 

2 relied on a hardware approach. Both were valid design solutions but the hardware approach was 

more suited to a proof of concept where many different control techniques / software algorithms 

were to be developed with the safety being provided by the hardware shutdown system. The 

software approach relied considerably more on having compliant software processes and emphasis 

being placed on software testing to prove all safety requirements were satisfied and verified prior to 

putting into service. 

If the intention was to provide a proof of concept solution then Architecture 2 could have been 

developed with techniques from architectures 6 and 7 (requiring a certain level of software). The 

algorithms for voltage measurement and contactor control would be relatively simple to test and 

verify and would be unlikely to change in different applications. This route may have delivered the 

required architectural metrics for ASIL C (as required for the safety element out of context system). 

This could be completed using the PCc method should this design approach be required. 

In some cases, as with the FCCS analogue front end, there are limited suppliers that can deliver 

integrated circuits to fulfil the functional requirements. The PCc method can be used to look at these 

devices in isolation to understand failure modes and diagnostic coverage based on a lumped model 

for the required hardware. Assuming more than one supplier was available, the PCc diagnostic 

claims for each supplier could be used in the SPFM and LFM architectural metric calculations to 

understand which device delivers the better functional safety performance when used in the 

application to deliver a specific safety goal. 

5.4.2 Diagnostic Requirements Elicitation and Traceability 

Because the PCc claims for each of the classified elements is based specifically on the diagnostic 

techniques covered in BS ISO 26262 part 5 (BSI, 2011e) it becomes a simple task to generate specific 

hardware and software requirements at the technical safety requirements stage (BSI, 2011d) which 

are traced back to the concept stage (BSI, 2011c). It is important because it means that a lot of the 

technical design is inherent at the concept stage (via the PCc diagnostic coverage claim) but does not 

need detailed implementation requirements until later in the process. It also means that the 

diagnostic requirements are well understood and once the system design is started the diagnostic 

functions can be allocated to hardware or software, or, as is more common, a combination of the 

two. 
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5.4.3 Evaluation of Required Diagnostic Coverage Claims 

As discussed in the Progressive Approach (3.8.1), it is possible to update the SPFM and LFM 

spreadsheets with trial values for diagnostic coverage against different elements to see how this will 

affect the final SPFM and LFM percentages. This cannot be realised easily at the final design stage as 

a diagnostic technique is likely to involve many components rather than just a single classified 

element. 

This is very useful in understanding which elements to concentrate on when investigating different 

PCcs and what sort of techniques should be utilised in the PCc to achieve the required level of 

diagnostic coverage - low, medium or high. Once a target is set, the PCc can be developed with 

target coverage in mind which will guide the use of specific techniques to cover the failure modes of 

interest. 

5.4.4 Improving Diagnostic Trouble Codes (DTCs) 

For lower level ASILs it is not required, or recommended, to perform the SPFM and LFM calculations. 

This is understandable at the final design stage. However, as the PCc method is quick to apply, 

completing the PCc analysis for all designs, from QM to ASIL ‘D’, leads to an elevated level of 

understanding of the system, failure modes and the faults that can be detected. This can be used to 

detail requirements for DTCs at the concept stage before running a full requirement check via an 

FMEA, for example, in the later system design stage. This is of significant benefit to service centres. 

5.5 Limitations 

The method has been shown to work for control systems that are closely aligned to automotive 

applications that require a final safety case aligned to ISO26262.  This can be a system or array of 

systems as defined in ISO26262 part 1 (BSI, 2011a). The PCc method is based on the techniques that 

are required in the final design analysis and application outside of this area has not been analysed 

although other areas should be considered (see 6). 

The failure rate data and failure mode date used in the examples was based on mature data (3.7.3.1) 

as this data was available. A less accurate data set in the concept stage would reduce accuracy in the 

SPFM and LFM values however this does not impact on the relative accuracy when comparing 

candidate architectures as long as the same data is used for each candidate. Refining accuracy as 

experience matures will increase the accuracy of the results for each candidate. 

The method, even with the use of the macro in the spreadsheet is still a manual procedure. Defining 

the system in terms of an ADL would improve the method and allow for automated calculations of 

the SPFM an LFM architectural metrics and offer further increases in calculation efficiency, possibly 

allowing additional candidate architectures to be analysed (see 6). 
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The method covers the architectural metrics required in standards e.g. ISO26262 (BSI, 2011e) which 

allows a conceptual candidate to be analysed and then taken through to full design. It does not, nor 

was it intended to, analyse dependencies between failures and analysis of the probability of random 

hardware failures which would also be required in the final design analysis when building an overall 

safety case for the item as this can be achieved by the use of other tools e.g. Hip-HOPS (HiP-HOPS, 

2017).  
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6 Further Work 

The proposed method has been used now in many work applications by the author and other 

engineers and will be used in future safety critical designs to mature the models and develop the 

functional safety concept. 

During the research work many other interesting topics were questioned as discussed below: 

1) If a lumped model, which is safety critical, has no coverage will this lead to either a single 

point fault or a dominant fault when the random hardware failure rates are calculated? This 

has been considered because the diagnostic coverage effectively puts an ‘AND’ gate in the 

fault tree meaning that diagnostic coverage must fail as well as the control element itself. If 

this is the case then the PCc method can be used to prioritise each lumped model / classified 

element to ensure an elevated level of diagnostic coverage which will then influence the 

achievable random hardware failure rates. This would need the fault tree analysis to be 

performed for each candidate architecture used in the previous examples. For the Battery 

Management System and the Isolation Tester this would be relatively straightforward as the 

failure rate data is already available. The real unknown in this approach is the relationship 

between increased component count (hence increased system failure rate) against the 

reduction in failure rate for the safety goal of interest due to the improved diagnostic 

coverage. 

2) Tool generation. As the system description is an interconnected block diagram with specific 

attributes in terms of failure modes, failure mode percentages, diagnostic coverage and an 

overall diagnostic claim using the PCcs it should be possible to develop an application to 

calculate the SPFM and LFM for the candidate architecture automatically based on an EAST-

ADL ( EAST-ADL Association, 2013). This tool could also maintain the data base for all the 

lumped model data which could then be matured as more architectures are completed. 

Possible tools that could be considered are Vector PREEvision (Vector PV, 2017), Matlab 

(Mathworks, 2017) or HipHops (HiP-HOPS, 2017). 

3) Other areas of application. As the PCc method looks at failure modes and diagnostic 

capability could it be applied to other systems? Possible considerations in the automotive 

setting are exhaust emissions control. Outside of the automotive arena, there are several 

possible application areas such as banking, supply chain, accounting etc. To be applied 

suitable metrics would have to be defined or a basic 0-100% scale could be used to identify 

single points of failure in the system. 
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8 Appendices. 

Appendix A – Item Definition 

This item definition is aimed at a generic vehicle level but only covers operation specifically relating 

to the battery management system (BMS) for a rechargeable energy storage system (RESS). As the 

BMS and RESS are being designed out of context for a number of vehicular applications the item 

definition has been purposely left all-encompassing. 

The vehicle will operate in two modes: 

1) Discharge mode – the normal driving mode where the RESS can be: 

a. Discharged to allow torque delivery via the driveline and ancillary power for loads 

such as cabin heaters, electric steering assist, electric air conditioning loads, cabin 

heaters etc. 

b. Charged through either regenerative braking via the driveline or in the case of a 

hybrid via an IC engine / generator arrangement. 

2) Charge Mode – the normal charging mode where the vehicle is stationary and the RESS can 

be: 

a. Charged from an off board charging system. This would typically be connected to the 

mains distribution network and provide a DC supply to the RESS via a cable or 

through an inductive charging system. 

b. Charged from an on-board charger. This would typically be connected to the mains 

distribution network to provide and AC supply to the charger via a cable which then 

provides a DC supply to the RESS via the vehicle harness. Optionally an IC engine / 

generator arrangement may be used in the case of hybrid vehicles. 

c. Combinations of ‘a’ and ‘b’ above. 

The RESS will be a DC system capable of working over a wide power range. The RESS will be tailored 

to suit a specific application and an impact analysis performed to assess suitability of the design prior 

to implementation. The voltage will range from 12VDC to 600VDC, and may either be directly 

referenced to the vehicle chassis or be electrically isolated from it depending upon the application. 

The current capability will have a maximum +/- 300ADC. 

The secondary cells used within the RESS will be specific to the application and a range of different 

chemistries, packaging arrangements, discharge / charge ratings and environmental considerations 

will have to be taken into account during the design. The purpose of the BMS within the RESS is to 

ensure that the cells are maintained within their safe operating area during storage, transportation, 

installation, operation, service and up to the point of decommissioning. This safe operating area 
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must be specified by the vehicle manufacturer based on information from the cell manufacture and 

must include as a minimum the following data: 

1) Maximum safe operating voltage 

2) Minimum safe operating voltage 

3) Maximum safe operating temperature 

4) Minimum safe operating temperature 

5) Maximum discharge rates - continuous and short-term 

6) Maximum charge rates - continuous and short-term 

If the BMS detects that the safe operating area is likely to be exceeded then it will request that the 

vehicle or charging system limits RESS current in order to maintain the cells within their safe 

operating area. 

If the BMS detects that the safe operating area has been exceeded then it will request that the 

vehicle or charging system reduces discharge, regeneration or charge rates to zero in order to 

reduce switching currents and then disconnect the RESS from the vehicle / charging system. 

If the vehicle or charging system detects a condition that may affect the operation of the RESS (e.g. 

crash) then it will request that the RESS disconnects from the vehicle or charging system. 

The BMS and RESS shall connect to the vehicle and charging system through the following interface: 

1) DC Bus (12VDC to 600VDC at up to 300A) 

2) Logic Supply (12Vdc to 48Vdc depending on the vehicle application) 

3) CAN communication to and from the vehicle and charging system. This will typically include 

status information such as voltages, current, temperature, State of Charge (SOC), Depth of 

Discharge (DOD), State of Health (SOH) and any relevant diagnostic information. 

4) CAN communication using Unified Diagnostic Services (UDS) for reflash, configuration, 

Diagnostic Trouble Code (DTC) read / clear and data log retrieval. 

5) Discrete signals for interface. This would typically include operating mode requests and 

enables, interlocks etc. 
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Appendix B – Hazard Identification 

Parameter Deviation Consequence 

Battery Voltage Higher than safe operating region Reduced Life of cells. 
Venting of gases. 
Chemical Burns. 

Fire. 
Explosion. 

Lower than safe operating region Reduced Life of cells 

Connected when should be Disconnected Electric shock. 
Electrocution. 

Disconnected when should be Connected None. 
Inability to slow the vehicle. 

Loss of drive (coast). 

Battery Current 
(Discharge) 

Higher than safe operating region Reduced Life of cells. 
Venting of gases.  
Chemical Burns. 

Fire. 
Explosion. 

Lower than safe operating region None 

Battery Current 
(Charge) 

Higher than safe operating region Reduced Life of cells. 
Venting of gases.  
Chemical Burns. 

Fire. 
Explosion. 

Lower than expected None. 
Increased charge time. 

Vehicle does not charge. 

Connected when should be disconnected Trailing charge Lead. 
Exposed voltage at charge 

outlet. 
Electric shock. 
Electrocution. 

Fire. 

Battery temperature Higher than safe operating region Reduced Life of cells. 
Venting of gases.  
Chemical Burns. 

Fire. 
Explosion. 

Lower than safe operating region None 

Insulation Resistance 
on HV+ 

Lower than safe operating region None 

Higher than safe operating region None 

Insulation Resistance 
on HV- 

Lower than safe operating region None 

Higher than safe operating region None 

Insulation Resistance 
on HV+ AND HV- 
simultaneously 

Lower than safe operating region Electric shock. 
Electrocution. 

Venting of gases.  
Chemical Burns. 

Fire. 
Explosion. 
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Parameter Deviation Consequence 

Higher than safe operating region None 

High Voltage 
Connection 

Not Connected None. 
Inability to slow the vehicle. 

Loss of drive (coast). 
Electric shock. 
Electrocution. 

Torque 

Higher than demanded Inability to slow the vehicle. 
Unintended acceleration. 
Unintended movement 

from rest. 

Maximum Sudden unintended 
acceleration 

Lower than demanded Unintended deceleration 

Zero Loss of Drive (Coast) 

Opposite sign Pull away in wrong 
longitudinal direction. 
Change in longitudinal 

direction. 
Sudden stop and 

longitudinal direction 
change. 

Power Dissipation Higher than design intent None. 
Skin Burns. 

Fire. 

 Lower than design intent None. 
Figure B- 1: HAZOP 
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Appendix C - Diagnostic Coverage Techniques 

The following is taken from BS ISO 26262 part 5 Annex D (BSI, 2011e) and broken down so that the 

detailed safety measures tables are shown below the analysed failure modes. 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

General Elements 

E.E Systems 

No generic fault model 

available. Detailed analysis 

necessary. 

No generic fault model 

available. Detailed analysis 

necessary. 

No generic fault model 

available. Detailed analysis 

necessary. 

 

Taken from BS ISO 26262 part 5 Annex D Table D.2 - Systems 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Failure detection by on-

line monitoring  
D.2.1.1 Low 

Depends on diagnostic 

coverage of failure 

detection 

Comparator D.2.1.2 High 
Depends on the quality of 

the comparison 

Majority voter D.2.1.3 High 
Depends on the quality of 

the voting 

Dynamic principles D.2.2.1 Medium 

Depends on diagnostic 

coverage of failure 

detection 

Analogue signal 

monitoring in preference 

to digital on/off states 

D.2.2.2 Low — 

Self-test by software 

cross exchange between 

two independent units) 

D.2.3.3 Medium 
Depends on the quality of 

the self test 
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Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Electrical Elements 

Relays Does not energize or de-

energize. 

Welded contacts 

 

Does not energize or 

de-energize. 

Individual contacts 

welded 

 

Does not energize or 

deenergize. 

Individual contacts welded 

 

Harnesses including 

splice and 

connectors 

Open Circuit 

Short Circuit to Ground 

Open Circuit 

Short Circuit to Ground 

(d.c Coupled) 

Short Circuit to Vbat 

Short Circuit between 

neighbouring pins 

Open Circuit 

Contact Resistance 

Short Circuit to Ground 

(d.c Coupled) 

Short Circuit to Vbat 

Short Circuit between 

neighbouring pins 

Resistive drift between pins 

 

 

Taken from BS ISO 26262 part 5 Annex D Table D.3 – Electrical Elements 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Failure detection by on-

line monitoring  
D.2.1.1 High 

Depends on diagnostic 

coverage of failure 

detection 

 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Electrical Elements 

Sensors including 

signal switches 

No generic fault 

model available. 

Detailed analysis 

necessary. Typical 

failure modes to be 

covered include 

No generic fault model 

available. Detailed 

analysis necessary. 

Typical failure modes 

to be covered include 

Out-of-range 

No generic fault model 

available. Detailed analysis 

necessary. Typical failure 

modes to be covered 

include 

Out-of-range 
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Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Electrical Elements 

Out-of-range 

Stuck in range 

Offsets 

Stuck in range 

Offsets 

Stuck in range 

Oscillations 

 

Taken from BS ISO 26262 part 5 Annex D Table D.11 - Sensors 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Failure detection by 

online monitoring  
D.2.1.1 Low 

Depends on diagnostic 

coverage of failure 

detection 

Test pattern D.2.6.1 High — 

Input comparison/voting 

(1oo2, 2oo3 or better 

redundancy) 

 

D.2.6.5 High 

Only if dataflow changes 

within diagnostic test 

interval 

Sensor valid range D.2.10.1 Low 

Detects shorts to ground 

or power and some open 

circuits 

Sensor correlation D.2.10.2 High Detects in range failures 

Sensor rationality check D.2.10.3 Medium — 

 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Electrical Elements 

Final elements 

(actuators, lamps, 

buzzer, screen…) 

No generic fault 

model available. Detailed 

analysis 

necessary. 

 

No generic fault model 

available. Detailed 

analysis necessary. 

 

No generic fault model 

available. Detailed analysis 

necessary. 
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Taken from BS ISO 26262 part 5 Annex D Table D.12 - Actuators 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Failure detection by 

online monitoring  
D.2.1.1 Low 

Depends on diagnostic 

coverage of failure 

detection 

Test pattern D.2.6.1 High — 

Monitoring (i.e. coherence 

control) 
D.2.11.1 High 

Depends on diagnostic 

coverage of failure 

detection 

 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

General semiconductor elements 

Power supply Under and over Voltage 

 

Drift 

Under and over 

Voltage 

Drift and oscillation 

Under and over Voltage 

Power spikes 

Taken from BS ISO 26262 part 5 Annex D Table D.9 – Power Supply 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Voltage or current control 

(input) 
D.2.8.1 Low - 

Voltage or current control 

(input) 
D.2.8.2 High - 

 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

General semiconductor elements 

Clock 

 

Stuck-at d.c. fault model d.c. fault model Incorrect 

frequency 

Period jitter 
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Taken from BS ISO 26262 part 5   Annex D Table D.10 – Program Sequencing Monitoring / Clock 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Watchdog with separate 

time base without time-

window 

D.2.9.1 Low - 

Watchdog with separate 

time base and time-

window 

D.2.9.2 Medium 

Depends on time 

restriction for the time-

window 

Logical monitoring of 

program sequence 
D.2.9.3 Medium 

Only effective against 

clock failures if external 

temporal events influence 

the logical program flow. 

Provides coverage for 

internal hardware failures 

(such as interrupt 

frequency errors) that can 

cause the software to run 

out of sequence 

Combination of temporal 

and logical monitoring of 

program sequence 

D.2.9.4 High - 

Combination of temporal 

and logical monitoring of 

program sequences with 

time dependency 

D.2.9.5 High 

Provides coverage for 

internal hardware failures 

that can cause the 

software to run out of 

sequence. 

When implemented with 

asymmetrical designs, 

provides coverage 

regarding communication 

sequence between main 

and monitoring device 

NOTE Method to be 

designed to account for 

execution jitter from 

interrupts, CPU loading, 

etc. 

 

 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 
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Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

General semiconductor elements 

Non-volatile 

memory 

Stuck-at for data and 

addresses and control 

interface, lines 

and logic 

d.c. fault model for data 

and addresses (includes 

address lines within same 

block) and control 

interface, lines and logic 

d.c. fault model for data, 

addresses (includes 

address lines within same 

block) and control 

interface, lines and logic 

 

Taken from BS ISO 26262 part 5 Annex D Table D.5 – Non-Volatile Memory 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Parity bit  D.2.5.2 Low — 

Memory monitoring using 

error-detection-correction 

codes (EDC) 

 

D.2.4.1 High 

The effectiveness 

depends on the number 

of redundant bits. Can be 

used to correct errors 

Modified checksum D.2.4.2 Low 

Depends on the number 

and location of bit errors 

within test area 

Memory Signature D.2.4.3 High — 

Block replication D.2.4.4 High — 

 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

General semiconductor elements 

Volatile memory D.6 

 

Stuck-at for data, addresses 

and control interface, lines 

and logic 

 

d.c. fault model for data, 

addresses (includes 

address lines within same 

block and inability to write 

to cell) and control 

interface, lines and logic. 

Soft error model for bit 

cells 

d.c. fault model for data, 

addresses (includes 

address lines within same 

block and inability to write 

to cell) and control 

interface, lines and logic 

Soft error model for bit cells 
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Taken from BS ISO 26262 part 5 Annex D Table D.6 – Volatile Memory 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

RAM pattern test D.2.5.1 Medium 

High coverage for stuck-

at failures. No coverage 

for linked failures. Can be 

appropriate to run under 

interrupt protection 

RAM March test D.2.5.3 High 

Depends on the write 

read order for linked cell 

coverage. Test generally 

not appropriate for run 

time 

Parity bit D.2.5.2 Low — 

Memory monitoring using 

error-detection-correction 

codes (EDC) 

D.2.4.1 High 

The effectiveness 

depends on the number 

of redundant bits. Can be 

used to correct errors 

Block replication D.2.4.4 High 

Common failure modes 

can reduce diagnostic 

coverage 

Running checksum/CRC D.2.5.4 High 

The effectiveness of the 

signature depends on the 

polynomial in relation to 

the block length of the 

information to be 

protected. Care needs to 

be taken so that values 

used to determine 

checksum are not 

changed during 

checksum calculation 

Probability is 1/maximum 

value of checksum if 

random pattern is 

returned 
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Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

General semiconductor elements 

Digital I/O Stuck-at (including signal 

lines outside of the 

microcontroller) 

 

d.c. fault model (including 

signal lines outside of the 

microcontroller) 

 

d.c. fault model (including 

signal lines outside of the 

microcontroller) 

Drift and oscillation 

 

Analogue I/O 

 

Stuck-at (including 

signal lines outside of 

the microcontroller) 

 

d.c. fault model (including 

signal lines outside of the 

microcontroller) 

Drift and oscillation 

d.c. fault model (including 

signal lines outside of the 

microcontroller) 

Drift and oscillation 

 

Taken from BS ISO 26262 part 5 Annex D Table D.7 – Analogue and Digital IO 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Failure detection by 

online monitoring (Digital 

I/O) 

D.2.1.1 Low 

Depends on diagnostic 

coverage of failure 

detection 

Test pattern D.2.6.1 High 
Depends on type of 

pattern 

Code protection for digital 

I/O 
D.2.6.2 Medium 

Depends on type of 

coding 

Multi-channel parallel 

output 
D.2.6.3 High — 

Monitored outputs D.2.6.4 High 

Only if dataflow changes 

within diagnostic test 

interval 

Input comparison/voting 

(1oo2, 2oo3 or better 

redundancy) 

D.2.6.5 High 

Only if dataflow changes 

within diagnostic test 

interval 
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Adapted from BS ISO 26262 part 5   Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Specific semiconductor elements – Processing Elements 

ALU - Data Path Stuck-at Stuck-at at gate level d.c. fault model 

Soft error model (for 

sequential parts) 

 

Registers (general 

purpose registers 

bank, DMA transfer 

registers…), 

internal RAM 

Stuck-at Stuck-at at gate level 

Soft error model 

d.c. fault model including 

no, wrong or multiple 

addressing of registers 

Soft error model 

Address calculation 

(Load/Store Unit, 

DMA addressing 

logic, memory and 

bus interfaces) 

Stuck-at Stuck-at at gate level 

Soft error model (for 

sequential parts) 

d.c. fault model including 

no, wrong or multiple 

addressing Soft error 

model (for sequential parts) 

Interrupt handling Omission of or continuous 

interrupts 

Omission of or continuous 

interrupts Incorrect 

interrupt executed 

Omission of or continuous 

Interrupts Incorrect 

interrupt executed 

Wrong priority 

Slow or interfered interrupt 

handling causing missed or 

delayed interrupts service 

Control logic 

(Sequencer, coding 

and execution logic 

including flag 

registers and stack 

control) 

No code execution 

Execution too slow 

Stack overflow/underflow 

Wrong coding or no 

execution 

Execution too slow 

Stack overflow/underflow 

Wrong coding, wrong or no 

execution 

Execution out of order 

Execution too fast or too 

slow 

Stack overflow/underflow 

Configuration 

Registers 

— Stuck-at wrong value Corruption of registers (soft 

errors) 

Stuck-at fault model 

Other sub-elements 

not belonging to 

previous classes  

Stuck-at Stuck-at at gate level 

sequential part) 

d.c. fault model 

Soft error model (for 

sequential part) 
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Taken from BS ISO 26262 part 5 Annex D Table D.4 - Processing Units 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Self-test by software: 

limited number of patterns 

(one channel) 

D.2.3.1 Medium 
Depends on the quality of 

the self-test 

Self-test by software 

cross exchange between 

two independent units 

D.2.3.3 Medium 
Depends of the quality of 

the self-test 

Self-test supported by 

hardware (one-channel)  
D.2.3.2 Medium 

Depends on the quality of 

the self-test 

Software diversified 

redundancy (one 

hardware channel) 

 

D.2.3.4 High 

Depends on the quality of 

the diversification. 

Common mode failures 

can reduce diagnostic 

coverage 

Reciprocal comparison by 

software 
D.2.3.5 High 

Depends on the quality of 

the comparison 

HW redundancy (e.g. 

Dual Core Lockstep, 

asymmetric redundancy, 

coded processing) 

D.2.3.6 High 

It depends on the quality 

of redundancy. Common 

mode failures can reduce 

diagnostic coverage 

Configuration Register 

Test 
D.2.3.7 High 

Configuration registers 

only 

Stack over/under flow 

Detection 
D.2.3.8 Low Stack boundary test only 

Integrated Hardware 

consistency monitoring 
D.2.3.9 High 

Coverage for illegal 

hardware 

 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Specific semiconductor elements – Processing Elements 

Address calculation 

(Load/Store Unit, 

DMA addressing 

logic, memory and 

bus interfaces) 

Stuck-at Stuck-at at gate level 

Soft error model (for 

sequential parts) 

d.c. fault model including 

no, wrong or multiple 

addressing 

Soft error model (for 

sequential parts) 
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Taken from BS ISO 26262 part 5 Annex D Table D.5 – Non-Volatile Memory 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Parity bit  

 
D.2.5.2 Low — 

Memory monitoring using 

error-detection-correction 

codes (EDC) 

D.2.4.1 High 

The effectiveness 

depends on the number 

of redundant bits. Can be 

used to correct errors 

 

Modified checksum D.2.4.2 Low 

Depends on the number 

and location of bit errors 

within test area 

Memory Signature D.2.4.3 High — 

Block replication D.2.4.4 High — 

 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Specific semiconductor elements – Processing Elements 

Address calculation 

(Load/Store Unit, 

DMA addressing 

logic, memory and 

bus interfaces) 

Stuck-at Stuck-at at gate level 

Soft error model (for 

sequential parts) 

d.c. fault model including 

no, wrong or multiple 

addressing 

Soft error model (for 

sequential parts) 

 

Taken from BS ISO 26262 part 5 Annex D Table D.6 – Volatile Memory 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

RAM pattern test  D.2.5.1 Medium 

High coverage for stuck-

at failures. No coverage 

for linked failures. Can be 

appropriate to run under 

interrupt protection 

RAM March test D.2.5.3 High 
Depends on the write 

read order for linked cell 
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Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

coverage. Test generally 

not appropriate for run 

time 

Parity bit D.2.5.2 Low — 

Memory monitoring using 

error-detection-correction 

codes (EDC) 

D.2.4.1 High 

The effectiveness 

depends on the number 

of redundant bits. Can be 

used to correct errors 

Block replication D.2.4.4 High 

Common failure modes 

can reduce diagnostic 

coverage 

Running checksum/CRC D.2.5.4 High 

The effectiveness of the 

signature depends on the 

polynomial in relation to 

the block length of the 

information to be 

protected. Care needs to 

be taken so that values 

used to determine 

checksum are not 

changed during 

checksum calculation 

Probability is 1/maximum 

value of checksum if 

random pattern is 

returned 

 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Specific semiconductor elements – Processing Elements 

Interrupt handling Omission of or continuous 

interrupts 

Omission of or continuous 

interrupts Incorrect 

interrupt executed 

Omission of or continuous 

Interrupts. Incorrect 

interrupt executed. Wrong 

priority. Slow or interfered 

interrupt handling causing 

missed or delayed 

interrupts service 

Control logic No code execution Wrong coding or no Wrong coding, wrong or no 
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Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Specific semiconductor elements – Processing Elements 

(Sequencer, coding 

and execution logic 

including flag 

registers and stack 

control) 

Execution too slow 

Stack overflow/underflow 

execution 

Execution too slow Stack 

overflow/underflow 

execution 

Execution out of order 

Execution too fast or too 

slow 

Stack overflow/underflow 

 

Taken from BS ISO 26262 part 5 Annex D Table D.10 – Program Sequencing Monitoring / Clock 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Watchdog with separate 

time base without 

time-window 

D.2.9.1 

 
Low — 

Watchdog with separate 

time base and time 

window 

D.2.9.2 

 
Medium 

Depends on time 

restriction for the time-

window 

Logical monitoring of 

program sequence 
D.2.9.3 Medium 

Only effective against 

clock failures if external 

temporal events influence 

the logical program flow. 

Provides coverage for 

internal hardware failures 

(such as interrupt 

frequency errors) that can 

cause the software to run 

out of sequence 

Combination of temporal 

and logical monitoring of 

program sequence 

D.2.9.4 High — 

Combination of temporal 

and logical monitoring of 

program sequences with 

time dependency 

D.2.9.5 High 

Provides coverage for 

internal hardware failures 

that can cause the 

software to run out of 

sequence. 

When implemented with 

asymmetrical designs, 

provides coverage 

regarding communication 

sequence between main 
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Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

and monitoring device 

NOTE Method to be 

designed to account for 

execution jitter from 

interrupts, CPU loading, etc. 

 

Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Specific semiconductor elements – Processing Elements 

ALU - Data Path Stuck-at Stuck-at at gate level d.c. fault model 

Soft error model (for 

sequential parts) 

Other sub-elements 

not belonging to 

previous classes  

Stuck-at Stuck-at at gate level 

sequential part) 

d.c. fault model 

Soft error model (for 

sequential part) 

 

Taken from BS ISO 26262 part 5 Annex D Table D.13 – Combinatorial and sequential Logic 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

Self-test by software  D.2.3.1 Medium — 

Self-test supported by 

hardware (one-channel) 
D.2.3.2 High 

Effectiveness depends on 

the type of self-test. Gate 

level is an appropriate 

level for this test 
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Adapted from BS ISO 26262 part 5 Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Specific semiconductor elements - Communications 

Data transmission 

(to be analysed 

with 

ISO 26262-6:2011, 

Annex D) 

 

Failure of communication 

peer Message corruption 

Message delay 

Message loss 

Unintended message 

repetition 

Previous + 

Resequencing 

Insertion of message 

 

Previous + 

Masquerading 

 

Taken from BS ISO 26262 part 5 Annex D Table D.8 – Communications Bus (serial, parallel) 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

One-bit hardware 

redundancy  
D.2.7.1 Low — 

Multi-bit hardware 

redundancy 
D.2.7.2 Medium — 

Read back of sent 

message 
D.2.7.9 Medium — 

Complete hardware 

redundancy 
D.2.7.3 High 

Common mode failures 

can reduce diagnostic 

coverage 

Inspection using test 

patterns 
D.2.7.4 High — 

Transmission 

redundancy 
D.2.7.5 Medium 

Depends on type of 

redundancy. 

Effective only against 

transient faults 

Information redundancy D.2.7.6 Medium 
Depends on type of 

redundancy 

Frame counter D.2.7.7 Medium — 

Timeout monitoring D.2.7.8 Medium — 

Combination of 

information redundancy, 

frame counter and 

timeout monitoring 

D.2.7.6, D.2.7.7 

and D.2.7.8 
High 

For systems without 

hardware redundancy or 

test patterns, high 

coverage can be claimed 

for the combination of 

these safety mechanisms 
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Adapted from BS ISO 26262 part 5  Annex D Table D.1 

Element 
Analysed failure modes for 60%, 90% and 99% DC 

Low (60%) Medium (90%) High (99%) 

Specific semiconductor elements - Communications 

On-chip 

communication 

including 

bus-arbitration 

Stuck-at (data, 

control, address and 

arbitration signals) 

d.c. fault model (data, 

control, address and 

arbitration signals) 

Time out 

No or continuous 

arbitration 

d.c. fault model (data, 

control, address and 

arbitration signals) 

Time out 

No or continuous or wrong 

arbitration 

Soft errors (for sequential 

part) 

 

Taken from BS ISO 26262 part 5 Annex D Table D.14 – On-chip Communications 

Safety 

mechanism/measure 

See overview of 

techniques 

Typical diagnostic 

coverage 

considered achievable 

Notes 

One-bit hardware 

redundancy  
D.2.7.1 Low — 

Multi-bit hardware 

redundancy 
D.2.7.2 Medium 

Multi-bit redundancy can 

achieve high coverage by 

proper interleaving of 

data, address and control 

lines, and if combined 

with some complete 

redundancy, e.g. for the 

arbiter. 

Complete hardware 

redundancy 
D.2.7.3 High 

Common failure modes 

can reduce diagnostic 

coverage 

Test pattern D.2.6.1 High 
Depends on type of 

pattern 
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Appendix D1 – MIR – Architecture 1 DC% Claims 

 

Table 80: MIR – Architecture 1 Connection 1 

 

 

Table 81: MIR – Architecture 1 Connection 2 

 

 

Reference 1)C1
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

D
.2

.1
.1

U
se

d

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 0% 0% y ➢

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 0% 0% y ➢

Short Circuit to Vbat Short Circuit to Vbat 20% 0% 0% y ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

0.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Technique 

Description

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Table 26262-5: 2011

100%

Technique 

from 

ISO26262

Failure Detection 

by on-line 

monitoring

High

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Reference 1)C2
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

D
.2

.1
.1

U
se

d

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 0% 0% y ➢

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 0% 0% y ➢

Short Circuit to Vbat Short Circuit to Vbat 20% 0% 0% y ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

0.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Technique 

Description

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Table 26262-5: 2011

100%

Technique 

from 

ISO26262

Failure Detection by 

on-line monitoring

High

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim
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Table 82: MIR – Architecture 1 Connection 3 

 

Table 83: MIR – Architecture 1 Data 1 (subset 1) 

 

 

Reference 1)C3
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

D
.2

.1
.1

U
se

d

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 0% 0% y ➢

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 0% 0% y ➢

Short Circuit to Vbat Short Circuit to Vbat 20% 0% 0% y ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

0.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Technique 

Description

Specific  

PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Table 26262-5: 2011

100%

Technique 

from 

ISO26262
Failure Detection 

by on-line 

monitoring

High

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Reference 1)D1
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢

Offsets Offsets 10% 0% 0% y ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢

Oscillation 4% 0% 0% y ➢ ➢ ➢ ➢ ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 0% 0% y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT, 

PCc_POLL_RESPONSE_TIME

Message corruption Message corruption Message corruption 2% 0% 0% y PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 0% 0% y PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 0% 0% y PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 0% 0% y PCc_FRAME_COUNT

Resequencing Resequencing 1% 0% 0% y PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 0% 0% y PCc_FRAME_COUNT

Masquerading 1% 0% 0% y
PCc_POLL_RESPONSE_TIME, 

PCc_FRAME_COUNT

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Data 

Transmission
D.8

0.00% 0.00% 0.00% 0.00%

Sensors including 

Signal Switches
D.11

90%

0.00% 0.00%

PCc Claim

99% 99% 99% 60% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Technique Description

Technique from ISO26262

High High High Low High Medium
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Table 84: MIR – Architecture 1 Data 1 (subset 2) 

 

 

Table 85: MIR – Architecture 1 Data 2 (subset 1) 

 

 

Reference 1)D1
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

U
se

d

D
.2

.7
.1

U
se

d

D
.2

.7
.2

U
se

d

D
.2

.7
.9

U
se

d

D
.2

.7
.3

U
se

d

D
.2

.7
.4

U
se

d

D
.2

.7
.5

U
se

d

D
.2

.7
.6

U
se

d

D
.2

.7
.7

U
se

d

D
.2

.7
.8

U
se

d

D
.2

.7
.6

,7
,8

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0% y

Offsets Offsets 10% 0% 0% y

Stuck in range Stuck in range Stuck in range 30% 0% 0% y

Oscillation 4% 0% 0% y

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT, 

PCc_POLL_RESPONSE_TIME

Message corruption Message corruption Message corruption 2% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ ➢ PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Resequencing Resequencing 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Masquerading 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y
PCc_POLL_RESPONSE_TIME, 

PCc_FRAME_COUNT

90%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

90% 90% 90%

Data 

Transmission
D.8

0.00% 0.00% 1.80%

Sensors including 

Signal Switches
D.11

90%

15.84%2.70%#### 0.00% 0.00% 0.00% 0.00% 4.50%

Medium Medium Medium HighHigh

PCc Claim

Low Medium Medium

60% 90% 90% 99% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Complete 

hardware 

redundancy

Inspection 

using test 

patterns

Transmission 

redundancy

Sensor 

ration

ality 

Check

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Information 

redundancy

Frame 

counter

Timeout 

monitoring

High Medium

Technique Description

Technique from ISO26262
Combination 

of 

information 

Redundancy,f

rame count 

and timeout

Med

ium

One-bit 

hardware 

redundancy

Multi-bit 

hardware 

redundancy

Read back of 

sent message

Reference 1)D2
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%
D

.2
.1

.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢

Offsets Offsets 10% 0% 0% y ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢

Oscillation 4% 0% 0% y ➢ ➢ ➢ ➢ ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 0% 0% y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT,

PCc_POLL_RESPONSE_TIME

Message corruption Message corruption Message corruption 2% 0% 0% y PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 0% 0% y PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 0% 0% y PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 0% 0% y PCc_FRAME_COUNT

Resequencing Resequencing 1% 0% 0% y PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 0% 0% y PCc_FRAME_COUNT

Masquerading 1% 0% 0% y
PCc_POLL_RESPONSE_TIME,

PCc_FRAME_COUNT

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Data 

Transmission
D.8

0.00% 0.00% 0.00% 0.00%

Sensors including 

Signal Switches
D.11

90%

0.00% 0.00%

PCc Claim

99% 99% 99% 60% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100% Technique from ISO26262

Technique Description

High High High Low High Medium
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Table 86: MIR – Architecture 1 Data 2 (subset 2) 

 

Table 87: MIR – Architecture 1 Data 4 (subset 1) 

 

 

Reference 1)D2
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

U
se

d

D
.2

.7
.1

U
se

d

D
.2

.7
.2

U
se

d

D
.2

.7
.9

U
se

d

D
.2

.7
.3

U
se

d

D
.2

.7
.4

U
se

d

D
.2

.7
.5

U
se

d

D
.2

.7
.6

U
se

d

D
.2

.7
.7

U
se

d

D
.2

.7
.8

U
se

d

D
.2

.7
.6

,7
,8

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0% y

Offsets Offsets 10% 0% 0% y

Stuck in range Stuck in range Stuck in range 30% 0% 0% y

Oscillation 4% 0% 0% y

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT,

PCc_POLL_RESPONSE_TIME

Message corruption Message corruption Message corruption 2% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ ➢ PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Resequencing Resequencing 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Masquerading 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y
PCc_POLL_RESPONSE_TIME,

PCc_FRAME_COUNT

90%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

90% 90% 90%

Data 

Transmission
D.8

0.00% 0.00% 1.80%

Sensors including 

Signal Switches
D.11

90%

15.84%2.70%#### 0.00% 0.00% 0.00% 0.00% 4.50%

Medium Medium Medium HighHigh

PCc Claim

Low Medium Medium

60% 90% 90% 99% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Complete 

hardware 

redundancy

Inspection 

using test 

patterns

Transmission 

redundancy

Sensor 

ration

ality 

Check

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Information 

redundancy

Frame 

counter

Timeout 

monitoring

High Medium

Technique from ISO26262

Technique Description

Combination 

of 

information 

Redundancy,f

rame count 

and timeout

Med

ium

One-bit 

hardware 

redundancy

Multi-bit 

hardware 

redundancy

Read back of 

sent message

Reference 1)D4
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%
D

.2
.1

.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢

Offsets Offsets 10% 0% 0% y ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢

Oscillation 4% 0% 0% y ➢ ➢ ➢ ➢ ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 0% 0% y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT,

PCc_POLL_RESPONSE_TIME 

Message corruption Message corruption Message corruption 2% 0% 0% y PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 0% 0% y PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 0% 0% y PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 0% 0% y PCc_FRAME_COUNT

Resequencing Resequencing 1% 0% 0% y PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 0% 0% y PCc_FRAME_COUNT

Masquerading 1% 0% 0% y
PCc_POLL_RESPONSE_TIME,

PCc_FRAME_COUNT 

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Technique Description

Technique from ISO26262

High High High Low High Medium

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

PCc Claim

99% 99% 99% 60% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

0.00% 0.00%

Sensors including 

Signal Switches
D.11

90%

Data 

Transmission
D.8

0.00% 0.00% 0.00% 0.00%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim
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Table 88: MIR – Architecture 1 Data 4 (subset 2) 

 

Table 89: MIR – Architecture 1 Data 5 (subset 1) 

 

 

Reference 1)D4
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

D
.2

.7
.1

U
se

d

D
.2

.7
.2

U
se

d
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U
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D
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.7
.3

U
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d

D
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.4

U
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d

D
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.7
.5

U
se

d

D
.2

.7
.6

U
se

d

D
.2

.7
.7

U
se

d

D
.2

.7
.8

U
se

d

D
.2

.7
.6

,7
,8

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0% y

Offsets Offsets 10% 0% 0% y

Stuck in range Stuck in range Stuck in range 30% 0% 0% y

Oscillation 4% 0% 0% y

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT,

PCc_POLL_RESPONSE_TIME 

Message corruption Message corruption Message corruption 2% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ ➢ PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Resequencing Resequencing 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Masquerading 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y
PCc_POLL_RESPONSE_TIME,

PCc_FRAME_COUNT 

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Information 

redundancy

Frame 

counter

Timeout 

monitoring

High Medium

Technique Description

Technique from ISO26262

Combination 

of 

information 

Redundancy,f

rame count 

and timeout

One-bit 

hardware 

redundancy

Multi-bit 

hardware 

redundancy

Read back of 

sent message

Complete 

hardware 

redundancy

Inspection 

using test 

patterns

Transmission 

redundancy

Medium Medium Medium HighHigh

PCc Claim

Low Medium Medium

60% 90% 90% 99% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

15.84%2.70%0.00% 0.00% 0.00% 0.00% 4.50%

Sensors including 

Signal Switches
D.11

Data 

Transmission
D.8

0.00% 0.00% 1.80%

90%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

90% 90% 90%

Reference 1)D5
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%
D

.2
.1

.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢

Offsets Offsets 10% 0% 0% y ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢

Oscillation 4% 0% 0% y ➢ ➢ ➢ ➢ ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 0% 0% y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT,

PCc_POLL_RESPONSE_TIME

Message corruption Message corruption Message corruption 2% 0% 0% y PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 0% 0% y PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 0% 0% y PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 0% 0% y PCc_FRAME_COUNT

Resequencing Resequencing 1% 0% 0% y PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 0% 0% y PCc_FRAME_COUNT

Masquerading 1% 0% 0% y
PCc_POLL_RESPONSE_TIME,

PCc_FRAME_COUNT 

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Technique Description

Technique from ISO26262

High High High Low High Medium

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

PCc Claim

99% 99% 99% 60% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

0.00% 0.00%

Sensors including 

Signal Switches
D.11

90%

Data 

Transmission
D.8

0.00% 0.00% 0.00% 0.00%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim
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Table 90: MIR – Architecture 1 Data 5 (subset 2) 

 

Table 91: MIR – Architecture 1 Measurement 1 

 

Table 92: MIR – Architecture 1 Measurement 2 

 

 

Reference 1)D5
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%
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D
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U
se
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Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0% y

Offsets Offsets 10% 0% 0% y

Stuck in range Stuck in range Stuck in range 30% 0% 0% y

Oscillation 4% 0% 0% y

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT,

PCc_POLL_RESPONSE_TIME

Message corruption Message corruption Message corruption 2% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ ➢ PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Resequencing Resequencing 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Masquerading 1% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y
PCc_POLL_RESPONSE_TIME,

PCc_FRAME_COUNT 

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Information 

redundancy

Frame 

counter

Timeout 

monitoring

High Medium

Technique Description

Technique from ISO26262

Combination 

of 

information 

Redundancy,f

rame count 

and timeout

One-bit 

hardware 

redundancy

Multi-bit 

hardware 

redundancy

Read back of 

sent message

Complete 

hardware 

redundancy

Inspection 

using test 

patterns

Transmission 

redundancy

Medium Medium Medium HighHigh

PCc Claim

Low Medium Medium

60% 90% 90% 99% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

15.84%2.70%0.00% 0.00% 0.00% 0.00% 4.50%

Sensors including 

Signal Switches
D.11

Data 

Transmission
D.8

0.00% 0.00% 1.80%

90%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

90% 90% 90%

Reference 1)M1
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
15% 0% 0% y ➢

Open circuit Open circuit Open circuit 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation Drift & Oscillation 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Element See Table

Analogue and 

digital Inputs
D.7

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

0.00% 0.00% 0.00% 0.00% 0.00%0.00% 0.00%

99%99%99% 90%

Table 26262-5: 2011

100%

High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Medium HighLow

Failure 

Detection by on-

line monitoring

High High

Technique Description

Technique from ISO26262

Specific  

PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 60% 99%

Reference 1)M2
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
15% 0% 0% y ➢

Open circuit Open circuit Open circuit 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation Drift & Oscillation 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

0.00% 0.00% 0.00% 0.00% 0.00%

Analogue and 

digital Inputs
D.7

0.00% 0.00%

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

High

99% 99%99%

High High

90%

Table 26262-5: 2011

100%

Failure 

Detection by on-

line monitoring

High MediumLow High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Technique Description

Technique from ISO26262

Specific  

PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 60% 99%
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Table 93: MIR – Architecture 1 Parameter 1 (subset 1) 

 

Table 94: MIR – Architecture 1 Parameter 1 (subset 2) 

 

Table 95: MIR – Architecture 1 Parameter 1 (subset 3) 

 

 

Reference 1)P1
SG Failure 

Distribution

98.50% Mediun 97.02% Mediun 90.00%

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.9
.1

U
se

d

D
.2

.9
.2

U
se

d

D
.2

.9
.3

U
se

d

D
.2

.9
.4

U
se

d

D
.2

.9
.5

U
se

d

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_MON

Drift Drift & Oscillation 10% 10% 10% y ➢ ➢ y PCc_PSU_MON

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_MON

stuck at stuck at stuck at 5% 5% 5% y ➢ ➢ ➢ ➢ y ➢ PCc_CODE_SEQ

dc fault model dc fault model 5% 5% 5% y ➢ ➢ ➢ ➢ y ➢ PCc_CODE_SEQ

Incorrect frequency 10% 10% 10% y ➢ ➢ ➢ ➢ y ➢ PCc_CODE_SEQ

Period jitter 10% 10% 10% y ➢ ➢ ➢ ➢ y ➢ PCc_CODE_SEQ

stuck at stuck at stuck at 5% 0% 0%

dc fault model dc fault model 5% 0% 0%

stuck at stuck at stuck at 5% 5% 5% y PCc_RAM_TEST

dc fault model dc fault model 5% 5% 5% y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% y PCc_RAM_TEST

Stuck at Stuck at Stuck at 5% 5% 5% y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% y PCc_MICRO_TEST

dc fault model 5% 5% 5% y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y PCc_MICRO_TEST

29.70% 0.00%0.00% 24.75% 0.00% 0.00% 0.00%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

Power supply D.9

Clock D.10

99% 99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 60% 90% 90%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High High

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences with 

time 

dependency

Table 26262-5: 2011

100%

Voltage or 

current control 

(input)

Voltage or 

current control 

(output)

Watchdog with 

separate time 

base without 

time-window

Watchdog with 

separate time 

base and time-

window

Logical 

monitoring of 

program 

sequence

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences

Low High Low Medium Medium

Technique Description

Technique from ISO26262

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Reference 1)P1
SG Failure 

Distribution

98.50% Mediun 97.02% Mediun 90.00%

D
.2

.5
.2

U
se

d

D
.2

.4
.1

U
se

d

D
.2

.4
.2

U
se

d

D
.2

.4
.3

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.1

U
se

d

D
.2

.5
.3

U
se

d

D
.2

.5
.2

U
se

d

D
.2

.4
.1

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.4

U
se

d

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y PCc_PSU_MON

Drift Drift & Oscillation 10% 10% 10% y PCc_PSU_MON

Power Spikes 5% 5% 5% y PCc_PSU_MON

stuck at stuck at stuck at 5% 5% 5% y PCc_CODE_SEQ

dc fault model dc fault model 5% 5% 5% y PCc_CODE_SEQ

Incorrect frequency 10% 10% 10% y PCc_CODE_SEQ

Period jitter 10% 10% 10% y PCc_CODE_SEQ

stuck at stuck at stuck at 5% 0% 0% ➢ ➢ ➢ ➢ ➢

dc fault model dc fault model 5% 0% 0% ➢ ➢ ➢ ➢ ➢

stuck at stuck at stuck at 5% 5% 5% y ➢ ➢ y ➢ ➢ ➢ ➢ PCc_RAM_TEST

dc fault model dc fault model 5% 5% 5% y ➢ ➢ y ➢ ➢ ➢ ➢ PCc_RAM_TEST

soft error model soft error model 5% 5% 5% y ➢ ➢ y ➢ ➢ ➢ ➢ PCc_RAM_TEST

Stuck at Stuck at Stuck at 5% 5% 5% y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% y PCc_MICRO_TEST

dc fault model 5% 5% 5% y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y PCc_MICRO_TEST

0.00%0.00% 0.00% 14.85% 0.00% 0.00% 0.00%0.00% 0.00% 0.00% 0.00%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

Power supply D.9

Clock D.10

99%99% 90% 99% 60% 99% 99%60% 99% 60% 99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High Medium High Low High High

RAM March test Parity bit

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

Running 

checksum/CRC
Parity bitTable 26262-5: 2011

100%

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

Modified 

checksum

Memory 

signature

Low High Low High

Technique Description

Technique from ISO26262

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

RAM Pattern 

test

Reference 1)P1
SG Failure 

Distribution

98.50% Mediun 97.02% Mediun 90.00%

D
.2

.3
.1

U
se

d

D
.2

.3
.3

U
se

d

D
.2

.3
.2

U
se

d

D
.2

.3
.4

U
se

d

D
.2

.3
.5

U
se

d

D
.2

.3
.6

U
se

d

D
.2

.3
.7

U
se

d

D
.2

.3
.8

U
se

d

D
.2

.3
.9

U
se

d

D
.2

.3
.1

U
se

d

D
.2

.3
.2

U
se

d

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y PCc_PSU_MON

Drift Drift & Oscillation 10% 10% 10% y PCc_PSU_MON

Power Spikes 5% 5% 5% y PCc_PSU_MON

stuck at stuck at stuck at 5% 5% 5% y PCc_CODE_SEQ

dc fault model dc fault model 5% 5% 5% y PCc_CODE_SEQ

Incorrect frequency 10% 10% 10% y PCc_CODE_SEQ

Period jitter 10% 10% 10% y PCc_CODE_SEQ

stuck at stuck at stuck at 5% 0% 0%

dc fault model dc fault model 5% 0% 0%

stuck at stuck at stuck at 5% 5% 5% y PCc_RAM_TEST

dc fault model dc fault model 5% 5% 5% y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% y PCc_RAM_TEST

Stuck at Stuck at Stuck at 5% 5% 5% y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_MICRO_TEST

dc fault model 5% 5% 5% y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y ➢ y ➢ PCc_MICRO_TEST

0% 0% 0% 15% 5% 0%14% 0% 0% 0% 0%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

Power supply D.9

Clock D.10

99% 99% 60% 99% 90% 99%90% 90% 90% 99% 99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

HighMedium Medium Medium High High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High High Low High Medium

Table 26262-5: 2011

100%

Technique Description

Technique from ISO26262

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 1

Failure Mode Distribution Full Claim PCc Claim

Configuration 

register test

Stack 

over/under 

flow 

detection

Integrated 

hardware 

consistency 

monitoring

Self-test by 

software

Self-test 

supported by 

hardware 

(one-channel)

Self-test by 

software

Self-test by 

software cross 

exchanged 

between two 

independent 

units

Self-test 

supported by 

hardware 

(one-channel)

Software 

diversified 

redundancy 

(one 

hardware 

channel)

Reciprocal 

comparison 

by software in 

separate 

processing 

units

HW 

redundancy 

(e.g. Dual 

Core 

Lockstep, 

asymmetric 

redundancy, 

coded 

processing)
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MIR – Architecture 1 Parameter 2 

Similar techniques as Architecture 1 Parameter 1 so not shown. 

MIR – Architecture 1 Parameter 4 

Similar techniques as Architecture 1 Parameter 1 so not shown. 

MIR – Architecture 1 Parameter 6 

Similar techniques as Architecture 1 Parameter 1 so not shown. 

Table 96: MIR – Architecture 1 Power Supply 1 

 

MIR – Architecture 1 Power Supply 2 

Similar techniques as Architecture 1 Power Supply 1 so not shown. 

Table 97: MIR – Architecture 1 Transducer 1 

 

  

Reference 1)PSU1

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Low Medium High

60% 90% 99%

Power supply D.9
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
50% 50% 49% ➢ ➢ y PCc_PSU_MON

Power supply D.9 Drift Drift & Oscillation 20% 20% 20% ➢ ➢ y PCc_PSU_MON

Power supply D.9 Power Spikes 30% 30% 30% ➢ ➢ y PCc_PSU_MON

0% 99%

60% 99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Table D.9

26262-5: 2011

100% 99% 99%

Measure and Report Isolation Resistance Candidate Architecture 1

Technique from 

ISO26262

Specific  PCC

Technique DescriptionFailure Mode Distribution Full Claim PCc Claim

Voltage or current 

control (input)

Voltage or current 

control (output)

Low High

PCc Claim

Reference 1)T1
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 0% 0% y ➢ ➢ ➢ ➢ ➢

Offsets Offsets 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Oscillation 5% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% y ➢ ➢ PCc_PSU_MON

Drift Drift & Oscillation 20% 0% 0% y ➢ ➢ PCc_PSU_MON

Power Spikes 5% 0% 0% y ➢ ➢ PCc_PSU_MON

0.00%0.00%

Sensors including 

Signal Switches
D.11

Power supply D.9

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

99%99% 90% 60%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Table 26262-5: 2011

100%

Technique Description

Technique from ISO26262

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

High High High Low High Medium Low High

Failure 

Detection by 

on-line 

monitoring
Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 1

Sensor 

rationality 

Check

Failure Mode Distribution Full Claim PCc Claim

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 99% 99% 60%
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Appendix D2 – MIR – Architecture 2 DC% Claims 
Table 98: MIR – Architecture 2 Connection 1 

 

Table 99: MIR – Architecture 2 Connection 2 

 

 

Reference 2)C1
SG Failure 

Distribution

72.00% Low 72.00% Low 100.00%

D
.2

.1
.1

U
se

d

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 18% 18% y ➢ y PCc_Ref_WIN

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 27% 27% y ➢ y PCc_Ref_WIN

Short Circuit to Vbat Short Circuit to Vbat 20% 18% 18% y ➢ y PCc_Ref_WIN

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 9% 9% y ➢ y PCc_Ref_WIN

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

Table 26262-5: 2011

100%
Technique 

from 

ISO26262

Failure Detection by 

on-line monitoring

High

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Technique 

Description

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 2

79.20%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Reference 2)C2
SG Failure 

Distribution

72.00% Low 72.00% Low 100.00%

D
.2

.1
.1

U
se

d

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 18% 18% y ➢ y PCc_Ref_WIN

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 27% 27% y ➢ y PCc_Ref_WIN

Short Circuit to Vbat Short Circuit to Vbat 20% 18% 18% y ➢ y PCc_Ref_WIN

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 9% 9% y ➢ y PCc_Ref_WIN

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

Table 26262-5: 2011

100%

Technique 

from 

ISO26262

Failure Detection by 

on-line monitoring

High

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Technique 

Description

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 2

79.20%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim
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Table 100: MIR – Architecture 2 Data 1 (subset 1) 

 

Table 101: MIR – Architecture 2 Data 1 (subset 2) 

 

MIR – Architecture 2 Data 2 

Similar techniques as Architecture 2 Data 1 so not shown. 

MIR – Architecture 2 Data 3 

Similar techniques as Architecture 2 Data 1 so not shown. 

MIR – Architecture 2 Data 4 

Similar techniques as Architecture 2 Data 1 so not shown. 

MIR – Architecture 2 Data 5 

Reference 2)D1
SG Failure 

Distribution

98.10% Mediun 95.89% Mediun 100.00%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.

1 U
se

d

D
.2

.1
0

.

2 U
se

d

D
.2

.1
0

.

3 U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 30% 29% y ➢ y ➢ ➢ ➢ ➢ PCc_REF_WINDOW

Offsets Offsets 10% 10% 10% y ➢ y ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 30% 29% y ➢ y ➢ ➢ ➢ ➢

Oscillation 4% 4% 4% y ➢ y ➢ ➢ ➢ ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 15% 14% y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT

PCc_POLL_RESPONSE_TIME

Message corruption Message corruption Message corruption 2% 2% 2% y PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 3% 3% y PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 2% 2% y PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 1% 1% y PCc_FRAME_COUNT

Resequencing Resequencing 1% 1% 1% y PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 1% 1% y PCc_FRAME_COUNT

Masquerading 1% 1% 1% y
PCc_POLL_RESPONSE_TIME,

PCc_FRAME_COUNT

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Technique Description

Technique from ISO26262

High High High Low High Medium

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

99% 99% 99% 60% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

PCc Claim

0.00% 0.00%

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 2

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

90%

Sensors including 

Signal Switches
D.11

Data 

Transmission
D.8

73.26% 0.00% 0.00% 0.00%

Reference 2)D1
SG Failure 

Distribution

98.10% Mediun 95.89% Mediun 100.00%

D
.2

.1
0

.

3 U
se

d

D
.2

.7
.1

U
se

d

D
.2

.7
.2

U
se

d

D
.2

.7
.9

U
se

d

D
.2

.7
.3

U
se

d

D
.2

.7
.4

U
se

d

D
.2

.7
.5

U
se

d

D
.2

.7
.6

U
se

d

D
.2

.7
.7

U
se

d

D
.2

.7
.8

U
se

d

D
.2

.7
.6

,

7
,8

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 30% 29% y ➢ PCc_REF_WINDOW

Offsets Offsets 10% 10% 10% y ➢

Stuck in range Stuck in range Stuck in range 30% 30% 29% y ➢

Oscillation 4% 4% 4% y ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 15% 14% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT

PCc_POLL_RESPONSE_TIME

Message corruption Message corruption Message corruption 2% 2% 2% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ ➢ PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 3% 3% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 2% 2% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 1% 1% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Resequencing Resequencing 1% 1% 1% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 1% 1% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Masquerading 1% 1% 1% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y
PCc_POLL_RESPONSE_TIME,

PCc_FRAME_COUNT

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Information 

redundancy

Frame 

counter

Timeout 

monitoring

High Medium

Technique Description

Technique from ISO26262

Combination 

of 

information 

Redundancy,f

rame count 

and timeout

Medium

One-bit 

hardware 

redundancy

Multi-bit 

hardware 

redundancy

Read back of 

sent message

Complete 

hardware 

redundancy

Inspection 

using test 

patterns

90% 99%

Transmission 

redundancy

Sensor 

rationality 

Check

Medium Medium

99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

High

PCc Claim

Low Medium Medium

60% 90% 90% 99%

0.00% 0.00% 1.80% 4.50% 15.84%2.70%0.00% 0.00%

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 2

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

90% 90% 90% 90%

Medium High

Sensors including 

Signal Switches
D.11

0.00% 0.00% 0.00%

Data 

Transmission
D.8
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Similar techniques as Architecture 2 Data 1 so not shown. 

MIR – Architecture 2 Data 6 

Similar techniques as Architecture 2 Data 1 so not shown. 

Table 102: MIR – Architecture 2 Measurement 1 

 

MIR – Architecture 2 Measurement 2 

Similar techniques as Architecture 2 Measurement 1 so not shown. 

Table 103: MIR – Architecture 2 Parameter 3 (subset 1) 

 

 

Reference 2)M1
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
15% 0% 0% y ➢ y PCc_Ref_WIN

Open circuit Open circuit Open circuit 10% 0% 0% y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_Ref_WIN

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_Ref_WIN

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_Ref_WIN

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_Ref_WIN

Offsets Offsets 15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation Drift & Oscillation 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Medium High

0.00%

99% 99%99%99% 90%99% 60%

27.00% 0.00% 0.00% 0.00% 0.00%

Analogue and 

digital Inputs
D.7

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

14.85%

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

Technique from ISO26262

Technique Description

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 2

Element See Table

Failure 

Detection by on-

line monitoring

High HighLow High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Reference 2)P3
SG Failure 

Distribution

98.55% Mediun 97.24% Mediun 100.00%

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.9
.1

U
se

d

D
.2

.9
.2

U
se

d

D
.2

.9
.3

U
se

d

D
.2

.9
.4

U
se

d

D
.2

.9
.5

U
se

d

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_MON

Drift Drift & Oscillation 10% 10% 10% y ➢ ➢ y PCc_PSU_MON

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_MON

stuck at stuck at stuck at 5% 5% 5% y ➢ ➢ ➢ ➢ ➢ y PCC_CODE_SEQ

dc fault model dc fault model 5% 5% 5% y ➢ ➢ ➢ ➢ ➢ y PCC_CODE_SEQ

Incorrect frequency 10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y PCC_CODE_SEQ

Period jitter 10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y PCC_CODE_SEQ

stuck at stuck at stuck at 5% 5% 5% y PCc_NV_TEST

dc fault model dc fault model 5% 5% 5% y PCc_NV_TEST

stuck at stuck at stuck at 5% 5% 5% y PCc_RAM_TEST

dc fault model dc fault model 5% 5% 5% y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% y PCc_RAM_TEST

Stuck at Stuck at Stuck at 5% 5% 5% y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% y PCc_MICRO_TEST

dc fault model 5% 5% 5% y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y PCc_MICRO_TEST

Technique from ISO26262

Specific  PCC

Technique Description

0.00% 29.70%0.00% 24.75% 0.00% 0.00% 0.00%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

Power supply D.9

Clock D.10

99% 99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 60% 90% 90%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High HighLow High Low Medium Medium

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences with 

time 

dependency

Voltage or 

current control 

(input)

Voltage or 

current control 

(output)

Watchdog with 

separate time 

base without 

time-window

Watchdog with 

separate time 

base and time-

window

Logical 

monitoring of 

program 

sequence

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Measure and Report Isolation Resistance Candidate Architecture 2
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Table 104: MIR – Architecture 2 Parameter 3 (subset 2) 

 

Table 105: MIR – Architecture 2 Parameter 3 (subset 3) 

 

MIR – Architecture 2 Parameter 5 

Similar techniques as Architecture 2 Parameter 3 so not shown. 

 

Reference 2)P3
SG Failure 

Distribution

98.55% Mediun 97.24% Mediun 100.00%

D
.2

.5
.2

U
se

d

D
.2

.4
.1

U
se

d

D
.2

.4
.2

U
se

d

D
.2

.4
.3

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.1

U
se

d

D
.2

.5
.3

U
se

d

D
.2

.5
.2

U
se

d

D
.2

.4
.1

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.4

U
se

d

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y PCc_PSU_MON

Drift Drift & Oscillation 10% 10% 10% y PCc_PSU_MON

Power Spikes 5% 5% 5% y PCc_PSU_MON

stuck at stuck at stuck at 5% 5% 5% y PCC_CODE_SEQ

dc fault model dc fault model 5% 5% 5% y PCC_CODE_SEQ

Incorrect frequency 10% 10% 10% y PCC_CODE_SEQ

Period jitter 10% 10% 10% y PCC_CODE_SEQ

stuck at stuck at stuck at 5% 5% 5% y ➢ ➢ ➢ ➢ y ➢ PCc_NV_TEST

dc fault model dc fault model 5% 5% 5% y ➢ ➢ ➢ ➢ y ➢ PCc_NV_TEST

stuck at stuck at stuck at 5% 5% 5% y ➢ y ➢ y ➢ ➢ ➢ ➢ y PCc_RAM_TEST

dc fault model dc fault model 5% 5% 5% y ➢ y ➢ y ➢ ➢ ➢ ➢ y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% y ➢ y ➢ y ➢ ➢ ➢ ➢ y PCc_RAM_TEST

Stuck at Stuck at Stuck at 5% 5% 5% y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% y PCc_MICRO_TEST

dc fault model 5% 5% 5% y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y PCc_MICRO_TEST

Technique Description

Technique from ISO26262

Specific  PCC

14.85%0.00% 13.50% 14.85% 0.00% 0.00% 0.00%0.00% 0.00% 0.00% 9.90%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

Power supply D.9

Clock D.10

60% 99% 60% 99% 99% 90% 99% 60% 99% 99% 99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High Medium High Low High High

RAM Pattern 

test
RAM March test Parity bit

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

Running 

checksum/CRC
Parity bit

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

Modified 

checksum

Memory 

signature

Low High Low High

Measure and Report Isolation Resistance Candidate Architecture 2

Reference 2)P3
SG Failure 

Distribution

98.55% Mediun 97.24% Mediun 100.00%

D
.2

.3
.1

U
se

d

D
.2

.3
.3

U
se

d

D
.2

.3
.2

U
se

d

D
.2

.3
.4

U
se

d

D
.2

.3
.5

U
se

d

D
.2

.3
.6

U
se

d

D
.2

.3
.7

U
se

d

D
.2

.3
.8

U
se

d

D
.2

.3
.9

U
se

d

D
.2

.3
.1

U
se

d

D
.2

.3
.2

U
se

d

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y PCc_PSU_MON

Drift Drift & Oscillation 10% 10% 10% y PCc_PSU_MON

Power Spikes 5% 5% 5% y PCc_PSU_MON

stuck at stuck at stuck at 5% 5% 5% y PCC_CODE_SEQ

dc fault model dc fault model 5% 5% 5% y PCC_CODE_SEQ

Incorrect frequency 10% 10% 10% y PCC_CODE_SEQ

Period jitter 10% 10% 10% y PCC_CODE_SEQ

stuck at stuck at stuck at 5% 5% 5% y PCc_NV_TEST

dc fault model dc fault model 5% 5% 5% y PCc_NV_TEST

stuck at stuck at stuck at 5% 5% 5% y PCc_RAM_TEST

dc fault model dc fault model 5% 5% 5% y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% y PCc_RAM_TEST

Stuck at Stuck at Stuck at 5% 5% 5% y ➢ ➢ ➢ ➢ ➢ ➢ y ➢ y ➢ ➢ PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% y ➢ ➢ ➢ ➢ ➢ ➢ y ➢ y ➢ ➢ PCc_MICRO_TEST

dc fault model 5% 5% 5% y ➢ ➢ ➢ ➢ ➢ ➢ y ➢ y ➢ ➢ PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y ➢ y ➢ PCc_MICRO_TEST

Technique Description

Technique from ISO26262

Specific  PCC

15% 15% 0% 0% 5% 0%0% 0% 0% 0% 0%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

Power supply D.9

Clock D.10

99% 90% 99%90% 90% 90% 99% 99% 99% 99% 60%
Failure Mode 

Leads to 

Violation of 

Safety Goal

HighMedium Medium Medium High High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High High Low

Integrated 

hardware 

consistency 

monitoring

Self-test by 

software

Self-test 

supported by 

hardware 

(one-channel)

Self-test by 

software

Self-test by 

software cross 

exchanged 

between two 

independent 

units

Self-test 

supported by 

hardware 

(one-channel)

Software 

diversified 

redundancy 

(one 

hardware 

channel)

Reciprocal 

comparison 

by software in 

separate 

processing 

units

HW 

redundancy 

(e.g. Dual 

Core 

Lockstep, 

asymmetric 

redundancy, 

coded 

processing)

High Medium

Configuration 

register test

Stack 

over/under 

flow 

detection

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Measure and Report Isolation Resistance Candidate Architecture 2
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Table 106: MIR – Architecture 2 Parameter 6 (subset 1) 

 

Table 107: MIR – Architecture 2 Parameter 6 (subset 2) 

 

 

Reference 2)P6
SG Failure 

Distribution

98.50% Mediun 97.02% Mediun 90.00%

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.9
.1

U
se

d

D
.2

.9
.2

U
se

d

D
.2

.9
.3

U
se

d

D
.2

.9
.4

U
se

d

D
.2

.9
.5

U
se

d

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_MON

Drift Drift & Oscillation 10% 10% 10% y ➢ ➢ y PCc_PSU_MON

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_MON

stuck at stuck at stuck at 5% 5% 5% y ➢ ➢ ➢ ➢ y ➢ PCc_CODE_SEQ

dc fault model dc fault model 5% 5% 5% y ➢ ➢ ➢ ➢ y ➢ PCc_CODE_SEQ

Incorrect frequency 10% 10% 10% y ➢ ➢ ➢ ➢ y ➢ PCc_CODE_SEQ

Period jitter 10% 10% 10% y ➢ ➢ ➢ ➢ y ➢ PCc_CODE_SEQ

stuck at stuck at stuck at 5% 0% 0%

dc fault model dc fault model 5% 0% 0%

stuck at stuck at stuck at 5% 5% 5% y PCc_RAM_TEST

dc fault model dc fault model 5% 5% 5% y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% y PCc_RAM_TEST

Stuck at Stuck at Stuck at 5% 5% 5% y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% y PCc_MICRO_TEST

dc fault model 5% 5% 5% y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y PCc_MICRO_TEST

Technique Description

Technique from ISO26262

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 2

29.70% 0.00%0.00% 24.75% 0.00% 0.00% 0.00%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

Power supply D.9

Clock D.10

99% 99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 60% 90% 90%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High HighLow High Low Medium Medium

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences with 

time 

dependency

Voltage or 

current control 

(input)

Voltage or 

current control 

(output)

Watchdog with 

separate time 

base without 

time-window

Watchdog with 

separate time 

base and time-

window

Logical 

monitoring of 

program 

sequence

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Reference 2)P6
SG Failure 

Distribution

98.50% Mediun 97.02% Mediun 90.00%

D
.2

.5
.2

U
se

d

D
.2

.4
.1

U
se

d

D
.2

.4
.2

U
se

d

D
.2

.4
.3

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.1

U
se

d

D
.2

.5
.3

U
se

d

D
.2

.5
.2

U
se

d

D
.2

.4
.1

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.4

U
se

d

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y PCc_PSU_MON

Drift Drift & Oscillation 10% 10% 10% y PCc_PSU_MON

Power Spikes 5% 5% 5% y PCc_PSU_MON

stuck at stuck at stuck at 5% 5% 5% y PCc_CODE_SEQ

dc fault model dc fault model 5% 5% 5% y PCc_CODE_SEQ

Incorrect frequency 10% 10% 10% y PCc_CODE_SEQ

Period jitter 10% 10% 10% y PCc_CODE_SEQ

stuck at stuck at stuck at 5% 0% 0% ➢ ➢ ➢ ➢ ➢

dc fault model dc fault model 5% 0% 0% ➢ ➢ ➢ ➢ ➢

stuck at stuck at stuck at 5% 5% 5% y ➢ ➢ y ➢ ➢ ➢ ➢ PCc_RAM_TEST

dc fault model dc fault model 5% 5% 5% y ➢ ➢ y ➢ ➢ ➢ ➢ PCc_RAM_TEST

soft error model soft error model 5% 5% 5% y ➢ ➢ y ➢ ➢ ➢ ➢ PCc_RAM_TEST

Stuck at Stuck at Stuck at 5% 5% 5% y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% y PCc_MICRO_TEST

dc fault model 5% 5% 5% y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y PCc_MICRO_TEST

Technique Description

Technique from ISO26262

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 2

0.00%0.00% 0.00% 14.85% 0.00% 0.00% 0.00%0.00% 0.00% 0.00% 0.00%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

Power supply D.9

Clock D.10

60% 99% 60% 99% 99% 90% 99% 60% 99% 99% 99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High Medium High Low High High

RAM Pattern 

test
RAM March test Parity bit

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

Running 

checksum/CRC
Parity bit

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

Modified 

checksum

Memory 

signature

Low High Low High
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Table 108: MIR – Architecture 2 Parameter 6 (subset 3) 

 

MIR – Architecture 2 Parameter 7  

Similar techniques as Architecture 2 Parameter 6 so not shown. 

MIR – Architecture 2 Parameter 8 

Similar techniques as Architecture 2 Parameter 6 so not shown. 

Table 109: MIR – Architecture 2 Transducer 1 

 

  

Reference 2)P6
SG Failure 

Distribution

98.50% Mediun 97.02% Mediun 90.00%

D
.2

.3
.1

U
se

d

D
.2

.3
.3

U
se

d

D
.2

.3
.2

U
se

d

D
.2

.3
.4

U
se

d

D
.2

.3
.5

U
se

d

D
.2

.3
.6

U
se

d

D
.2

.3
.7

U
se

d

D
.2

.3
.8

U
se

d

D
.2

.3
.9

U
se

d

D
.2

.3
.1

U
se

d

D
.2

.3
.2

U
se

d

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y PCc_PSU_MON

Drift Drift & Oscillation 10% 10% 10% y PCc_PSU_MON

Power Spikes 5% 5% 5% y PCc_PSU_MON

stuck at stuck at stuck at 5% 5% 5% y PCc_CODE_SEQ

dc fault model dc fault model 5% 5% 5% y PCc_CODE_SEQ

Incorrect frequency 10% 10% 10% y PCc_CODE_SEQ

Period jitter 10% 10% 10% y PCc_CODE_SEQ

stuck at stuck at stuck at 5% 0% 0%

dc fault model dc fault model 5% 0% 0%

stuck at stuck at stuck at 5% 5% 5% y PCc_RAM_TEST

dc fault model dc fault model 5% 5% 5% y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% y PCc_RAM_TEST

Stuck at Stuck at Stuck at 5% 5% 5% y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_MICRO_TEST

dc fault model 5% 5% 5% y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y ➢ y ➢ PCc_MICRO_TEST

Technique Description

Technique from ISO26262

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 2

0% 0% 0% 15% 5% 0%14% 0% 0% 0% 0%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

Power supply D.9

Clock D.10

99% 90% 99%90% 90% 90% 99% 99% 99% 99% 60%
Failure Mode 

Leads to 

Violation of 

Safety Goal

HighMedium Medium Medium High High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High High Low

Integrated 

hardware 

consistency 

monitoring

Self-test by 

software

Self-test 

supported by 

hardware 

(one-channel)

Self-test by 

software

Self-test by 

software cross 

exchanged 

between two 

independent 

units

Self-test 

supported by 

hardware 

(one-channel)

Software 

diversified 

redundancy 

(one 

hardware 

channel)

Reciprocal 

comparison 

by software in 

separate 

processing 

units

HW 

redundancy 

(e.g. Dual 

Core 

Lockstep, 

asymmetric 

redundancy, 

coded 

processing)

High Medium

Configuration 

register test

Stack 

over/under 

flow 

detection

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Reference 2)T1
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 0% 0% y ➢ y ➢ ➢ ➢ y ➢ PCc_REF_WINDOW

Offsets Offsets 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Oscillation 5% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% y ➢ ➢ y PCc_PSU_MON

Drift Drift & Oscillation 20% 0% 0% y ➢ ➢ y PCc_PSU_MON

Power Spikes 5% 0% 0% y ➢ ➢ y PCc_PSU_MON

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 2

Sensor 

rationality 

Check

Failure Mode Distribution Full Claim PCc Claim

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 99% 99% 60%

Table 26262-5: 2011

100%

Technique Description

Technique from ISO26262

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

High High High Low High Medium Low High

Failure 

Detection by 

on-line 

monitoring

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99%99% 90% 60%

34.65%0.00%

Sensors including 

Signal Switches
D.11

Power supply D.9

19.80% 0.00% 0.00% 12.00% 0.00% 0.00%
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Appendix D3 – MIR – Architecture 3 DC% Claims 
Table 110: MIR – Architecture 3 Actuator 1 

 

Table 111: MIR – Architecture 3 Connection 1 

 

MIR – Architecture 3 Connection 2 

Similar techniques as Architecture 3 Connection 1 so not shown. 

 

Reference 3)A1
SG Failure 

Distribution

74.63% Low 73.69% Low 80.00%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 15% 9% 9% y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_EXT_RES_ST

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 9% 9% y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_EXT_RES_ST

Short Circuit to Vbat Short Circuit to Vbat 10% 6% 6% y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_EXT_RES_ST

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 6% 6% y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_EXT_RES_ST

Offsets Offsets 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
5% 5% 5% y ➢ ➢ y PCc_PSU_MON

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y PCc_PSU_MON

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_MON

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 3

0.00% 0.00% 0.00% 29.70%30.00% 0.00% 0.00% 0.00%

Voltage or 

current 

control 

(input)

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

99% 90% 99%

Voltage or 

current 

control 

(output)

Low High

60% 99%99%99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode Distribution Full Claim PCc Claim

PCc Claim

Low

Failure Mode 

Leads to 

Violation of 

Safety Goal

60%

Technique Description

Technique from ISO26262

Table 26262-5: 2011

100%

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

High Medium High

Reference 3)C1
SG Failure 

Distribution

99.00% High 99.00% High 100.00%

D
.2

.1
.1

U
se

d
Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 20% 20% y ➢ y PCc_Ref_WIN

Contact resistance 10% 10% 10% y ➢ y PCc_ISOT_RES_ST

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 30% 30% y ➢ y PCc_Ref_WIN

Short Circuit to Vbat Short Circuit to Vbat 20% 20% 20% y ➢ y PCc_Ref_WIN

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% y ➢ y PCc_Ref_WIN

Resistive drift 

between pins / signal 

lines

10% 10% 10% y ➢ y PCc_ISOT_RES_ST

Technique 

Description

Specific  PCC

99.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Technique 

from 

ISO26262

Measure and Report Isolation Resistance Candidate Architecture 3
Failure Detection by 

on-line monitoring

High
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Table 112: MIR – Architecture 3 Connection 3 

 

Table 113: MIR – Architecture 3 Data 7 (subset 1) 

 

Reference 3)C3
SG Failure 

Distribution

72.00% Low 72.00% Low 100.00%

D
.2

.1
.1

U
se

d

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 18% 18% y ➢ y PCc_ISOT_RES_ST

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 27% 27% y ➢ y PCc_ISOT_RES_ST

Short Circuit to Vbat Short Circuit to Vbat 20% 18% 18% y ➢ y PCc_ISOT_RES_ST

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 9% 9% y ➢ y PCc_ISOT_RES_ST

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

Technique 

Description

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 3

79.20%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

100%
Technique 

from 

ISO26262
Failure Detection 

by on-line 

monitoring

High

Reference 2)D1
SG Failure 

Distribution

98.10% Mediun 95.89% Mediun 100.00%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.

1 U
se

d

D
.2

.1
0

.

2 U
se

d

D
.2

.1
0

.

3 U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 30% 29% y ➢ y ➢ ➢ ➢ ➢ PCc_REF_WINDOW

Offsets Offsets 10% 10% 10% y ➢ y ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 30% 29% y ➢ y ➢ ➢ ➢ ➢

Oscillation 4% 4% 4% y ➢ y ➢ ➢ ➢ ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 15% 14% y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT

PCc_POLL_RESPONSE_TIME

Message corruption Message corruption Message corruption 2% 2% 2% y PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 3% 3% y PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 2% 2% y PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 1% 1% y PCc_FRAME_COUNT

Resequencing Resequencing 1% 1% 1% y PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 1% 1% y PCc_FRAME_COUNT

Masquerading 1% 1% 1% y
PCc_POLL_RESPONSE_TIME,

PCc_FRAME_COUNT

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Technique Description

Technique from ISO26262

High High High Low High Medium

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

99% 99% 99% 60% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

PCc Claim

0.00% 0.00%

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 2

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

90%

Sensors including 

Signal Switches
D.11

Data 

Transmission
D.8

73.26% 0.00% 0.00% 0.00%
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Table 114: MIR – Architecture 3 Data 7 (subset 2) 

 

MIR – Architecture 3 Data 8 

Similar techniques as Architecture 3 Data 7 so not shown. 

Table 115: MIR – Architecture 3 Measurement 1 

 

MIR – Architecture 3 Measurement 2 

Similar techniques as Architecture 3 Measurement 1 so not shown. 

 

 

Reference 2)D1
SG Failure 

Distribution

98.10% Mediun 95.89% Mediun 100.00%

D
.2

.1
0

.

3 U
se

d

D
.2

.7
.1

U
se

d

D
.2

.7
.2

U
se

d

D
.2

.7
.9

U
se

d

D
.2

.7
.3

U
se

d

D
.2

.7
.4

U
se

d

D
.2

.7
.5

U
se

d

D
.2

.7
.6

U
se

d

D
.2

.7
.7

U
se

d

D
.2

.7
.8

U
se

d

D
.2

.7
.6

,

7
,8

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 30% 29% y ➢ PCc_REF_WINDOW

Offsets Offsets 10% 10% 10% y ➢

Stuck in range Stuck in range Stuck in range 30% 30% 29% y ➢

Oscillation 4% 4% 4% y ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 15% 14% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y

PCc_DATA_CHECKSUM,

PCc_FRAME_COUNT

PCc_POLL_RESPONSE_TIME

Message corruption Message corruption Message corruption 2% 2% 2% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ ➢ PCc_DATA_CHECKSUM

Message Delay Message Delay Message Delay 3% 3% 3% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_POLL_RESPONSE_TIME

Message Loss Message Loss Message Loss 2% 2% 2% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 1% 1% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Resequencing Resequencing 1% 1% 1% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Insertion of message Insertion of message 1% 1% 1% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_FRAME_COUNT

Masquerading 1% 1% 1% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y
PCc_POLL_RESPONSE_TIME,

PCc_FRAME_COUNT

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Information 

redundancy

Frame 

counter

Timeout 

monitoring

High Medium

Technique Description

Technique from ISO26262

Combination 

of 

information 

Redundancy,f

rame count 

and timeout

Medium

One-bit 

hardware 

redundancy

Multi-bit 

hardware 

redundancy

Read back of 

sent message

Complete 

hardware 

redundancy

Inspection 

using test 

patterns

90% 99%

Transmission 

redundancy

Sensor 

rationality 

Check

Medium Medium

99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

High

PCc Claim

Low Medium Medium

60% 90% 90% 99%

0.00% 0.00% 1.80% 4.50% 15.84%2.70%0.00% 0.00%

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 2

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

90% 90% 90% 90%

Medium High

Sensors including 

Signal Switches
D.11

0.00% 0.00% 0.00%

Data 

Transmission
D.8

Reference 1)M1
SG Failure 

Distribution

95.10% Mediun 93.50% Mediun 100.00%

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d
Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
15% 15% 15% y ➢ y

PCc_Ref_WIN. 

PCc_ISOT_RES_ST

Open circuit Open circuit Open circuit 10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y ➢
PCc_Ref_WIN. 

PCc_ISOT_RES_ST

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 15% 15% y ➢ ➢ ➢ ➢ ➢ y ➢

PCc_Ref_WIN. 

PCc_ISOT_RES_ST

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y ➢
PCc_Ref_WIN. 

PCc_ISOT_RES_ST

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y ➢

PCc_Ref_WIN. 

PCc_ISOT_RES_ST

Offsets Offsets 15% 15% 15% y ➢ ➢ ➢ ➢ ➢ y ➢
PCc_ISOT_RES_ST

Stuck in range Stuck in range Stuck in range 15% 15% 15% y ➢ ➢ ➢ ➢ ➢ y ➢
PCc_ISOT_RES_ST

Drift & Oscillation Drift & Oscillation 10% 6% 6% y ➢ y ➢ ➢ ➢ ➢ ➢

Technique Description

Technique from ISO26262

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 3

Element See Table

Failure 

Detection by on-

line monitoring

High HighLow High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Analogue and 

digital Inputs
D.7

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

14.85%

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

6.00% 0.00% 0.00% 0.00% 74.25% 0.00%

99% 99%99%99% 90%99% 60%

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Medium High

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%
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Table 116: MIR – Architecture 3 Output 1 

 

Table 117: MIR – Architecture 3 Transducer 1 

 

 

  

Reference 3)O1
SG Failure 

Distribution

83.83% Low 83.67% Low 90.00%

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
20% 12% 12% y ➢ y PCc_EXT_RES_ST

Welded Contacts Welded Contacts Welded Contacts 5% 3% 3% y ➢ y PCc_EXT_RES_ST

Individual welded 

contacts

Individual welded 

contacts
10% 6% 6% y ➢ y PCc_EXT_RES_ST

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_MON

Drift Drift & Oscillation 15% 15% 15% y ➢ ➢ y PCc_PSU_MON

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_MON

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

10% 0% 0% ➢ ➢ ➢

Incorrect action 15% 15% 15% y ➢ y ➢ y ➢ y PCc_EXT_RES_ST

Delayed Action 10% 10% 10% y ➢ y ➢ y ➢ y PCc_EXT_RES_ST

Technique Description

Technique from ISO26262

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 3

Final Elements D.12

Outputs - relays D.3

Power supply D.9

Failure Mode 

Leads to 

Violation of 

Safety Goal

25%21.00% 0.00% 29.70% 15% 25%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

99%60% 60% 99% 60% 99%

High

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Failure Detection 

by on-line 

monitoring

Test Pattern Monitoring

Low Low High Low High

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Reference 3)T1
SG Failure 

Distribution

85.50% Low 84.98% Low 100.00%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 18% 18% y ➢ y ➢ ➢ ➢ y ➢ PCc_REF_WINDOW

Offsets Offsets 10% 9% 9% y ➢ y ➢ ➢ ➢ y ➢ y ➢ PCc_ISOT_RES_ST

Stuck in range Stuck in range Stuck in range 30% 27% 27% y ➢ y ➢ ➢ ➢ y ➢ y ➢ PCc_ISOT_RES_ST

Oscillation 5% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 9% 9% y ➢ ➢ y PCc_PSU_MON

Drift Drift & Oscillation 20% 18% 18% y ➢ ➢ y PCc_PSU_MON

Power Spikes 5% 5% 4% y ➢ ➢ y PCc_PSU_MON

59.40%

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 3

0.00% 0.00% 36.00% 39.60% 0.00% 34.65%0.00%

90%

Power supply D.9

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

60%

Sensors including 

Signal Switches
D.11

Sensor 

Correlation

Sensor 

rationality 

Check

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 99% 99% 60% 99%

Table 26262-5: 2011

100%

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

High High High Low High Medium Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Technique Description

Technique from ISO26262

Failure Mode Distribution Full Claim PCc Claim
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Appendix D4 – MIR – Architecture 4 DC% Claims 
Table 118: MIR – Architecture 4 Connection 4 

 

 

  

Reference 4)C4
SG Failure 

Distribution

99.00% High 99.00% High 100.00%

D
.2

.1
.1

U
se

d

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 20% 20% y ➢ y PCc_EXT_RES_ST

Contact resistance 10% 10% 10% y ➢ y PCc_EXT_RES_ST

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 30% 30% y ➢ y PCc_EXT_RES_ST

Short Circuit to Vbat Short Circuit to Vbat 20% 20% 20% y ➢ y PCc_EXT_RES_ST

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% y ➢ y PCc_EXT_RES_ST

Resistive drift 

between pins / signal 

lines

10% 10% 10% y ➢ y PCc_EXT_RES_ST

Technique 

Description

Specific  PCC

Measure and Report Isolation Resistance Candidate Architecture 4

Table 26262-5: 2011

100%

Technique 

from 

ISO26262

Failure Detection by 

on-line monitoring

High

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

99.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%
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Appendix D5 – MIR – Architecture 5 DC% Claims 
Table 119: MIR – Architecture 5 Measurement 1 

 

MIR – Architecture 5 Measurement 2 

Similar techniques as Architecture 5 Measurement 1 so not shown. 

Table 120: MIR – Architecture 5 Transducer 1 

 

 

  

Reference 5)M1
SG Failure 

Distribution

99.00% High 97.32% Mediun 100.00%

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines

15% 15% 15% y ➢ y
PCc_Ref_WIN,

PCc_EXT_RES_ST_TIMED

Open circuit Open circuit Open circuit 10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y ➢
PCc_Ref_WIN,

PCc_EXT_RES_ST_TIMED

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 15% 15% y ➢ ➢ ➢ ➢ ➢ y ➢

PCc_Ref_WIN,

PCc_EXT_RES_ST_TIMED

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y ➢
PCc_Ref_WIN,

PCc_EXT_RES_ST_TIMED

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y ➢

PCc_Ref_WIN,

PCc_EXT_RES_ST_TIMED

Offsets Offsets 15% 15% 15% y ➢ ➢ ➢ ➢ ➢ y ➢
PCc_EXT_RES_ST_TIMED

Stuck in range Stuck in range Stuck in range 15% 15% 15% y ➢ ➢ ➢ ➢ ➢ y ➢
PCc_EXT_RES_ST_TIMED

Drift & Oscillation Drift & Oscillation 10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y ➢
PCc_EXT_RES_ST_TIMED

Technique Description

Specific  PCC

Technique from ISO26262

Measure and Report Isolation Resistance Candidate Architecture 5

Element See Table

Failure 

Detection by on-

line monitoring

High HighLow High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Analogue and 

digital Inputs
D.7

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

14.85%

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

0.00% 0.00% 0.00% 0.00% 84.15% 0.00%

99% 99%99%99% 90%99% 60%

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Medium High

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Reference 5)T1
SG Failure 

Distribution

99.00% High 98.33% Mediun 100.00%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 20% 20% y ➢ y ➢ ➢ ➢ y ➢
PCc_REF_WIN,

Cc_EXT_RES_ST_TIMED

Offsets Offsets 10% 10% 10% y ➢ y ➢ ➢ ➢ y ➢ y ➢ PCc_EXT_RES_ST_TIMED

Stuck in range Stuck in range Stuck in range 30% 30% 30% y ➢ y ➢ ➢ ➢ y ➢ y ➢ PCc_EXT_RES_ST_TIMED

Oscillation 5% 5% 5% y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_EXT_RES_ST_TIMED

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_MON

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y PCc_PSU_MON

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_MON

64.35%

Specific  PCC
Measure and Report Isolation Resistance Candidate Architecture 5

0.00% 0.00% 36.00% 39.60% 0.00% 34.65%0.00%

90%

Power supply D.9

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

60%

Sensors including 

Signal Switches
D.11

Sensor 

Correlation

Sensor 

rationality 

Check

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 99% 99% 60% 99%

Table 26262-5: 2011

100%

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

High High High Low High Medium Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Technique Description

Technique from ISO26262

Failure Mode Distribution Full Claim PCc Claim
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Appendix D6 – MIR – SPFM Calculation – Architecture 5 
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Appendix D7 – MIR –LFM Calculation – Architecture 5 
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Appendix E1 – BMS – Architecture 1 DC% Claims 

 

Table 121: BMS - Architecture 1 Actuator 1 

 

BMS - Architecture 1 Actuator 2 

Similar techniques as Architecture 1 Actuator 1 so not shown. 

 

Table 122: BMS - Architecture 1 Connection 1 

 

Reference 1)A1
SG Failure 

Distribution

0.00% Limited 0.00% Limited 90.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
20% 0% 0% y ➢

Welded Contacts Welded Contacts Welded Contacts 5% 0% 0% y ➢

Individual welded 

contacts

Individual welded 

contacts
10% 0% 0% y ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 15% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Final Elements D.12

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

10% 0% 0% ➢ ➢ ➢

Incorrect action 15% 0% 0% y ➢ ➢ ➢

Delayed Action 10% 0% 0% y ➢ ➢ ➢

U
se

d

D
.2

.1
1

.1

U
se

d

Technique Description

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 1

0%0.00% 0.00% 29.70% 0% 0%

Outputs - relays D.3

Power supply D.9

Failure Mode 

Leads to 

Violation of 

Safety Goal

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Low High Low

99%60% 60% 99% 60% 99%

D
.2

.6
.1

Specific  PCC

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

High High

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Failure Detection 

by on-line 

monitoring

Test Pattern Monitoring

PCc Claim

Low

Reference 1)C1
SG Failure 

Distribution

42.00% Limited 42.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 12% 12% y ➢ y PCc_6803_Self_Test

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 18% 18% y ➢ y PCc_6803_Self_Test

Short Circuit to Vbat Short Circuit to Vbat 20% 12% 12% y ➢ Y PCc_6803_Self_Test

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

69.30%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

D
.2

.1
.1

U
se

d

Technique 

Description

Specific  PCCMaintain Cells in Operating Area Architecture Candidate 1

Table 26262-5: 2011

100%

Technique 

from 

ISO26262
Failure Detection 

by on-line 

monitoring

High

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Harness 

including splice 

and connectors



 

 Page 338 of 458 A.R. Williams 
 

Table 123: BMS - Architecture 1 Connection 2 

 

Table 124: BMS - Architecture 1 Connection 3 

 

BMS - Architecture 1 Connection 4 

Similar techniques as Architecture 1 Connection 3 so not shown. 

Reference 1)C2
SG Failure 

Distribution

72.00% Low 72.00% Low 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 18% 18% y ➢ y PCc_6803_Self_Test

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 27% 27% y ➢ y PCc_6803_Self_Test

Short Circuit to Vbat Short Circuit to Vbat 20% 18% 18% y ➢ y PCc_6803_Self_Test

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 9% 9% y ➢ y PCc_6803_Self_Test

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

Technique 

from 

ISO26262
Failure Detection 

by on-line 

monitoring

High

D
.2

.1
.1

U
se

d

PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Technique 

Description

Maintain Cells in Operating Area Architecture Candidate 1

Specific  PCC

79.20%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Reference 1)C3
SG Failure 

Distribution

0.00% Limited 0.00% Limited 70.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 0% 0% y ➢

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 0% 0% y ➢

Short Circuit to Vbat Short Circuit to Vbat 20% 0% 0% ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

49.50%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

D
.2

.1
.1

U
se

d

Technique 

Description

Specific  PCC

Maintain Cells in Operating Area Architecture Candidate 1

Table 26262-5: 2011

100%
Technique 

from 

ISO26262

Failure Detection by 

on-line monitoring

High

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Harness 

including splice 

and connectors
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Table 125: BMS - Architecture 1 Data 1 (subset 1) 

 

Table 126: BMS - Architecture 1 Data 1 (subset 2) 

 

BMS - Architecture 1 Data 2 

Similar techniques as Architecture 1 Data 1 so not shown. 

BMS - Architecture 1 Data 3 

Similar techniques as Architecture 1 Data 1 so not shown. 

BMS - Architecture 1 Data 5 

Similar techniques as Architecture 1 Data 1 so not shown. 

Reference 1)D1
SG Failure 

Distribution

93.60% Medium 90.79% Medium 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 0% 0% ➢ ➢ ➢ ➢ ➢

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 0% 0% ➢ ➢ ➢ ➢ ➢

Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
25% 25% 24% y

PCc_Data_Checksum,

PCc_Poll_Response_Time

Message corruption Message corruption Message corruption 15% 15% 14% y
PCc_Data_Checksum,

PCc_Poll_Response_Time

Message Delay Message Delay Message Delay 20% 18% 17% y PCc_Poll_Response_Time

Message Loss Message Loss Message Loss 15% 14% 13% y PCc_Poll_Response_Time

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
10% 9% 9% y PCc_Poll_Response_Time

Resequencing Resequencing 5% 5% 4% y PCc_Poll_Response_Time

Insertion of message Insertion of message 5% 5% 4% y PCc_Poll_Response_Time

Masquerading 5% 5% 4% y PCc_Poll_Response_Time

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

0.00% 0.00%

Data 

Transmission
D.8

0.00% 0.00% 0.00% 0.00%

Sensors including 

Signal Switches
D.11

90%

PCc Claim

99% 99% 99% 60% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

Specific  PCC

Technique Description

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

High High High Low High Medium

Reference 1)D1
SG Failure 

Distribution

93.60% Medium 90.79% Medium 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 0% 0%

Offsets Offsets 0% 0%

Stuck in range Stuck in range Stuck in range 0% 0%

Oscillation 0% 0%

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
25% 25% 24% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y

PCc_Data_Checksum,

PCc_Poll_Response_Time

Message corruption Message corruption Message corruption 15% 15% 14% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y
PCc_Data_Checksum,

PCc_Poll_Response_Time

Message Delay Message Delay Message Delay 20% 18% 17% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_Poll_Response_Time

Message Loss Message Loss Message Loss 15% 14% 13% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_Poll_Response_Time

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
10% 9% 9% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_Poll_Response_Time

Resequencing Resequencing 5% 5% 4% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_Poll_Response_Time

Insertion of message Insertion of message 5% 5% 4% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_Poll_Response_Time

Masquerading 5% 5% 4% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ PCc_Poll_Response_Time

90%

D
.2

.7
.1

U
se

d

D
.2

.7
.2

U
se

d

D
.2

.7
.9

U
se

d

D
.2

.7
.3

U
se

d

D
.2

.7
.4

U
se

d

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

54.00%0.00% 0.00% 0.00% 0.00%

Data 

Transmission
D.8

Sensors including 

Signal Switches
D.11

90% 90% 90%

D
.2

.7
.5

U
se

d

D
.2

.7
.6

U
se

d

D
.2

.7
.7

U
se

d

0.00% 0.00% 0.00% 0.00% 39.60%

D
.2

.7
.8

U
se

d

D
.2

.7
.6

,7
,8

U
se

d

Medium Medium Medium HighHigh

PCc Claim

Low Medium Medium

60% 90% 90% 99% 99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Read back of 

sent message

Complete 

hardware 

redundancy

Inspection 

using test 

patterns

Transmission 

redundancy

Specific  PCC

Technique Description

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Information 

redundancy

PCc_Frame_S

eq

Timeout 

monitoring

High Medium

Combination 

of 

information 

Redundancy,f

rame count 

and timeout

One-bit 

hardware 

redundancy

Multi-bit 

hardware 

redundancy
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Table 127: BMS - Architecture 1 Measurement 1 

 

Table 128: BMS - Architecture 1 Measurement 2 

 

BMS - Architecture 1 Measurement 6 

Similar techniques as Architecture 1 Measurement 2 so not shown. 

Reference 1)M1
SG Failure 

Distribution

60.00% Low 58.80% Limited 85.00%

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
15% 0% 0% ➢

Open circuit Open circuit Open circuit 10% 6% 6% Y ➢ Y ➢ ➢ ➢ ➢ ➢
PCc_OA_Window,

PCc_6803_Self_Test

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 9% 9% Y ➢ Y ➢ ➢ ➢ ➢ ➢

PCc_OA_Window,

PCc_6803_Self_Test

Short Circuit to Vbat Short Circuit to Vbat 10% 6% 6% y ➢ Y ➢ ➢ ➢ ➢ ➢
PCc_OA_Window,

PCc_6803_Self_Test

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 6% 6% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_6803_Self_Test

Offsets Offsets 15% 9% 9% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_6803_Self_Test

Stuck in range Stuck in range Stuck in range 15% 9% 9% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_6803_Self_Test

Drift & Oscillation Drift & Oscillation 10% 6% 6% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_6803_Self_Test

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

60%

Failure Mode Distribution Full Claim

0.00% 0.00% 0.00% 0.00%0.00% 51.00%

High HighLow High

Analogue and 

digital Inputs
D.7

Monitored 

outputs

99%

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim

Failure 

Detection by on-

line monitoring

High

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

D
.2

.1
.1

0.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

90% 99% 99%99%

100%

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protectionMaintain Cells in Operating Area Architecture Candidate 1

Technique from ISO26262

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

Specific  PCC

Medium

Multi-channel 

parallel 

output

PCc Claim

High

Technique Description

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

Reference 1)M2
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
15% 0% 0% y ➢

Open circuit Open circuit Open circuit 10% 6% 6% y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 9% 9% y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 6% 6% y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 6% 6% y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 15% 9% 9% y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation Drift & Oscillation 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Element See Table

Analogue and 

digital Inputs
D.7

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

0.00% 30.00% 9.90% 0.00% 0.00% 0.00% 0.00%

D
.2

.1
.1

99%99%99% 90%
U

se
d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 1

High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

Medium HighLow

Failure 

Detection by on-

line monitoring

High

Technique Description

Technique from ISO26262

Specific  PCC

Failure Mode Distribution Full Claim PCc Claim

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 60%

High

99%

D
.2

.1
.1

U
se

d
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Table 129: BMS - Architecture 1 Output 1 

 

Table 130: BMS - Architecture 1 Output 2 

 

Table 131: BMS - Architecture 1 Parameter 1 (subset 1) 

 

Reference 1)O1
SG Failure 

Distribution

0.00% Limited 0.00% Limited 60.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
5% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Voltage or 

current 

control 

(output)

99%

Voltage or 

current 

control 

(input)

High

Monitored 

outputs

Failure Mode 

Leads to 

Violation of 

Safety Goal

Failure Mode 

Distribution
Full Claim PCc Claim

29.70%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

High

60% 99% 90% 99% 60%99%

Low

0.00%

99%

0.00%0.00%

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

0.00% 0.00% 0.00% 0.00%

High HighLow High Medium

Maintain Cells in Operating Area Architecture Candidate 1

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Failure 

Detection by 

on-line 

monitoring

Technique Description

Technique from ISO26262

Specific  PCC

Power supply D.9

Element See Table

Failure Mode Distribution

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Full Claim

Table 26262-5: 2011

Analogue and 

digital Outputs - 

stuck at

D.7

100%

PCc Claim

Reference 1)O2
SG Failure 

Distribution

0.00% Limited 0.00% Limited 60.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
5% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 0% 0% y ➢ ➢ y PCc_PSU_Mon

D
.2

.8
.2

U
se

d

0.00% 29.70%0.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

0.00% 0.00% 0.00% 0.00% 0.00%

99%99%

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d

99% 60%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 1

Technique Description

Technique from ISO26262
Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High Medium High High High Low High

Failure 

Detection by 

on-line 

monitoring

Specific  PCC

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

Failure Mode Distribution Full Claim PCc Claim

PCc Claim

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 90% 99%

Reference 1)P1
SG Failure 

Distribution

95.50% Medium 94.08% Medium 90.00%

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

stuck at stuck at stuck at 5% 5% 4% y ➢ ➢ ➢ y ➢ ➢ PCc_Code_Seq

dc fault model dc fault model 5% 5% 4% y ➢ ➢ ➢ y ➢ ➢ PCc_Code_Seq

Incorrect frequency 10% 9% 9% y ➢ ➢ ➢ y ➢ ➢ PCc_Code_Seq

Period jitter 10% 9% 9% y ➢ ➢ ➢ y ➢ ➢ PCc_Code_Seq

stuck at stuck at stuck at 5% 0% 0%

dc fault model dc fault model 5% 0% 0%

stuck at stuck at stuck at 5% 5% 5% y PCc_RAM_Test

dc fault model dc fault model 5% 5% 5% y PCc_RAM_Test

soft error model soft error model 5% 5% 5% y PCc_RAM_Test

Stuck at Stuck at Stuck at 5% 5% 5% y PCc_Micro_Test

Stuck at at gate level Stuck at at gate level 5% 5% 5% y PCc_Micro_Test

dc fault model 5% 5% 5% y PCc_Micro_Test

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y PCc_Micro_Test

D
.2

.9
.3

U
se

d

D
.2

.9
.4

U
se

d

D
.2

.9
.5

U
se

d

0.00% 0.00%0.00% 24.75% 0.00% 0.00% 27.00%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.9
.1

U
se

d

D
.2

.9
.2

U
se

d

Power supply D.9

Clock D.10

99% 99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High High

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 60% 90% 90%

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences with 

time 

dependency

Logical 

monitoring of 

program 

sequence

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences

Low High Low Medium Medium

Specific  PCC

Technique Description

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Voltage or 

current control 

(input)

Voltage or 

current control 

(output)

Watchdog with 

separate time 

base without 

time-window

Watchdog with 

separate time 

base and time-

window
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Table 132: BMS - Architecture 1 Parameter 1 (subset 2) 

 

Table 133: BMS - Architecture 1 Parameter 1 (subset 3) 

 

BMS - Architecture 1 Parameter 2 

Similar techniques as Architecture 1 Parameter 1 so not shown. 

BMS - Architecture 1 Parameter 4 

Similar techniques as Architecture 1 Parameter 1 so not shown. 

BMS - Architecture 1 Parameter 5 

Similar techniques as Architecture 1 Parameter 1 so not shown. 

Reference 1)P1
SG Failure 

Distribution

95.50% Medium 94.08% Medium 90.00%

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y PCc_PSU_Mon

Drift Drift & Oscillation 10% 10% 10% y PCc_PSU_Mon

Power Spikes 5% 5% 5% y PCc_PSU_Mon

stuck at stuck at stuck at 5% 5% 4% y PCc_Code_Seq

dc fault model dc fault model 5% 5% 4% y PCc_Code_Seq

Incorrect frequency 10% 9% 9% y PCc_Code_Seq

Period jitter 10% 9% 9% y PCc_Code_Seq

stuck at stuck at stuck at 5% 0% 0% ➢ ➢ ➢ ➢ ➢

dc fault model dc fault model 5% 0% 0% ➢ ➢ ➢ ➢ ➢

stuck at stuck at stuck at 5% 5% 5% y ➢ y ➢ ➢ ➢ ➢ ➢ y PCc_RAM_Test

dc fault model dc fault model 5% 5% 5% y ➢ y ➢ ➢ ➢ ➢ ➢ y PCc_RAM_Test

soft error model soft error model 5% 5% 5% y ➢ y ➢ ➢ ➢ ➢ ➢ y PCc_RAM_Test

Stuck at Stuck at Stuck at 5% 5% 5% y PCc_Micro_Test

Stuck at at gate level Stuck at at gate level 5% 5% 5% y PCc_Micro_Test

dc fault model 5% 5% 5% y PCc_Micro_Test

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y PCc_Micro_Test

U
se

d

D
.2

.5
.3

U
se

d

D
.2

.5
.2

U
se

d

D
.2

.4
.1

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.4

U
se

d

D
.2

.4
.2

U
se

d

D
.2

.4
.3

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.1

U
se

d

D
.2

.5
.2

U
se

d

D
.2

.4
.1

14.85%0.00% 0.00%0.00% 0.00% 0.00% 0.00%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

0.00% 13.50% 0.00% 0.00%

Power supply D.9

Clock D.10

99%99% 90% 99% 60% 99% 99%60% 99% 60% 99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High Medium High Low High High

Failure Mode 

Leads to 

Violation of 

Safety Goal

Parity bit

High

RAM Pattern 

test
RAM March test Parity bit

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

Running 

checksum/CRC

Specific  PCC

Technique Description

Technique from ISO26262

Technique Description

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

Modified 

checksum

Memory 

signature

Low High Low High

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

Reference 1)P1
SG Failure 

Distribution

95.50% Medium 94.08% Medium 90.00%

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y PCc_PSU_Mon

Drift Drift & Oscillation 10% 10% 10% y PCc_PSU_Mon

Power Spikes 5% 5% 5% y PCc_PSU_Mon

stuck at stuck at stuck at 5% 5% 4% y PCc_Code_Seq

dc fault model dc fault model 5% 5% 4% y PCc_Code_Seq

Incorrect frequency 10% 9% 9% y PCc_Code_Seq

Period jitter 10% 9% 9% y PCc_Code_Seq

stuck at stuck at stuck at 5% 0% 0%

dc fault model dc fault model 5% 0% 0%

stuck at stuck at stuck at 5% 5% 5% y PCc_RAM_Test

dc fault model dc fault model 5% 5% 5% y PCc_RAM_Test

soft error model soft error model 5% 5% 5% y PCc_RAM_Test

Stuck at Stuck at Stuck at 5% 5% 5% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_Micro_Test

Stuck at at gate level Stuck at at gate level 5% 5% 5% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_Micro_Test

dc fault model 5% 5% 5% y ➢ ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_Micro_Test

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% y ➢ y ➢ PCc_Micro_Test

U
se

d

D
.2

.3
.1

U
se

d

D
.2

.3
.2

U
se

d

D
.2

.3
.5

U
se

d

D
.2

.3
.6

U
se

d

D
.2

.3
.7

U
se

d

D
.2

.3
.8

U
se

d

D
.2

.3
.9

D
.2

.3
.1

U
se

d

D
.2

.3
.3

U
se

d

D
.2

.3
.2

U
se

d

D
.2

.3
.4

U
se

d

15% 0% 0% 5% 0%0% 0% 0% 0% 0% 0%

Non-volatile 

Memory
D.5

Volatile Memory D.6

Processing Units 

:

ALU - Data Path

D.4

Power supply D.9

Clock D.10

99% 99% 60% 99% 90% 99%90% 90% 90% 99% 99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

High High Low

Failure Mode 

Leads to 

Violation of 

Safety Goal

High Medium HighMedium Medium Medium High High

Configuration 

register test

Stack 

over/under 

flow 

detection

Integrated 

hardware 

consistency 

monitoring

Self-test by 

software

Self-test 

supported by 

hardware 

(one-channel)

Self-test by 

software

Self-test by 

software cross 

exchanged 

between two 

independent 

units

Self-test 

supported by 

hardware 

(one-channel)

Software 

diversified 

redundancy 

(one 

hardware 

channel)

Reciprocal 

comparison 

by software in 

separate 

processing 

units

HW 

redundancy 

(e.g. Dual 

Core 

Lockstep, 

asymmetric 

redundancy, 

coded 

processing)

Specific  PCC

Technique Description

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 1

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%
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BMS - Architecture 1 Parameter 8 

Similar techniques as Architecture 1 Parameter 1 so not shown. 

BMS - Architecture 1 Parameter 14 

Similar techniques as Architecture 1 Parameter 1 so not shown. 

 

Table 134: BMS - Architecture 1 Power Supply Unit 1 

 

BMS - Architecture 1 PSU 2 

Similar techniques as Architecture 1 PSU 1 so not shown. 

BMS - Architecture 1 PSU 3 

Similar techniques as Architecture 1 PSU 1 so not shown. 

 

Table 135: BMS - Architecture 1 Transducer 1 

 

Reference 1)PSU1

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
50% 50% 49% ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% ➢ ➢ y PCc_PSU_Mon

Power Spikes 30% 30% 30% ➢ ➢ y PCc_PSU_Mon

Power supply D.9

PCc Claim

0.00% 99.00%

60% 99%

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Technique Description

Technique from ISO26262

Specific  PCC

Failure Mode Distribution Full Claim PCc Claim

Table D.9

26262-5: 2011

100% 99% 99%

Voltage or current 

control (input)

Voltage or current 

control (output)

Low High

Reference 1)T1
SG Failure 

Distribution

99.00% High 97.74% Medium 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 20% 20% y ➢ y ➢ ➢ ➢ y ➢
PCc_OA_Window, 

PCc_6803_Self_Test

Offsets Offsets 10% 10% 10% y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_6803_Self_Test

Stuck in range Stuck in range Stuck in range 30% 30% 29% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_6803_Self_Test

Oscillation 5% 5% 5% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_6803_Self_Test

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

Failure Mode 

Leads to 

Violation of 

Safety Goal

90%

0.00%

Power supply D.9

Sensors including 

Signal Switches
D.11

64.35% 0.00% 0.00% 12.00%

99%

High

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

99%

Low

Failure 

Detection by 

on-line 

monitoring

Test Pattern

HighHigh High

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

PCc ClaimElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Voltage or 

current 

control 

(output)

0.00% 0.00% 34.65%

99%60%

Medium

Sensor 

rationality 

Check

Low

D
.2

.1
0

.3

U
se

d

Technique Description

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 1
Specific  PCC

99%99% 60%

High

Voltage or 

current 

control 

(input)
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Appendix E2 – BMS – Architecture 2 DC% Claims 
Table 136: BMS - Architecture 2 Actuator 3 

 

Table 137: BMS - Architecture 2 Actuator 4 

 

BMS - Architecture 2 Actuator 6 

Similar techniques as Architecture 2 Actuator 4 so not shown. 

BMS - Architecture 2 Actuator 7 

Similar techniques as Architecture 2 Actuator 4 so not shown. 

 

 

Reference 2)A3
SG Failure 

Distribution

99.00% High 98.28% Medium 55.00%

Low Medium High

60% 90% 99%
Does not 

energise or de-

energise

Does not 

energise or de-

energise

Does not energise 

or de-energise
20% 0% 0% ➢

Welded 

Contacts

Welded 

Contacts
Welded Contacts 5% 0% 0% ➢

Individual 

welded 

contacts

Individual welded 

contacts
10% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 15% 15% 15% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

No generic 

Fault Model 

available.

Detailed 

Analysis 

necessary

No generic 

Fault Model 

available.

Detailed 

Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

10% 0% 0% ➢ ➢ ➢

Incorrect action 15% 15% 15% y ➢ ➢ ➢ y PCc_5kHzSelf_Test

Delayed Action 10% 10% 10% y ➢ ➢ ➢ y PCc_5kHzSelf_Test

100%

Voltage or current 

control (input)

Specific  PCC
Maintain Cells in Operating Area Architecture Candidate 2

29.70%

Table 26262-5: 2011

Element See Table

Analysed Failure modes for  low / 

medium / high Diagnostic Coverage
Failure 

Mode 

Distribution

Full 

Claim

0.00% 0.00%

60%

Failure Mode 

Leads to 

Violation of 

Safety Goal

Failure Mode 

Distribution
Full Claim Technique Description

Technique from ISO26262

0% 0% 25%

99% 99%

PCc Claim

Failure Detection 

by on-line 

monitoring

PCc Claim

60%

U
se

d

D
.2

.8
.1

U
se

d

Voltage or current 

control (output)

Power supply D.9

Outputs - 

relays
D.3

D
.2

.1
.1

60% 99%
Low Low High

Test Pattern Monitoring

Low High High

Failure Detection 

by on-line 

monitoring

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

Final Elements D.12

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

Reference 2)A4
SG Failure 

Distribution

0.00% Limited 0.00% Limited 90.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
20% 0% 0% y ➢

Welded Contacts Welded Contacts Welded Contacts 5% 0% 0% y ➢

Individual welded 

contacts

Individual welded 

contacts
10% 0% 0% y ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 15% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 0% 0% y ➢ ➢ y PCc_PSU_Mon

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

10% 0% 0% ➢ ➢ ➢

Incorrect action 15% 0% 0% y ➢ ➢ ➢

Delayed Action 10% 0% 0% y ➢ ➢ ➢

Technique Description

Technique from ISO26262

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 2

High High

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Failure Detection 

by on-line 

monitoring

D
.2

.1
1

.1

U
se

d

Test Pattern Monitoring

PCc Claim

Low Low High Low

99%60% 60% 99% 60% 99%

U
se

d

D
.2

.6
.1

U
se

d

Outputs - relays D.3

Power supply D.9

Failure Mode 

Leads to 

Violation of 

Safety Goal D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

Specific  PCC

Final Elements D.12

0%0.00% 0.00% 29.70% 0% 0%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

D
.2

.1
.1

U
se

d
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Table 138: BMS - Architecture 2 Connection 1 

 

BMS - Architecture 2 Connection 2 

Similar techniques as Architecture 2 Connection 1 so not shown. 

Table 139: BMS - Architecture 2 Connection 5 

 

BMS - Architecture 2 Connection 6 

Similar techniques as Architecture 2 Connection 5 so not shown. 

 

Reference 2)C1
SG Failure 

Distribution

72.00% Low 72.00% Low 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 18% 18% y ➢ y PCc6801_Self_Test

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 27% 27% y ➢ y PCc6801_Self_Test

Short Circuit to Vbat Short Circuit to Vbat 20% 18% 18% y ➢ Y PCc6801_Self_Test

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 9% 9% y ➢ Y PCc6801_Self_Test

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

Technique 

Description

Specific  PCC
Table 26262-5: 2011

100%
Technique 

from 

ISO26262

Failure Detection 

by on-line 

monitoring

High

Maintain Cells in Operating Area Architecture Candidate 2

Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

79.20%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

D
.2

.1
.1

U
se

d

Reference 2)C5
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 0% 0% y ➢

Contact resistance 10% 0% 0% y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 0% 0% y ➢

Short Circuit to Vbat Short Circuit to Vbat 20% 0% 0% y ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% y ➢

Specific  PCC

Failure Mode 

Distribution
Full Claim PCc Claim

0.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%
Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

100%

Harness 

including splice 

and connectors

D.3

Element See Table

Maintain Cells in Operating Area Architecture Candidate 2

Technique 

from 

ISO26262
Failure Detection by 

on-line monitoring

High

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

D
.2

.1
.1

U
se

d
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Table 140: BMS - Architecture 2 Measurement 1 

 

Table 141: BMS - Architecture 2 Measurement 3 

 

 

Reference 2)M1
SG Failure 

Distribution

99.00% High 98.21% Medium 85.00%

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
15% 0% 0% ➢

Open circuit Open circuit Open circuit 10% 10% 10% y ➢ y ➢ y ➢ ➢ ➢ ➢ Y PCc_OA_Window, PCc_6803_Self_Test

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 15% 15% y ➢ y ➢ y ➢ ➢ ➢ ➢ Y PCc_OA_Window, PCc_6803_Self_Test

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% y ➢ y ➢ y ➢ ➢ ➢ ➢ Y PCc_OA_Window, PCc_6803_Self_Test

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% y ➢ ➢ y ➢ ➢ ➢ ➢ Y PCc_6803_Self_Test

Offsets Offsets 15% 15% 15% y ➢ ➢ Y ➢ ➢ ➢ ➢ Y PCc_6803_Self_Test

Stuck in range Stuck in range Stuck in range 15% 15% 15% y ➢ ➢ y ➢ ➢ ➢ ➢ Y PCc_6803_Self_Test

Drift & Oscillation Drift & Oscillation 10% 10% 10% y ➢ ➢ Y ➢ ➢ ➢ ➢ Y PCc_6803_Self_Test

Technique Description

Technique from ISO26262

Specific  PCC

Element See Table

Analogue and 

digital Inputs
D.7

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

0.00% 21.00%

99% 99%

U
se

d

D
.2

.6
.4

U
se

d

84.15% 0.00% 0.00% 0.00% 84.15%

D
.2

.6
.5

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

High High

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data flow 

changes within 

diagnostic test 

interval.

Medium High

99%99% 90%

Failure 

Detection by on-

line monitoring

High High

Failure 

Detection by 

on-line 

monitoring

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

Failure Mode 

Distribution
Full Claim PCc Claim

Low

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 60%

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 2

Reference 2)M3
SG Failure 

Distribution

65.85% Low 64.83% Low 100.00%

Low Medium High

60% 90% 99%

Harness 

including 

splice and 

connectors

D.3

Resistive drift 

between pins / 

signal lines

15% 15% 15% Y ➢ Y

Open 

circuit
Open circuit Open circuit 10% 6% 6% Y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_HW_MONITOR

Short 

Circuit to 

ground

Short Circuit to 

ground (dc 

Coupled)

Short Circuit to 

ground (dc 

Coupled)

15% 9% 9% Y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_HW_MONITOR

Short Circuit to 

Vbat

Short Circuit to 

Vbat
10% 6% 6% Y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_HW_MONITOR

Short circuit 

between 

neighbouring 

pins

Short circuit 

between 

neighbouring 

pins

10% 6% 6% Y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_HW_MONITOR

Offsets Offsets 15% 9% 9% Y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_HW_MONITOR

Stuck in 

range
Stuck in range Stuck in range 15% 9% 9% Y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_HW_MONITOR

Drift & 

Oscillation

Drift & 

Oscillation
10% 6% 6% Y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_HW_MONITOR

Specific  PCC

99%

Element See Table

Analysed Failure modes for  low / 

medium / high Diagnostic 

Coverage PCc Claim

Failure 

Mode 

Distribution

Full Claim

0.00%

Failure Mode Leads to 

Violation of Safety Goal

90% 99%

D
.2

.6
.5

U
se

d

Technique Description

99%

Monitored outputs

Input Comparison 

Voting (1oo2, 2oo3 

or better 

redundancy). Only 

if data flow changes 

within diagnostic 

test interval.

High High

60%

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

99%99%

0.00% 0.00% 0.00%

D
.2

.6
.4

U
se

d

Failure 

Detection by 

on-line 

monitoring

Test Pattern

High

Failure Mode 

Distribution
Full Claim PCc Claim

100%

Maintain Cells in Operating Area Architecture Candidate 2

Technique from ISO26262

Code protection
Multi-channel 

parallel output

Medium HighLow

51.00% 0.00%

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

14.85%

Table 26262-5: 2011
Failure Detection 

by on-line 

monitoring

High

Analogue and 

digital Inputs
D.7
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Table 142: BMS - Architecture 2 Measurement 4 

 

BMS - Architecture 2 Measurement 5 

Similar techniques as Architecture 2 Measurement 4 so not shown. 

 

Table 143: BMS - Architecture 2 Output 3 

 

Reference 2)M4
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
15% 0% 0% y ➢

Open circuit Open circuit Open circuit 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation Drift & Oscillation 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Technique Description

Technique from ISO26262

Specific  PCC

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 2

High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Medium High

Failure Mode 

Distribution
Full Claim PCc Claim

Low

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 60%

Failure 

Detection by on-

line monitoring

High High

D
.2

.1
.1

U
se

d

D
.2

.1
.1

99% 99%99%99% 90%

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Element See Table

Analogue and 

digital Inputs
D.7

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

D
.2

.6
.5

U
se

d

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

Reference 2)O3
SG Failure 

Distribution

60.00% Low 59.16% Limited 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to 

ground

Short Circuit to 

ground (dc 

Coupled)

Short Circuit to 

ground (dc 

Coupled)

0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to 

Vbat

Short Circuit to 

Vbat
30% 18% 18% y ➢ y ➢ ➢ ➢ ➢ ➢ PCC_OA_TRIP

Short circuit 

between 

neighbouring 

pins

Short circuit 

between 

neighbouring 

pins

10% 6% 6% y ➢ y ➢ ➢ ➢ ➢ ➢ PCC_OA_TRIP

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 20% 12% 12% Y ➢ y ➢ ➢ ➢ ➢ ➢ PCC_OA_TRIP

Drift & 

Oscillation
0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and 

Over Voltage
30% 18% 18% y ➢ y ➢ PCc_PSU_Mon

Drift
Drift & 

Oscillation
5% 3% 3% y ➢ y ➢ PCc_PSU_Mon

Power Spikes 5% 3% 3% y ➢ y ➢ PCc_PSU_Mon

Specific  PCCMaintain Cells in Operating Area Architecture Candidate 2

24.00% 0.00%0.00% 0.00% 0.00% 0.00% 0.00%36.00%

Element See Table

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

Analysed Failure modes for  low / 

medium / high Diagnostic Coverage

Failure 

Mode 

Distributi

on

Full Claim

Failure Mode Leads 

to Violation of 

Safety Goal

60%

Input Comparison 

Voting (1oo2, 2oo3 

or better 

redundancy). Only 

if data flow changes 

within diagnostic 

test interval.

PCc Claim

Full Claim PCc Claim

Table 26262-5: 2011

100%

Failure Mode 

Distribution
Technique Description

Technique from ISO26262

D
.2

.1
.1

Voltage or current 

control (input)

Voltage or current 

control (output)

Low High Medium High High High Low High

Failure Detection 

by on-line 

monitoring

Test Pattern Code protection
Multi-channel 

parallel output
Monitored outputs

99% 60% 99%99%99% 90% 99%

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d
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Table 144: BMS - Architecture 2 Output 5 

 

BMS - Architecture 2 output 6 

Similar techniques as Architecture 2 output 5 so not shown. 

Table 145: BMS - Architecture 2 Transducer 3 

 

Reference 2)O5
SG Failure 

Distribution

0.00% Limited 0.00% Limited 60.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
5% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Technique Description

Technique from ISO26262

Specific  PCC

Table 26262-5: 2011

Element See Table

Failure Mode Distribution Full Claim

Full Claim PCc Claim

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

PCc Claim

100%

Failure Mode 

Distribution

Maintain Cells in Operating Area Architecture Candidate 2

29.70%0.00%0.00% 0.00% 0.00%0.00%0.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

0.00%

High

60% 99%

Voltage or 

current 

control 

(input)

High HighLow High Medium

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

99%

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(output)

Failure Mode 

Leads to 

Violation of 

Safety Goal

High

90% 99% 60%99%

Low

99%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

Reference 2)T3
SG Failure 

Distribution

73.65% Low 72.70% Low 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 12% 12% y ➢ ➢ ➢ ➢ y ➢ PCc6801_Self_Test

Offsets Offsets 10% 6% 6% y ➢ ➢ ➢ ➢ y ➢ ➢ PCc6801_Self_Test

Stuck in range Stuck in range Stuck in range 30% 18% 18% y ➢ ➢ ➢ ➢ y ➢ ➢ PCc6801_Self_Test

Oscillation 5% 3% 3% y ➢ ➢ ➢ ➢ y ➢ ➢ PCc6801_Self_Test

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Technique Description

Technique from ISO26262

Specific  PCC
Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Cells in Operating Area Architecture Candidate 2

0.00% 0.00% 0.00% 39.00% 0.00%

99% 90%99% 60%

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

High

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Failure 

Detection by 

on-line 

monitoring

Test Pattern

HighHigh High Low High

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

0.00% 0.00% 34.65%

99%60%

Medium

Sensor 

rationality 

Check

Low

99%99%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

Failure Mode 

Leads to 

Violation of 

Safety Goal

Power supply D.9

PCc ClaimElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Sensors including 

Signal Switches
D.11

U
se

d

D
.2

.1
0

.3

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2
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Table 146: BMS - Architecture 2 Transducer 4 

 

 

Appendix E3 – BMS – Architecture 3 DC% Claims 
Table 147: BMS - Architecture 3 Transducer 3 

 

  

Reference 2)T4
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 0% 0% y ➢ ➢ ➢ ➢ ➢

Offsets Offsets 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Oscillation 5% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 0% 0% y ➢ ➢ y PCc_PSU_Mon

Specific  PCC

Sensor 

rationality 

Check

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 2

Technique Description

Technique from ISO26262

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

High High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

High Low High Medium Low

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 99% 99% 60%

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

90% 60% 99%99%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

34.65%0.00%

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Sensors including 

Signal Switches
D.11

Power supply D.9

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Reference 3)T3
SG Failure 

Distribution

73.65% Low 72.70% Low 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 12% 12% y ➢ ➢ ➢ ➢ Y ➢ PCc6801_Self_Test

Offsets Offsets 10% 6% 6% y ➢ ➢ ➢ ➢ Y ➢ ➢ PCc6801_Self_Test

Stuck in range Stuck in range Stuck in range 30% 18% 18% y ➢ ➢ ➢ ➢ Y ➢ ➢ PCc6801_Self_Test

Oscillation 5% 3% 3% y ➢ ➢ ➢ ➢ Y ➢ ➢ PCc6801_Self_Test

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ Y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ Y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ Y PCc_PSU_Mon

Specific  PCC

0.00% 0.00% 39.00% 0.00% 0.00%

Sensors including 

Signal Switches
D.11

Power supply D.9

0.00% 34.65%0.00%

90% 60% 99%

D
.2

.1
0

.3

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

99%Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 99% 99% 60%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

dElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

High High High Low High Medium Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 3

Technique Description

Technique from ISO26262
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Appendix E4 – BMS – Architecture 4 DC% Claims 
Table 148: BMS - Architecture 4 Actuator 5 

 

Table 149: BMS - Architecture 4 Data 11 (subset 1) 

 

 

Reference 4)A5
SG Failure 

Distribution

64.29% Low 64.29% Low 35.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
20% 0% 0% ➢

Welded Contacts Welded Contacts Welded Contacts 5% 0% 0% ➢

Individual welded 

contacts

Individual welded 

contacts
10% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% ➢ ➢

Drift Drift & Oscillation 15% 0% 0% ➢ ➢

Power Spikes 5% 0% 0% ➢ ➢

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

10% 9% 9% y ➢ y ➢ y ➢ y PCc_5kHzSelft_Test 

Incorrect action 15% 14% 14% y ➢ y ➢ y ➢ y PCc_5kHzSelft_Test 

Delayed Action 10% 0% 0% y ➢ ➢ ➢

Specific  PCC

Technique Description

Technique from ISO26262

25%0.00% 0.00% 0.00% 15% 25%

Outputs - relays D.3

Power supply D.9

U
se

d

D
.2

.1
.1

U
se

d

99%60% 60% 99% 60% 99%

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

High High

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Failure Detection 

by on-line 

monitoring

Test Pattern Monitoring

Low Low High Low

Final Elements D.12

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

PCc Claim

Maintain Cells in Operating Area Architecture Candidate 4

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

Reference 1)D11
SG Failure 

Distribution

99.00% High 96.03% Medium 26.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0% ➢ ➢ ➢ ➢ ➢

Offsets Offsets 10% 0% 0% ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 0% 0% ➢ ➢ ➢ ➢ ➢

Oscillation 4% 0% 0% ➢ ➢ ➢ ➢ ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 15% 14% Y

PCc_Data_Checksum,

PCc_Frame_Seq,

PCc_Poll_Response_Time

Message corruption Message corruption Message corruption 2% 2% 2% Y PCc_Data_Checksum

Message Delay Message Delay Message Delay 3% 3% 3% Y PCc_Poll_Response_Time

Message Loss Message Loss Message Loss 2% 2% 2% Y PCc_Frame_Seq

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 1% 1% Y PCc_Frame_Seq

Resequencing Resequencing 1% 1% 1% Y PCc_Frame_Seq

Insertion of message Insertion of message 1% 1% 1% Y PCc_Frame_Seq

Masquerading 1% 1% 1% Y

PCc_Data_Checksum,

PCc_Frame_Seq,

PCc_Poll_Response_Time. 

0.00%0.00% 0.00% 73.26% 0.00% 0.00%

Sensors including 

Signal Switches
D.11

Data 

Transmission
D.8

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

99% 99% 99% 60% 99% 90%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

High High High Low High Medium

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

Failure Mode Distribution Full Claim PCc Claim Technique Description

Specific  PCC

Table 26262-5: 2011

100% Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 1

Failure 

Detection by 

on-line 

monitoring
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Table 150: BMS - Architecture 4 Data 11 (subset 2) 

 

Table 151: BMS - Architecture 4 Measurement 4 

 

Table 152: BMS - Architecture 4 Output 7 

 

Reference 1)D11
SG Failure 

Distribution

99.00% High 96.03% Medium 26.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0%

Offsets Offsets 10% 0% 0%

Stuck in range Stuck in range Stuck in range 30% 0% 0%

Oscillation 4% 0% 0%

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 15% 14% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y

PCc_Data_Checksum,

PCc_Frame_Seq,

PCc_Poll_Response_Time

Message corruption Message corruption Message corruption 2% 2% 2% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Data_Checksum

Message Delay Message Delay Message Delay 3% 3% 3% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Poll_Response_Time

Message Loss Message Loss Message Loss 2% 2% 2% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Frame_Seq

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 1% 1% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Frame_Seq

Resequencing Resequencing 1% 1% 1% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Frame_Seq

Insertion of message Insertion of message 1% 1% 1% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Frame_Seq

Masquerading 1% 1% 1% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y
PCc_Data_Checksum,

PCc_Frame_Seq,

PCc_Poll_Response_Time. 

0.00% 0.00% 0.00% 0.00% 25.74%0.00% 0.00% 0.00% 0.00% 0.00%

D
.2

.7
.6

,7
,8

U
se

d

Sensors including 

Signal Switches
D.11

Data 

Transmission
D.8

D
.2

.7
.6

U
se

d

D
.2

.7
.7

U
se

d

D
.2

.7
.8

U
se

d

D
.2

.7
.3

U
se

d

D
.2

.7
.4

U
se

d

D
.2

.7
.5

U
se

d

D
.2

.7
.1

U
se

d

D
.2

.7
.2

U
se

d

D
.2

.7
.9

U
se

d

90% 90% 90% 99%60% 90% 90% 99% 99% 90%

Medium Medium High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

Medium Medium High High Medium Medium

PCc_Frame_S

eq

Timeout 

monitoring

Combination 

of 

information 

Redundancy,f

rame count 

and timeout

Low

Multi-bit 

hardware 

redundancy

Read back of 

sent message

Complete 

hardware 

redundancy

Inspection 

using test 

patterns

Transmission 

redundancy

Information 

redundancy

One-bit 

hardware 

redundancy

Failure Mode Distribution Full Claim PCc Claim Technique Description

Specific  PCC

Table 26262-5: 2011

100% Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 1

Reference 4)M4
SG Failure 

Distribution

45.00% Limited 44.64% Limited 100.00%

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
15% 9% 9% y ➢ y PCc_5kHzSelft_Test

Open circuit Open circuit Open circuit 10% 6% 6% y ➢ y ➢ y ➢ ➢ ➢ ➢ PCc_5kHzSelft_Test

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 9% 9% y ➢ y ➢ y ➢ ➢ ➢ ➢ PCc_5kHzSelft_Test

Short Circuit to Vbat Short Circuit to Vbat 10% 6% 6% y ➢ y ➢ y ➢ ➢ ➢ ➢ PCc_5kHzSelft_Test

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 6% 6% y ➢ y ➢ y ➢ ➢ ➢ ➢ PCc_5kHzSelft_Test

Offsets Offsets 15% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 15% 9% 9% y ➢ y ➢ y ➢ ➢ ➢ ➢ PCc_5kHzSelft_Test

Drift & Oscillation Drift & Oscillation 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Technique Description

Technique from ISO26262

Specific  PCC

Element See Table

Analogue and 

digital Inputs
D.7

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

14.85% 36.00%

99% 99%

U
se

d

D
.2

.6
.4

U
se

d

59.40% 0.00% 0.00% 0.00% 0.00%
D

.2
.6

.5

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

High High

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Medium High

99%99% 90%

Failure 

Detection by on-

line monitoring

High High

Failure 

Detection by 

on-line 

monitoring
D

.2
.1

.1

U
se

d

D
.2

.1
.1

U
se

d

Failure Mode 

Distribution
Full Claim PCc Claim

Low

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 60%

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 4

Reference 4)O7
SG Failure 

Distribution

99.00% High 97.52% Medium 90.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 15% 15% 15% y ➢ ➢ ➢ ➢ ➢ y ➢ PCc_5kHzSelf_Test

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 15% 15% y ➢ ➢ ➢ ➢ ➢ y ➢ PCc_5kHzSelf_Test

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y ➢ PCc_5kHzSelf_Test

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% y ➢ ➢ ➢ ➢ ➢ y ➢ PCc_5kHzSelf_Test

Offsets Offsets 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 10% 10% Y ➢ ➢ ➢ ➢ ➢ y ➢ PCc_5kHzSelf_Test

Drift & Oscillation 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
5% 5% 5% y ➢ ➢ y

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y

Power Spikes 5% 5% 5% y ➢ ➢ y

0.00%

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Test Pattern

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Specific  PCC

29.70%0.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

0.00% 0.00% 0.00% 0.00%59.40%

Table 26262-5: 2011

High HighHigh Medium

Monitored 

outputs

Code 

protection

Multi-channel 

parallel 

output

Failure 

Detection by 

on-line 

monitoring

Low

Technique Description

Technique from ISO26262

Low

Voltage or 

current 

control 

(output)

Voltage or 

current 

control 

(input)

High

Maintain Cells in Operating Area Architecture Candidate 4

Failure Mode Distribution Full Claim PCc Claim

100%

99% 60%60% 99%

High

99%

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

Failure Mode 

Distribution
Full Claim PCc Claim

99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 90%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

D
.2

.8
.2

U
se

d

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d
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Appendix E5 – BMS – Architecture 5 DC% Claims 
Table 153: BMS - Architecture 5 Actuator 5 

 

Table 154: BMS - Architecture 5 Actuator 6 

 

Reference 5)A5
SG Failure 

Distribution

99.00% High 99.00% High 35.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
20% 0% 0% ➢

Welded Contacts Welded Contacts Welded Contacts 5% 0% 0% ➢

Individual welded 

contacts

Individual welded 

contacts
10% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% ➢ ➢

Drift Drift & Oscillation 15% 0% 0% ➢ ➢

Power Spikes 5% 0% 0% ➢ ➢

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

10% 10% 10% y ➢ y ➢ y ➢ y PCc_5kHzSelft_Test

Incorrect action 15% 15% 15% y ➢ y ➢ y ➢ y PCc_5kHzSelft_Test 

Delayed Action 10% 10% 10% y ➢ y ➢ y ➢ y
PCc_5kHzST_Monito

r

U
se

d

Final Elements D.12

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

Power supply D.9

Outputs - relays D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 99%

21% 35% 35%0.00% 0.00% 0.00%

60% 60% 99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Low High HighLow Low High

Technique Description

Technique from ISO26262

Specific  PCC
Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Cells in Operating Area Architecture Candidate 5

Failure Detection 

by on-line 

monitoring

Test Pattern Monitoring

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Reference 5)A6
SG Failure 

Distribution

99.00% High 98.28% Medium 55.00%

Low Medium High

60% 90% 99%
Does not 

energise or de-

energise

Does not 

energise or de-

energise

Does not energise 

or de-energise
20% 0% 0% ➢

Welded 

Contacts

Welded 

Contacts
Welded Contacts 5% 0% 0% ➢

Individual 

welded 

contacts

Individual welded 

contacts
10% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 15% 15% 15% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

No generic 

Fault Model 

available.

Detailed 

Analysis 

necessary

No generic 

Fault Model 

available.

Detailed 

Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

10% 0% 0% ➢ ➢ ➢

Incorrect action 15% 15% 15% y ➢ ➢ ➢ y PCc_5kHzSelft_Test 

Delayed Action 10% 10% 10% y ➢ ➢ ➢ y PCc_5kHzST_Monitor

Specific  PCC

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 5

Technique Description

25%0.00% 0.00% 29.70% 0% 0%

Outputs - relays D.3

Power supply

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D.9

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%60% 60% 99% 60% 99%

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

U
se

d

High

Failure Detection 

by on-line 

monitoring

Voltage or current 

control (input)

Voltage or current 

control (output)

Failure Detection 

by on-line 

monitoring

Test Pattern Monitoring

Low Low High Low High

Failure Mode 

Distribution
Full Claim PCc Claim

Table 26262-5: 2011

100%

Final Elements D.12

D
.2

.1
.1

U
se

d

D
.2

.8
.1

Element See Table

Analysed Failure modes for  low / 

medium / high Diagnostic Coverage
Failure 

Mode 

Distribution

Full 

Claim
PCc Claim
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Table 155: BMS - Architecture 5 Connection 5 

 

BMS - Architecture 5 Connection 6 

Similar techniques as Architecture 5 Connection 5 so not shown. 

Table 156: BMS - Architecture 5 Data 12 (subset 1) 

 

Reference 5)C5
SG Failure 

Distribution

99.00% High 99.00% High 40.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 0% 0% ➢

Contact resistance 10% 0% 0% ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 0% 0% ➢

Short Circuit to Vbat Short Circuit to Vbat 20% 20% 20% y ➢ Y PCc_5kHzSelf_Test

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% y ➢ Y PCc_5kHzSelf_Test

Resistive drift 

between pins / signal 

lines

10% 10% 10% y ➢ Y PCc_5kHzSelf_Test

Technique from 

ISO26262

Failure Detection by on-

line monitoring

99%

High

39.60%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

Specific  PCC

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 5

D
.2

.1
.1

U
se

d

Failure Mode 

Distribution
Full Claim PCc Claim

Reference 5)D12
SG Failure 

Distribution

99.00% High 96.03% Medium 26.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0% ➢ ➢ ➢ ➢ ➢

Offsets Offsets 10% 0% 0% ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 0% 0% ➢ ➢ ➢ ➢ ➢

Oscillation 4% 0% 0% ➢ ➢ ➢ ➢ ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 15% 14% Y

PCc_Data_Checksum,

PCc_Frame_Seq,

PCc_Poll_Response_Time

Message corruption Message corruption Message corruption 2% 2% 2% Y PCc_Data_Checksum

Message Delay Message Delay Message Delay 3% 3% 3% Y PCc_Poll_Response_Time

Message Loss Message Loss Message Loss 2% 2% 2% Y PCc_Frame_Seq

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 1% 1% Y PCc_Frame_Seq

Resequencing Resequencing 1% 1% 1% Y PCc_Frame_Seq

Insertion of message Insertion of message 1% 1% 1% Y PCc_Frame_Seq

Masquerading 1% 1% 1% Y

PCc_Data_Checksum,

PCc_Frame_Seq,

PCc_Poll_Response_Time. 

Specific  PCC

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 5

Technique Description

Technique from ISO26262

High High High Low High Medium

99% 99% 99% 60% 99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

PCc ClaimElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

0.00% 0.00%

Data 

Transmission
D.8

0.00% 0.00% 73.26% 0.00%

Sensors including 

Signal Switches
D.11

90%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d
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Table 157: BMS - Architecture 5 Data 12 (subset 2) 

 

Table 158: BMS - Architecture 5 Measurement 5 

 

Reference 5)D12
SG Failure 

Distribution

99.00% High 96.03% Medium 26.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 30% 0% 0%

Offsets Offsets 10% 0% 0%

Stuck in range Stuck in range Stuck in range 30% 0% 0%

Oscillation 4% 0% 0%

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
15% 15% 14% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y

PCc_Data_Checksum,

PCc_Frame_Seq,

PCc_Poll_Response_Time

Message corruption Message corruption Message corruption 2% 2% 2% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Data_Checksum

Message Delay Message Delay Message Delay 3% 3% 3% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Poll_Response_Time

Message Loss Message Loss Message Loss 2% 2% 2% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Frame_Seq

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
1% 1% 1% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Frame_Seq

Resequencing Resequencing 1% 1% 1% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Frame_Seq

Insertion of message Insertion of message 1% 1% 1% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y PCc_Frame_Seq

Masquerading 1% 1% 1% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y
PCc_Data_Checksum,

PCc_Frame_Seq,

PCc_Poll_Response_Time. 

Specific  PCC

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Information 

redundancy

PCc_Frame_S

eq

Timeout 

monitoring

High Medium

Maintain Cells in Operating Area Architecture Candidate 5

Technique Description

Technique from ISO26262

Combination 

of 

information 

Redundancy,f

rame count 

and timeout

One-bit 

hardware 

redundancy

Multi-bit 

hardware 

redundancy

99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Read back of 

sent message

Complete 

hardware 

redundancy

Inspection 

using test 

patterns

Transmission 

redundancy

High

PCc Claim

Low Medium Medium

60% 90% 90% 99%

25.74%

D
.2

.7
.8

U
se

d

D
.2

.7
.6

,7
,8

U
se

d

Medium Medium Medium High

U
se

d

D
.2

.7
.6

U
se

d

D
.2

.7
.7

U
se

d

0.00% 0.00% 0.00% 0.00%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

0.00%0.00% 0.00% 0.00% 0.00%

Data 

Transmission
D.8

Sensors including 

Signal Switches
D.11

90% 90% 90% 90%

D
.2

.7
.1

U
se

d

D
.2

.7
.2

U
se

d

D
.2

.7
.9

U
se

d

D
.2

.7
.3

U
se

d

D
.2

.7
.4

U
se

d

D
.2

.7
.5

Reference 5)M5
SG Failure 

Distribution

81.45% Low 79.82% Low 100.00%

Low Medium High

60% 90% 99%

Harness 

including 

splice and 

connectors

D.3
Resistive drift 

between pins / 

signal lines

0% 0% ➢ Y

Open 

circuit
Open circuit Open circuit 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short 

Circuit to 

ground

Short Circuit to 

ground (dc 

Coupled)

Short Circuit to 

ground (dc 

Coupled)

20% 20% 19% Y ➢ ➢ ➢ ➢ ➢ y ➢

Short Circuit to 

Vbat

Short Circuit to 

Vbat
15% 15% 15% Y ➢ ➢ ➢ ➢ ➢ y ➢ PCc_5kHzSelf_Test

Short circuit 

between 

neighbouring 

pins

Short circuit 

between 

neighbouring 

pins

20% 20% 19% Y ➢ ➢ ➢ ➢ ➢ y ➢ PCc_5kHzSelf_Test

Offsets Offsets 15% 9% 9% Y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_5kHzSelf_Test

Stuck in 

range
Stuck in range Stuck in range 20% 12% 12% Y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_5kHzSelf_Test

Drift & 

Oscillation

Drift & 

Oscillation
10% 6% 6% Y ➢ y ➢ ➢ ➢ ➢ ➢ PCc_5kHzSelf_Test

0.00% 54.45%0.00% 27.00% 0.00%

Table 26262-5: 2011

Failure 

Mode 

Distribution

Full Claim PCc Claim

Failure Detection 

by on-line 

monitoring

High
99%

Element See Table

Analysed Failure modes for  low / 

medium / high Diagnostic 

Coverage

D
.2

.1
.1

U
se

d

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 5

Failure Mode 

Distribution
Full Claim PCc Claim

100%

Failure 

Detection by 

on-line 

monitoring

0.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

90% 99%

Technique Description

Specific  PCC

Analogue and 

digital Inputs
D.7

0.00%

60% 99% 99%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

Low High Medium High High

U
se

d

D
.2

.6
.5

U
se

d

High

Test Pattern Code protection
Multi-channel 

parallel output
Monitored outputs

Input Comparison 

Voting (1oo2, 2oo3 

or better 

redundancy). Only 

if data flow changes 

within diagnostic 

test interval.

99%
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Table 159: BMS - Architecture 5 Output 3 

 

Table 160: BMS - Architecture 5 Transducer 3 

 

Table 161: BMS - Architecture 5 Transducer 4 

 

Appendix E6 – BMS – Architecture 6 DC% Claims 

Reference 5)O3
SG Failure 

Distribution

99.00% High 98.26% Medium 60.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to 

ground

Short Circuit to 

ground (dc 

Coupled)

Short Circuit to 

ground (dc 

Coupled)

15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to 

Vbat

Short Circuit to 

Vbat
10% 10% 10% y ➢ y ➢ ➢ ➢ ➢ y ➢ PCc_5kHzSelf_Test

Short circuit 

between 

neighbouring 

pins

Short circuit 

between 

neighbouring 

pins

10% 10% 10% y ➢ y ➢ ➢ ➢ ➢ y ➢ PCc_5kHzSelf_Test

Offsets Offsets 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 10% 10% Y ➢ y ➢ ➢ ➢ ➢ y ➢ PCc_5kHzSelf_Test

Drift & 

Oscillation
5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and 

Over Voltage
5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Drift
Drift & 

Oscillation
20% 20% 20% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Table 26262-5: 2011

Analogue and digital 

Outputs - stuck at
D.7

Failure Detection 

by on-line 

monitoring

Low

Maintain Cells in Operating Area Architecture Candidate 5
Specific  PCC

Technique Description

Technique from ISO26262

Failure Mode Leads 

to Violation of 

Safety Goal

90%

High Medium

D.9

Element See Table

29.70%0.00%

99%

0.00%29.70%0.00%

99% 60%99%
Analysed Failure modes for  low / 

medium / high Diagnostic Coverage

Power supply

99%

U
se

d

60% 99%

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

0.00% 0.00%18.00%

Failure 

Mode 

Distributi

on

Full Claim PCc Claim

HighLow

Input Comparison 

Voting (1oo2, 2oo3 

or better 

redundancy). Only 

if data flow changes 

within diagnostic 

test interval.

Test Pattern Code protection
Multi-channel 

parallel output

Voltage or current 

control (output)

Voltage or current 

control (input)
Monitored outputs

HighHigh High

Failure Mode 

Distribution
Full Claim PCc Claim

100%

D
.2

.1
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

Reference 5)T3
SG Failure 

Distribution

99.00% High 97.54% Medium 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 20% 19% y ➢ y ➢ ➢ ➢ ➢
PCc6801_Self_-Test,

PCc_5kHzSelf_Test

Offsets Offsets 10% 10% 10% y ➢ y ➢ ➢ ➢ ➢ ➢
PCc6801_Self_-Test,

PCc_5kHzSelf_Test

Stuck in range Stuck in range Stuck in range 30% 30% 29% y ➢ Y ➢ ➢ ➢ ➢ ➢
PCc6801_Self_-Test,

PCc_5kHzSelf_Test

Oscillation 5% 5% 5% y ➢ Y ➢ ➢ ➢ ➢ ➢
PCc6801_Self_-Test,

PCc_5kHzSelf_Test
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Technique Description

Technique from ISO26262

Specific  PCC

99%Failure Mode 

Leads to 

Violation of 

Safety Goal

Power supply D.9

PCc ClaimElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Sensors including 

Signal Switches
D.11

High

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

0.00% 0.00% 34.65%

99%60%

Medium

Sensor 

rationality 

Check

D
.2

.1
0

.3

Failure Mode Distribution Full Claim PCc Claim

100%

Table 26262-5: 2011
Maintain Cells in Operating Area Architecture Candidate 5

Sensor 

Correlation

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Low

99%

HighHighHigh High Low

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

99%

64.35% 0.00% 0.00% 0.00%

90%99% 60%

0.00%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Reference 5)T4
SG Failure 

Distribution

81.45% Low 80.34% Low 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 20% 19% y ➢ y ➢ ➢ ➢ ➢ PCc_5kHzSelf_Test

Offsets Offsets 10% 6% 6% y ➢ ➢ ➢ ➢ y ➢ ➢ PCc_5kHzSelf_Test

Stuck in range Stuck in range Stuck in range 30% 18% 18% y ➢ ➢ ➢ ➢ y ➢ ➢ PCc_5kHzSelf_Test

Oscillation 5% 3% 3% y ➢ ➢ ➢ ➢ y ➢ ➢ PCc_5kHzSelf_Test

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Specific  PCC

Technique Description

Technique from ISO26262

High

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

0.00% 0.00% 34.65%

99%60%

Medium

Sensor 

rationality 

Check

Low

0.00% 27.00% 0.00%

High

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

D
.2

.8
.1

19.80% 0.00%

Power supply D.9

Sensors including 

Signal Switches
D.11

D
.2

.1
.1

Failure Mode 

Leads to 

Violation of 

Safety Goal

PCc ClaimElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

90%99% 60%99%99%

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Failure 

Detection by 

on-line 

monitoring

Test Pattern

HighHigh High Low

99%

Failure Mode Distribution Full Claim PCc Claim

100%

Table 26262-5: 2011
Maintain Cells in Operating Area Architecture Candidate 5

U
se

d

D
.2

.8
.2

U
se

d

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d
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Table 162: BMS - Architecture 6 Actuator 1 

 

BMS - Architecture 6 Actuator 2 

Similar techniques as Architecture 6 Actuator 1 so not shown. 

BMS - Architecture 6 Actuator 4 

Similar techniques as Architecture 6 Actuator 1 so not shown. 

BMS - Architecture 6 Actuator 7 

Similar techniques as Architecture 6 Actuator 1 so not shown. 

Table 163: BMS - Architecture 6 Connection 1 

 

BMS - Architecture 6 Connection 2 

Reference 6)A1
SG Failure 

Distribution

83.83% Low 83.39% Low 90.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
20% 12% 12% y ➢ Y PCc_HVPosBatt

Welded Contacts Welded Contacts Welded Contacts 5% 3% 3% y ➢ Y PCc_HVPosBatt

Individual welded 

contacts

Individual welded 

contacts
10% 6% 6% y ➢ Y PCc_HVPosBatt

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 15% 15% 15% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

10% 0% 0% ➢ ➢ ➢

Incorrect action 15% 15% 15% y ➢ ➢ ➢ Y PCc_HVPosBatt

Delayed Action 10% 10% 10% y ➢ ➢ ➢ Y PCc_HVPosBatt

Technique Description

Technique from ISO26262

Specific  PCCMaintain Cells in Operating Area Architecture Candidate 6
Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Failure Detection 

by on-line 

monitoring

Test Pattern Monitoring

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High HighLow Low High
60% 60% 99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

0% 0% 25%21.00% 0.00% 29.70%

U
se

d

Final Elements D.12

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

Power supply D.9

Outputs - relays D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 99%

Reference 6)C1
SG Failure 

Distribution

99.00% High 99.00% High 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 20% 20% y ➢ Y PCc_6803_Self_Test

Contact resistance 10% 10% 10% y ➢ Y PCc_HVPosBatt

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 30% 30% y ➢ Y PCc_6803_Self_Test

Short Circuit to Vbat Short Circuit to Vbat 20% 20% 20% y ➢ Y PCc_6803_Self_Test

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% y ➢ Y PCc_6803_Self_Test

Resistive drift 

between pins / signal 

lines

10% 10% 10% y ➢ Y PCc_HVPosBatt

Technique 

Description

Maintain Cells in Operating Area Architecture Candidate 6

Specific  PCC

99.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%
Technique 

from ISO26262

Failure Detection by on-

line monitoring

High

D
.2

.1
.1

U
se

d
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Similar techniques as Architecture 6 Connection 1 so not shown. 

Table 164: BMS - Architecture 6 Measurement 1 

 

Table 165: BMS - Architecture 6 Measurement 3 

 

Reference 6)M1
SG Failure 

Distribution

99.00% High 98.58% Medium 100.00%

Low Medium High

60% 90% 99%

Harness 

including 

splice and 

connectors

D.3
Resistive drift 

between pins / 

signal lines

15% 15% 15% Y ➢ Y PCc_HVPosBatt

Open 

circuit
Open circuit Open circuit 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y

 PCc_OA_Window,

PCc_6803_Self_Test,

PCc6801_Self_-Test,

PCc_HVPosBatt

Short 

Circuit to 

ground

Short Circuit to 

ground (dc 

Coupled)

Short Circuit to 

ground (dc 

Coupled)

15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y

 PCc_OA_Window,

PCc_6803_Self_Test,

PCc6801_Self_-Test,

PCc_HVPosBatt

Short Circuit to 

Vbat

Short Circuit to 

Vbat
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y

 PCc_OA_Window,

PCc_6803_Self_Test,

PCc6801_Self_-Test,

PCc_HVPosBatt

Short circuit 

between 

neighbouring pins

Short circuit 

between 

neighbouring 

pins

10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y

 PCc_OA_Window,

PCc_6803_Self_Test,

PCc6801_Self_-Test,

PCc_HVPosBatt

Offsets Offsets 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y

 PCc_OA_Window,

PCc_6803_Self_Test,

PCc6801_Self_-Test,

PCc_HVPosBatt

Stuck in 

range
Stuck in range Stuck in range 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y

 PCc_OA_Window,

PCc_6803_Self_Test,

PCc6801_Self_-Test,

PCc_HVPosBatt

Drift & Oscillation
Drift & 

Oscillation
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ y ➢ Y

 PCc_OA_Window,

PCc_6803_Self_Test,

PCc6801_Self_-Test,

PCc_HVPosBatt

Specific  PCC
Maintain Cells in Operating Area Architecture Candidate 6

Technique Description

Technique from ISO26262

Element See Table

Analysed Failure modes for  low / 

medium / high Diagnostic Coverage

0.00% 0.00% 0.00% 84.15% 84.15%

U
se

d

Analogue and 

digital Inputs
D.7

14.85% 51.00%

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

Input Comparison 

Voting (1oo2, 2oo3 

or better 

redundancy). Only 

if data flow changes 

within diagnostic 

test interval.

High

99%90% 99% 99%

Table 26262-5: 2011

100%

Failure Detection 

by on-line 

monitoring

High MediumLow High

Failure 

Detection by 

on-line 

monitoring

Test Pattern Code protection

D
.2

.6
.5

U
se

d

Failure Mode 

Distribution
Full Claim PCc Claim

Failure 

Mode 

Distribution

Full Claim PCc Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 60% 99%

High High

Multi-channel 

parallel output
Monitored outputs

Reference 6)M3
SG Failure 

Distribution

99.00% High 98.58% Medium 100.00%

Low Medium High

60% 90% 99%

Harness 

including 

splice and 

connectors

D.3
Resistive drift 

between pins / 

signal lines

15% 15% 15% Y ➢ Y

Open circuit Open circuit Open circuit 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y
PCc_HW_MONITOR,

PCc_HVPosBatt

Short Circuit 

to ground

Short Circuit to 

ground (dc 

Coupled)

Short Circuit to 

ground (dc 

Coupled)

15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y
PCc_HW_MONITOR,

PCc_HVPosBatt

Short Circuit to 

Vbat

Short Circuit to 

Vbat
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y

PCc_HW_MONITOR,

PCc_HVPosBatt
Short circuit 

between 

neighbouring 

pins

Short circuit 

between 

neighbouring 

pins

10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y
PCc_HW_MONITOR,

PCc_HVPosBatt

Offsets Offsets 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y
PCc_HW_MONITOR,

PCc_HVPosBatt

Stuck in 

range
Stuck in range Stuck in range 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ Y

PCc_HW_MONITOR,

PCc_HVPosBatt

Drift & 

Oscillation

Drift & 

Oscillation
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ y ➢ Y

PCc_HW_MONITOR,

PCc_HVPosBatt

Technique Description

Technique from ISO26262

Specific  PCC

Failure Detection 

by on-line 

monitoring

High Medium

U
se

d

D
.2

.6
.5

U
se

d

Failure 

Detection by 

on-line 

monitoring

Test Pattern

High High

Code protection
Multi-channel 

parallel output
Monitored outputs

Failure Mode 

Distribution
Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 6

Input Comparison 

Voting (1oo2, 2oo3 

or better 

redundancy). Only 

if data flow changes 

within diagnostic 

test interval.

High

99% 99%

Low High

99%90%99%99% 60%

D
.2

.6
.3

U
se

d

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

Failure 

Mode 

Distribution

Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

PCc Claim

D
.2

.6
.4

0.00% 84.15% 84.15%

Analogue and 

digital Inputs
D.7

14.85% 51.00%

Element See Table

Analysed Failure modes for  low / 

medium / high Diagnostic Coverage

0.00% 0.00%

D
.2

.1
.1

U
se

d

D
.2

.1
.1
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Table 166: BMS - Architecture 6 Output 1 

 

BMS - Architecture 6 Output 2 

Similar techniques as Architecture 6 Output 1 so not shown. 

BMS - Architecture 6 Output 5 

Similar techniques as Architecture 6 Output 1 so not shown. 

BMS - Architecture 6 Output 6 

Similar techniques as Architecture 6 Output 1 so not shown. 

Table 167: BMS - Architecture 6 Transducer 1 

 

Reference 6)O1
SG Failure 

Distribution

99.00% High 98.26% Medium 60.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% y ➢ y ➢ ➢ ➢ ➢ y ➢ PCc_HVPosBatt

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% y ➢ y ➢ ➢ ➢ ➢ y ➢ PCc_HVPosBatt

Offsets Offsets 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 10% 10% Y ➢ y ➢ ➢ ➢ ➢ y ➢ PCc_HVPosBatt

Drift & Oscillation 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Technique Description

Technique from ISO26262

Specific  PCC

Failure Mode 

Distribution
Full Claim

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Cells in Operating Area Architecture Candidate 6

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

Element See Table

Failure 

Detection by 

on-line 

monitoring

High HighLow High Medium

Monitored 

outputs

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

High

99%99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

PCc Claim

99%

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

60% 99% 90%

U
se

d

18.00% 0.00% 0.00% 0.00%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

D
.2

.6
.5

U
se

d

29.70%0.00% 29.70%0.00%

Voltage or 

current 

control 

(output)

99%

Voltage or 

current 

control 

(input)

U
se

d

High

60%

Low

D
.2

.8
.1

U
se

d

D
.2

.8
.2

Reference 6)T1
SG Failure 

Distribution

99.00% High 97.94% Medium 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 20% 20% y ➢ y ➢ ➢ Y ➢ y ➢

PCc_OA_Window,

PCc_6803_Self_Test,

PCc_HVPosBatt

Offsets Offsets 10% 10% 10% y ➢ y ➢ ➢ Y ➢ ➢ ➢
PCc_6803_Self_Test,

PCc_HVPosBatt

Stuck in range Stuck in range Stuck in range 30% 30% 29% y ➢ ➢ ➢ Y ➢ ➢ ➢ PCc_HVPosBatt

Oscillation 5% 5% 5% y ➢ ➢ ➢ Y ➢ ➢ ➢ PCc_HVPosBatt

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Technique Description

Technique from ISO26262

Specific  PCCMaintain Cells in Operating Area Architecture Candidate 6

HighHighHigh High Low

34.65%

Power supply D.9

Sensors including 

Signal Switches
D.11

29.70% 0.00% 64.35% 12.00% 0.00% 0.00% 0.00%

99%60%90%99%

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

99%99% 99% 60%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

Failure Mode 

Leads to 

Violation of 

Safety Goal

PCc ClaimElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

High

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Medium

Sensor 

rationality 

Check

Low

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Failure 

Detection by 

on-line 

monitoring

Test PatternTable 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d
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Table 168: BMS - Architecture 6 Transducer 3 

 

  

Reference 6)T3
SG Failure 

Distribution

99.00% High 98.18% Medium 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 20% 20% y ➢ y ➢ ➢ y ➢ ➢

PCc6801_Self_-Test,

PCc_5kHzSelf_Test, 

PCc_HVPosBatt

Offsets Offsets 10% 10% 10% y ➢ y ➢ ➢ y ➢ ➢ ➢

PCc6801_Self_-Test,

PCc_5kHzSelf_Test, 

PCc_HVPosBatt

Stuck in range Stuck in range Stuck in range 30% 30% 29% y ➢ Y ➢ ➢ y ➢ ➢ ➢

PCc6801_Self_-Test,

PCc_5kHzSelf_Test, 

PCc_HVPosBatt

Oscillation 5% 5% 5% y ➢ Y ➢ ➢ y ➢ ➢ ➢

PCc6801_Self_-Test,

PCc_5kHzSelf_Test, 

PCc_HVPosBatt
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Specific  PCCMaintain Cells in Operating Area Architecture Candidate 6

Sensor 

rationality 

Check

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Technique Description

Technique from ISO26262

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

High High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

High Low High Medium Low

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 99% 99% 60%

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

90% 60% 99%99%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

34.65%0.00%

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

Sensors including 

Signal Switches
D.11

Power supply D.9

64.35% 0.00% 64.35% 0.00% 0.00% 0.00%
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Appendix E7 – BMS – Architecture 7 DC% Claims 
Table 169: BMS - Architecture 7 Actuator 1 

 

BMS - Architecture 7 Actuator 2 

Similar techniques as Architecture 7 Actuator 1 so not shown. 

BMS - Architecture 7 Actuator 4 

Similar techniques as Architecture 7 Actuator 1 so not shown. 

BMS - Architecture 7 Actuator 7 

Similar techniques as Architecture 7 Actuator 1 so not shown. 

Table 170: BMS - Architecture 7 Output 1 

 

BMS - Architecture 7 Output 2 

Reference 7)A1
SG Failure 

Distribution

85.35% Low 84.86% Low 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
20% 12% 12% Y ➢ Y PCc_HVPosBatt

Welded Contacts Welded Contacts Welded Contacts 5% 3% 3% Y ➢ Y PCc_HVPosBatt

Individual welded 

contacts

Individual welded 

contacts
10% 6% 6% Y ➢ Y PCc_HVPosBatt

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 15% 15% 15% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

0% 0% 0% ➢ ➢ ➢

Incorrect action 20% 20% 20% y ➢ ➢ ➢ y PCc_HVPosBatt

Delayed Action 15% 15% 15% y ➢ ➢ ➢ y PCc_HVPosBatt

Specific  PCC

Technique Description

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 7

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

High High

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Failure Detection 

by on-line 

monitoring

U
se

d

Test Pattern Monitoring

PCc Claim

Low Low High Low

99%60% 60% 99%

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

D
.2

.1
.1

Outputs - relays D.3

Power supply D.9

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 60%

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Final Elements D.12

35%21.00% 0.00% 29.70% 0% 0%

Reference 7)O1
SG Failure 

Distribution

99.00% High 98.51% Medium 60.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% y ➢ y ➢ y ➢ ➢ ➢ y ➢
PCc_HVPosBatt,

PCc_POSCON

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% y ➢ y ➢ y ➢ ➢ ➢ y ➢

PCc_HVPosBatt,

PCc_POSCON

Offsets Offsets 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 10% 10% Y ➢ y ➢ y ➢ ➢ ➢ y ➢
PCc_HVPosBatt,

PCc_POSCON

Drift & Oscillation 5% 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ y PCc_PSU_Mon

Specific  PCC

Technique Description

Technique from ISO26262

Maintain Cells in Operating Area Architecture Candidate 7

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Medium High High High Low

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 90% 99%

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

99% 60% 99%99%

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

29.70% 0.00% 0.00% 29.70% 0.00% 0.00% 29.70%

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

18.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9
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Similar techniques as Architecture 7 Output 1 so not shown. 

BMS - Architecture 7 Output 5 

Similar techniques as Architecture 7 Output 1 so not shown. 

BMS - Architecture 7 Output 6 

Similar techniques as Architecture 7 Output 1 so not shown. 
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Appendix E9 – BMS LFM Calculation – Architecture 7 
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Appendix F – FCCS – Candidate Architecture DC% Claims 
Table 171: FCCS - Actuator 1 

 

Table 172: FCCS - Actuator 2 

 

Table 173: FCCS - Actuator 3 

 

Reference 1)A1
SG Failure 

Distribution

71.70% Low 71.55% Low 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
40% 24% 24% Y ➢ Y PCc_HVNEG

Welded Contacts Welded Contacts Welded Contacts 30% 18% 18% Y ➢ Y PCc_HVNEG

Individual welded 

contacts

Individual welded 

contacts
0% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 15% 15% 15% Y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% Y ➢ ➢ y PCc_PSU_Mon

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

0% 0% 0% ➢ ➢ ➢

Incorrect action 0% 0% 0% ➢ ➢ ➢

Delayed Action 0% 0% 0% ➢ ➢ ➢

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Failure Detection 

by on-line 

monitoring

Test Pattern Monitoring

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

PCc Claim

Low High HighLow Low High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 99%60% 60% 99%

0% 0%42.00% 0.00% 29.70%

Power supply D.9

Outputs - relays D.3

0%

Final Elements D.12

Technique Description

Specific PCc

Technique from ISO26262

Maintain Power - Existing Design

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

Reference 1)A2
SG Failure 

Distribution

71.70% Low 71.55% Low 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
40% 24% 24% Y ➢ Y PCc_HVPOS

Welded Contacts Welded Contacts Welded Contacts 30% 18% 18% Y ➢ Y PCc_HVPOS

Individual welded 

contacts

Individual welded 

contacts
0% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 15% 15% 15% Y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% Y ➢ ➢ y PCc_PSU_Mon

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

0% 0% 0% ➢ Y ➢ ➢

Incorrect action 0% 0% 0% ➢ Y ➢ ➢

Delayed Action 0% 0% 0% ➢ Y ➢ ➢

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design
Test Pattern Monitoring

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

PCc Claim

Low High HighLow Low High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 99%60% 60% 99%

0% 0%42.00% 0.00% 29.70%

Power supply D.9

Outputs - relays D.3

0%

Final Elements D.12

Specific  PCC

Technique Description

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

Failure Detection 

by on-line 

monitoring

Reference 1)A3
SG Failure 

Distribution

60.00% Low 59.40% Limited 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
0% 0% 0% ➢

Welded Contacts Welded Contacts Welded Contacts 0% 0% 0% ➢

Individual welded 

contacts

Individual welded 

contacts
0% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
0% 0% 0% ➢ ➢

Drift Drift & Oscillation 0% 0% 0% ➢ ➢

Power Spikes 0% 0% 0% ➢ ➢

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

100% 60% 59% y ➢ Y ➢ ➢ PCc_FAN's'_SPEED

Incorrect action 0% 0% 0% ➢ ➢ ➢

Delayed Action 0% 0% 0% ➢ ➢ ➢

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design
Test Pattern Monitoring

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

PCc Claim

Low High HighLow Low High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 99%60% 60% 99%

0% 0%0.00% 0.00% 0.00%

Power supply D.9

Outputs - relays D.3

60%

Final Elements D.12

Specific  PCC

Technique Description

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

Failure Detection 

by on-line 

monitoring
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Table 174: FCCS - Actuator 4 

 

Table 175: FCCS - Actuator 7 

 

Table 176: FCCS - Actuator 8 

 

Reference 1)A4
SG Failure 

Distribution

99.00% High 99.00% High 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
0% 0% 0% ➢

Welded Contacts Welded Contacts Welded Contacts 0% 0% 0% ➢

Individual welded 

contacts

Individual welded 

contacts
0% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
0% 0% 0% ➢ ➢

Drift Drift & Oscillation 0% 0% 0% ➢ ➢

Power Spikes 0% 0% 0% ➢ ➢

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

30% 30% 30% Y ➢ Y ➢ ➢ Y PCc_FAN's'_SPEED

Incorrect action 40% 40% 40% Y ➢ Y ➢ ➢ Y PCc_FAN's'_SPEED

Delayed Action 30% 30% 30% Y ➢ Y ➢ ➢ Y PCc_FAN's'_SPEED

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design
Test Pattern Monitoring

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

PCc Claim

Low High HighLow Low High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 99%60% 60% 99%

0% 99%0.00% 0.00% 0.00%

Power supply D.9

Outputs - relays D.3

60%

Final Elements D.12

Specific  PCC

Technique Description

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

Failure Detection 

by on-line 

monitoring

Reference 1)A7
SG Failure 

Distribution

99.00% High 99.00% High 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
0% 0% 0% ➢

Welded Contacts Welded Contacts Welded Contacts 0% 0% 0% ➢

Individual welded 

contacts

Individual welded 

contacts
0% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
0% 0% 0% ➢ ➢

Drift Drift & Oscillation 0% 0% 0% ➢ ➢

Power Spikes 0% 0% 0% ➢ ➢

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

30% 30% 30% Y ➢ Y ➢ ➢ Y PCc_H2_VALVE

Incorrect action 40% 40% 40% Y ➢ Y ➢ ➢ Y PCc_H2_VALVE

Delayed Action 30% 30% 30% Y ➢ Y ➢ ➢ Y PCc_H2_VALVE

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design
Test Pattern Monitoring

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

PCc Claim

Low High HighLow Low High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 99%60% 60% 99%

0% 99%0.00% 0.00% 0.00%

Power supply D.9

Outputs - relays D.3

60%

Final Elements D.12

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

Failure Detection 

by on-line 

monitoring

Reference 1)A8
SG Failure 

Distribution

71.70% Low 71.28% Low 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
0% 0% 0% ➢

Welded Contacts Welded Contacts Welded Contacts 0% 0% 0% ➢

Individual welded 

contacts

Individual welded 

contacts
0% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
0% 0% 0% ➢ ➢

Drift Drift & Oscillation 0% 0% 0% ➢ ➢

Power Spikes 0% 0% 0% ➢ ➢

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

30% 30% 30% Y ➢ Y ➢ ➢ Y PCc_STACK’s’_PURGE_VALVE

Incorrect action 40% 24% 24% Y ➢ Y ➢ ➢ PCc_STACK’s’_PURGE_VALVE

Delayed Action 30% 18% 18% Y ➢ Y ➢ ➢ PCc_STACK’s’_PURGE_VALVE

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design
Test Pattern Monitoring

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

PCc Claim

Low High HighLow Low High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 99%60% 60% 99%

0% 30%0.00% 0.00% 0.00%

Power supply D.9

Outputs - relays D.3

60%

Final Elements D.12

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

Failure Detection 

by on-line 

monitoring
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Table 177: FCCS - Actuator 9 

 

Table 178: FCCS - Actuator 10 

 

Table 179: FCCS - Actuator 12 

 

 

Reference 1)A9
SG Failure 

Distribution

71.70% Low 71.28% Low 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
0% 0% 0% ➢

Welded Contacts Welded Contacts Welded Contacts 0% 0% 0% ➢

Individual welded 

contacts

Individual welded 

contacts
0% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
0% 0% 0% ➢ ➢

Drift Drift & Oscillation 0% 0% 0% ➢ ➢

Power Spikes 0% 0% 0% ➢ ➢

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

30% 30% 30% Y ➢ Y ➢ ➢ Y PCc_DILUTION

Incorrect action 40% 24% 24% Y ➢ Y ➢ ➢ PCc_DILUTION

Delayed Action 30% 18% 18% Y ➢ Y ➢ ➢ PCc_DILUTION

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

High High

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Failure Detection 

by on-line 

monitoring

Test Pattern Monitoring

Low Low High Low

Maintain Power - Existing Design

99%60% 60% 99% 60% 99%

Outputs - relays D.3

Power supply D.9

Failure Mode 

Leads to 

Violation of 

Safety Goal

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

D
.2

.1
1

.1

U
se

d

30%0.00% 0.00% 0.00% 60% 0%

Final Elements D.12

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

Reference 1)A10
SG Failure 

Distribution

99.00% High 98.85% Medium 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
0% 0% 0% ➢

Welded Contacts Welded Contacts Welded Contacts 0% 0% 0% ➢

Individual welded 

contacts

Individual welded 

contacts
0% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 15% 15% 15% Y ➢ ➢ y PCc_PSU_Mon

Power Spikes 5% 5% 5% Y ➢ ➢ y PCc_PSU_Mon

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

20% 20% 20% Y ➢ Y ➢ ➢ Y PCc_PRECHG

Incorrect action 30% 30% 30% Y ➢ Y ➢ ➢ Y PCc_PRECHG

Delayed Action 20% 20% 20% Y ➢ Y ➢ ➢ Y PCc_PRECHG

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design
Test Pattern Monitoring

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

PCc Claim

Low High HighLow Low High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 99%60% 60% 99%

0% 69%0.00% 0.00% 29.70%

Power supply D.9

Outputs - relays D.3

42%

Final Elements D.12

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

Failure Detection 

by on-line 

monitoring

Reference 1)A12
SG Failure 

Distribution

71.70% Low 71.13% Low 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
0% 0% 0% ➢

Welded Contacts Welded Contacts Welded Contacts 0% 0% 0% ➢

Individual welded 

contacts

Individual welded 

contacts
0% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ Y PCc_PSU_Mon

Drift Drift & Oscillation 15% 15% 15% Y ➢ ➢ Y PCc_PSU_Mon

Power Spikes 5% 5% 5% Y ➢ ➢ Y PCc_PSU_Mon

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

20% 12% 12% Y ➢ Y ➢ ➢ PCc_INLET’s’_POSITION

Incorrect action 30% 18% 18% Y ➢ Y ➢ ➢ PCc_INLET’s’_POSITION

Delayed Action 20% 12% 12% Y ➢ Y ➢ ➢ PCc_INLET’s’_POSITION

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.1
1

.1

U
se

d

Failure Detection 

by on-line 

monitoring

Power supply D.9

Outputs - relays D.3

42%

Final Elements D.12

0% 0%0.00% 0.00% 29.70%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Low High HighLow Low High

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 99%60% 60% 99%

Test Pattern Monitoring

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design
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Table 180: FCCS - Actuator 13 

 

Table 181: FCCS - Connection 1 

 

Reference 1)A13
SG Failure 

Distribution

71.70% Low 71.13% Low 100.00%

Low Medium High

60% 90% 99%
Does not energise or 

de-energise

Does not energise or 

de-energise

Does not energise or 

de-energise
0% 0% 0% ➢

Welded Contacts Welded Contacts Welded Contacts 0% 0% 0% ➢

Individual welded 

contacts

Individual welded 

contacts
0% 0% 0% ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ Y PCc_PSU_Mon

Drift Drift & Oscillation 15% 15% 15% Y ➢ ➢ Y PCc_PSU_Mon

Power Spikes 5% 5% 5% Y ➢ ➢ Y PCc_PSU_Mon

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

No generic Fault 

Model available.

Detailed Analysis 

necessary

20% 12% 12% Y ➢ Y ➢ ➢ PCc_EXHAUST’s’_POSITION

Incorrect action 30% 18% 18% Y ➢ Y ➢ ➢ PCc_EXHAUST’s’_POSITION

Delayed Action 20% 12% 12% Y ➢ Y ➢ ➢ PCc_EXHAUST’s’_POSITION

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

High High

Failure 

Detection by 

on-line 

monitoring

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Failure Detection 

by on-line 

monitoring

Test Pattern Monitoring

Low Low High Low

Maintain Power - Existing Design

99%60% 60% 99% 60% 99%

Outputs - relays D.3

Power supply D.9

Failure Mode 

Leads to 

Violation of 

Safety Goal

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

D
.2

.1
1

.1

U
se

d

0%0.00% 0.00% 29.70% 42% 0%

Final Elements D.12

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

Reference 1)C1
SG Failure 

Distribution

48.00% Limited 48.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 12% 12% Y ➢ Y  PCc_OA_WINDOW

Contact resistance 10% 6% 6% Y ➢ Y  PCc_OA_WINDOW

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 18% 18% Y ➢ Y  PCc_OA_WINDOW

Short Circuit to Vbat Short Circuit to Vbat 20% 12% 12% Y ➢ Y  PCc_OA_WINDOW

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% Y ➢

Full Claim PCc Claim

Maintain Power - Existing Design

Technique 

Failure Mode Distribution Full Claim PCc Claim

Failure Detection by 

on-line monitoring

Technique 

Description

Specific  PCC

D
.2

.1
.1

U
se

d

99%
High

79.20%

Table 26262-5: 2011

100%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
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Table 182: FCCS - Connection 4 

 

Table 183: FCCS - Connection 5 

 

 

Reference 1)C4
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 0% 0% Y ➢

Contact resistance 10% 0% 0% Y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 0% 0% Y ➢ Y PCc_HVNEG

Short Circuit to Vbat Short Circuit to Vbat 20% 0% 0% Y ➢ Y PCc_HVNEG

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢ Y PCc_HVNEG

Resistive drift 

between pins / signal 

lines

10% 0% 0% Y ➢

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

100%

Maintain Power - Existing Design

Technique 

Failure Detection by 

on-line monitoring

High

Specific  PCC

D
.2

.1
.1

U
se

d

69.30%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim

Reference 1)C5
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 0% 0% Y ➢

Contact resistance 10% 0% 0% Y ➢ Y

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 0% 0% Y ➢ Y PCc_HVPOS

Short Circuit to Vbat Short Circuit to Vbat 20% 0% 0% Y ➢ Y PCc_HVPOS

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢ Y PCc_HVPOS

Resistive drift 

between pins / signal 

lines

10% 0% 0% Y ➢

69.30%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Table 26262-5: 2011

100%

Technique 

Description

Specific  PCC
D

.2
.1

.1

U
se

d

Technique 

Failure Detection by 

on-line monitoring

High

Failure Mode Distribution Full Claim PCc Claim

Maintain Power - Existing Design
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Table 184: FCCS - Connection 6 

 

Table 185: FCCS - Connection 7 

 

Reference 1)C6
SG Failure 

Distribution

99.00% High 99.00% High 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 20% 20% Y ➢ Y PCc_FAN’s’_POWER

Contact resistance 10% 10% 10% Y ➢ Y PCc_FAN’s’_POWER

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 30% 30% Y ➢ Y PCc_FAN’s’_POWER

Short Circuit to Vbat Short Circuit to Vbat 20% 20% 20% Y ➢ Y PCc_FAN’s’_POWER

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y PCc_FAN’s’_POWER

Resistive drift 

between pins / signal 

lines

10% 10% 10% Y ➢ Y PCc_FAN’s’_POWER

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

100%

Maintain Power - Existing Design

Technique 

Failure Detection by 

on-line monitoring

High

Specific  PCC

D
.2

.1
.1

U
se

d

99.00%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim

Reference 1)C7
SG Failure 

Distribution

99.00% High 99.00% High 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 20% 20% Y ➢ Y PCc_FAN’s’_SPEED

Contact resistance 10% 10% 10% Y ➢ Y PCc_FAN’s’_SPEED

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 30% 30% Y ➢ Y PCc_FAN’s’_SPEED

Short Circuit to Vbat Short Circuit to Vbat 20% 20% 20% Y ➢ Y PCc_FAN’s’_SPEED

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y PCc_FAN’s’_SPEED

Resistive drift 

between pins / signal 

lines

10% 10% 10% Y ➢ Y PCc_FAN’s’_SPEED

Technique 

Failure Detection by 

on-line monitoring

High

Failure Mode Distribution Full Claim PCc Claim

Maintain Power - Existing Design
Table 26262-5: 2011

100%

Technique 

Description

Specific  PCC

D
.2

.1
.1

U
se

d

99.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim
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Table 186: FCCS - Connection 9 

 

 

Table 187: FCCS - Connection 12 

 

Reference 1)C9
SG Failure 

Distribution

81.00% Low 81.00% Low 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 18% 18% Y ➢ Y PCc_STACK's'_TEMP

Contact resistance 10% 9% 9% Y ➢ Y PCc_STACK's'_TEMP

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 27% 27% Y ➢ Y PCc_STACK's'_TEMP

Short Circuit to Vbat Short Circuit to Vbat 20% 18% 18% Y ➢ Y PCc_STACK's'_TEMP

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 9% 9% Y ➢ Y PCc_STACK's'_TEMP

Resistive drift 

between pins / signal 

lines

10% 0% 0% Y ➢

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

100%

Maintain Power - Existing Design

Technique 

Failure Detection by 

on-line monitoring

High

Specific  PCC

D
.2

.1
.1

U
se

d

89.10%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim

Reference 1)C12
SG Failure 

Distribution

42.00% Limited 42.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 12% 12% Y ➢ Y PCc_H2_VALVE

Contact resistance 10% 0% 0% Y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 18% 18% Y ➢ Y PCc_H2_VALVE

Short Circuit to Vbat Short Circuit to Vbat 20% 12% 12% Y ➢ Y PCc_H2_VALVE

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% Y ➢

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

100%

Maintain Power - Existing Design

Technique 

Failure Detection by 

on-line monitoring

High

Specific  PCC

D
.2

.1
.1

U
se

d

69.30%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim
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Table 188: FCCS - Connection 13 

 

Table 189: FCCS - Connection 14 

 

Reference 1)C13
SG Failure 

Distribution

33.00% Limited 33.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 30% 18% 18% Y ➢ Y PCc_H2_VALVE

Contact resistance 15% 0% 0% Y ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
0% 0% 0% ➢

Short Circuit to Vbat Short Circuit to Vbat 25% 15% 15% Y ➢ Y PCc_H2_VALVE

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
15% 0% 0% Y ➢

Resistive drift 

between pins / signal 

lines

15% 0% 0% Y ➢

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

100%

Maintain Power - Existing Design

Technique 

Failure Detection by 

on-line monitoring

High

Specific  PCC

D
.2

.1
.1

U
se

d

54.45%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim

Reference 1)C14
SG Failure 

Distribution

48.00% Limited 48.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 12% 12% Y ➢ Y PCc_STACK’s’_PURGE_VALVE

Contact resistance 10% 6% 6% Y ➢ Y PCc_STACK’s’_PURGE_VALVE

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 18% 18% Y ➢ Y PCc_STACK’s’_PURGE_VALVE

Short Circuit to Vbat Short Circuit to Vbat 20% 12% 12% Y ➢ Y PCc_STACK’s’_PURGE_VALVE

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% Y ➢

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

100%

Maintain Power - Existing Design

Technique 

Failure Detection by 

on-line monitoring

High

Specific  PCC

D
.2

.1
.1

U
se

d

79.20%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim
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Table 190: FCCS - Connection 15 

 

Table 191: FCCS - Connection 20 

 

Reference 1)C15
SG Failure 

Distribution

42.00% Limited 42.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 30% 18% 18% Y ➢ Y PCc_STACK’s’_PURGE_VALVE

Contact resistance 15% 9% 9% Y ➢ Y PCc_STACK’s’_PURGE_VALVE

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
0% 0% 0% ➢

Short Circuit to Vbat Short Circuit to Vbat 25% 15% 15% Y ➢ Y PCc_STACK’s’_PURGE_VALVE

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
15% 0% 0% Y ➢

Resistive drift 

between pins / signal 

lines

15% 0% 0% Y ➢

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

100%

Maintain Power - Existing Design

Technique 

Failure Detection by 

on-line monitoring

High

Specific  PCC

D
.2

.1
.1

U
se

d

69.30%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim

Reference 1)C20
SG Failure 

Distribution

48.00% Limited 48.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 12% 12% Y ➢ Y PCc_DILUTION

Contact resistance 10% 6% 6% Y ➢ Y PCc_DILUTION

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 18% 18% Y ➢ Y

Short Circuit to Vbat Short Circuit to Vbat 20% 12% 12% Y ➢ Y PCc_DILUTION

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% Y ➢

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

100%

Maintain Power - Existing Design

Technique 

Failure Detection by 

on-line monitoring

High

Specific  PCC

D
.2

.1
.1

U
se

d

79.20%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim
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Table 192: FCCS - Connection 22 

 

Table 193: FCCS - Connection 24 

 

FCCS - Connection 25 

Similar techniques as Connection 24 so not shown. 

 

 

Reference 1)C22
SG Failure 

Distribution

99.00% High 99.00% High 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 20% 20% Y ➢ Y PCc_DILUTION

Contact resistance 10% 10% 10% Y ➢ Y PCc_DILUTION

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 30% 30% Y ➢ Y PCc_DILUTION

Short Circuit to Vbat Short Circuit to Vbat 20% 20% 20% Y ➢ Y PCc_DILUTION

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y PCc_DILUTION

Resistive drift 

between pins / signal 

lines

10% 10% 10% Y ➢ Y PCc_DILUTION

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

100%

Maintain Power - Existing Design

Technique 

Failure Detection by 

on-line monitoring

High

Specific  PCC

D
.2

.1
.1

U
se

d

99.00%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim

Reference 1)C24
SG Failure 

Distribution

99.00% High 99.00% High 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 20% 20% Y ➢ Y PCc_V_SUM, PCc_HV_WINDOW

Contact resistance 10% 10% 10% Y ➢ Y PCc_V_SUM, PCc_HV_WINDOW

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 30% 30% Y ➢ Y PCc_V_SUM, PCc_HV_WINDOW

Short Circuit to Vbat Short Circuit to Vbat 20% 20% 20% Y ➢ Y PCc_V_SUM, PCc_HV_WINDOW

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y PCc_V_SUM, PCc_HV_WINDOW

Resistive drift 

between pins / signal 

lines

10% 10% 10% Y ➢ Y PCc_V_SUM, PCc_HV_WINDOW

Failure Mode Distribution Full Claim PCc Claim
Technique 

Description

100%

Maintain Power - Existing Design

Technique 

Failure Detection by 

on-line monitoring

High

Specific  PCC

D
.2

.1
.1

U
se

d

99.00%

Harness 

including splice 

and connectors

D.3

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim
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Table 194: FCCS - Connection 26 

 

Table 195: FCCS - Connection 30 

 

Reference 1)C26
SG Failure 

Distribution

99.00% High 99.00% High 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 20% 20% Y ➢ Y PCc_HVPOS

Contact resistance 10% 10% 10% Y ➢ Y PCc_HVPOS

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 30% 30% Y ➢ Y PCc_HVPOS

Short Circuit to Vbat Short Circuit to Vbat 20% 20% 20% Y ➢ Y PCc_HVPOS

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y PCc_HVPOS

Resistive drift 

between pins / signal 

lines

10% 10% 10% Y ➢ Y PCc_HVPOS

Technique 

Failure Detection by 

on-line monitoring

High

Failure Mode Distribution Full Claim PCc Claim

Maintain Power - Existing Design
Table 26262-5: 2011

100%

Technique 

Description

Specific  PCC

D
.2

.1
.1

U
se

d

99.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Reference 1)C30
SG Failure 

Distribution

48.00% Limited 48.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open Circuit Open Circuit Open Circuit 20% 12% 12% Y ➢ Y PCc_DILUTION

Contact resistance 10% 6% 6% Y ➢ Y PCc_DILUTION

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
30% 18% 18% Y ➢ Y

Short Circuit to Vbat Short Circuit to Vbat 20% 12% 12% Y ➢ Y PCc_DILUTION

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢

Resistive drift 

between pins / signal 

lines

10% 0% 0% Y ➢

Technique 

Failure Detection by 

on-line monitoring

High

PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

79.20%

Maintain Power - Existing Design

Technique 

Description

Specific  PCC

D
.2

.1
.1

U
se

d

Failure Mode 

Leads to 

Violation of 

Safety Goal

99%

Harness 

including splice 

and connectors

D.3

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim
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Table 196: FCCS - Data 1 (subset 1) 

 

Table 197: FCCS - Data 1 (subset 2) 

 

FCCS - Data 3 to FCCS - Data 38  

Similar techniques as Data 1 so not shown. 

Reference 1)D1
SG Failure 

Distribution

93.60% Medium 90.79% Medium 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 0% 0% ➢ ➢ ➢ ➢ ➢

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 0% 0% ➢ ➢ ➢ ➢ ➢

Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
25% 25% 24% Y

PCc_DATA_CHECK,

PCc_POLL_RESPONSE

Message corruption Message corruption Message corruption 15% 15% 14% Y
PCc_DATA_CHECK,

PCc_POLL_RESPONSE

Message Delay Message Delay Message Delay 20% 18% 17% Y PCc_POLL_RESPONSE

Message Loss Message Loss Message Loss 15% 14% 13% Y PCc_POLL_RESPONSE

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
10% 9% 9% Y PCc_POLL_RESPONSE

Resequencing Resequencing 5% 5% 4% Y PCc_POLL_RESPONSE

Insertion of message Insertion of message 5% 5% 4% Y PCc_POLL_RESPONSE

Masquerading 5% 5% 4% Y PCc_POLL_RESPONSE

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Power - Existing Design

Technique Description

High High High Low High Medium

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Sensor 

rationality 

Check

PCc Claim

99% 99% 99% 60% 99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

90%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

0.00% 0.00%

Data 

Transmission
D.8

0.00% 0.00% 0.00% 0.00%

Sensors including 

Signal Switches
D.11

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.1
0

.3

U
se

d

Reference 1)D1
SG Failure 

Distribution

93.60% Medium 90.79% Medium 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 0% 0%

Offsets Offsets 0% 0%

Stuck in range Stuck in range Stuck in range 0% 0%

Oscillation 0% 0%

Failure of 

communication peer

Failure of 

communication peer

Failure of 

communication peer
25% 25% 24% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y

PCc_DATA_CHECK,

PCc_POLL_RESPONSE

Message corruption Message corruption Message corruption 15% 15% 14% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ y
PCc_DATA_CHECK,

PCc_POLL_RESPONSE

Message Delay Message Delay Message Delay 20% 18% 17% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ Y ➢ PCc_POLL_RESPONSE

Message Loss Message Loss Message Loss 15% 14% 13% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ Y ➢ PCc_POLL_RESPONSE

Unintended message 

repetition

Unintended message 

repetition

Unintended message 

repetition
10% 9% 9% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ Y ➢ PCc_POLL_RESPONSE

Resequencing Resequencing 5% 5% 4% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ Y ➢ PCc_POLL_RESPONSE

Insertion of message Insertion of message 5% 5% 4% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ Y ➢ PCc_POLL_RESPONSE

Masquerading 5% 5% 4% Y ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ ➢ Y ➢ PCc_POLL_RESPONSE

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Information 

redundancy

Frame 

counter

Timeout 

monitoring

High Medium

Maintain Power - Existing Design

Technique Description

Combination 

of 

information 

Redundancy,f

rame count 

and timeout

Med

ium

One-bit 

hardware 

redundancy

Multi-bit 

hardware 

redundancy

Read back of 

sent message

Complete 

hardware 

redundancy

Inspection 

using test 

patterns

Transmission 

redundancy

Sensor 

ration

ality 

Check

Medium Medium Medium HighHigh

0.00% 0.00% 0.00% 0.00% 39.60%

PCc Claim

Low Medium Medium

60% 90% 90% 99% 99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

90% 99%90% 90% 90% 90%
U

se
d

D
.2

.7
.7

U
se

d

D
.2

.7
.8

U
se

d

D
.2

.7
.6

,7
,8

U
se

d

U
se

d

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

54.00%#### 0.00% 0.00% 0.00% 0.00%

Data 

Transmission
D.8

Sensors including 

Signal Switches
D.11

D
.2

.7
.5

U
se

d

D
.2

.7
.6

Specific  PCC

Technique from ISO26262

U
se

d

D
.2

.7
.1

U
se

d

D
.2

.7
.2

U
se

d

D
.2

.7
.9

U
se

d

D
.2

.7
.3

U
se

d

D
.2

.7
.4
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Table 198: FCCS - Measurement 1 

 

Table 199: FCCS - Measurement 2 

 

FCCS – Measurement 3 

Similar techniques as measurement 2 so not shown. 

 

Reference 1)M1
SG Failure 

Distribution

35.29% Limited 34.94% Limited 85.00%

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
15% 0% 0% ➢

Open circuit Open circuit Open circuit 10% 6% 6% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢  PCc_OA_WINDOW

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 9% 9% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢  PCc_OA_WINDOW

Short Circuit to Vbat Short Circuit to Vbat 10% 6% 6% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢  PCc_OA_WINDOW

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 15% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 15% 9% 9% Y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation Drift & Oscillation 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Table 26262-5: 2011
Failure 

Detection by on-

line monitoring

High

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design

Technique Description

High HighLow High

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Monitored 

outputs

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Medium High

99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

99%

Element

60% 99% 99%90% 99%

Analogue and 

digital Inputs
D.7

0.00% 0.00% 49.50%0.00% 30.00% 0.00% 0.00%

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

Reference 1)M2
SG Failure 

Distribution

99.00% High 98.01% Medium 100.00%

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
0% 0% 0% ➢

Open circuit Open circuit Open circuit 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_V_SUM, PCc_HV_WINDOW

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_V_SUM, PCc_HV_WINDOW

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_V_SUM, PCc_HV_WINDOW

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_V_SUM, PCc_HV_WINDOW

Offsets Offsets 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_V_SUM, PCc_HV_WINDOW

Stuck in range Stuck in range Stuck in range 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_V_SUM, PCc_HV_WINDOW

Drift & Oscillation Drift & Oscillation 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ y ➢

Table 26262-5: 2011
Failure 

Detection by on-

line monitoring

High

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design

Technique Description

High HighLow High

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Monitored 

outputs

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Medium High

99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

99%

Element

60% 99% 99%90% 99%

Analogue and 

digital Inputs
D.7

0.00% 0.00% 99.00%0.00% 60.00% 0.00% 0.00%

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d
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Table 200: FCCS - Measurement 4 

 

Table 201: FCCS - Measurement 7 

 

Reference 1)M4
SG Failure 

Distribution

99.00% High 98.01% Medium 100.00%

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
0% 0% 0% ➢

Open circuit Open circuit Open circuit 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVPOS

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVPOS

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVPOS

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVPOS

Offsets Offsets 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVPOS

Stuck in range Stuck in range Stuck in range 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVPOS

Drift & Oscillation Drift & Oscillation 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ y ➢ PCc_HVPOS

Table 26262-5: 2011
Failure 

Detection by on-

line monitoring

High

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design

Technique Description

High HighLow High

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Monitored 

outputs

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Medium High

99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

99%

Element

60% 99% 99%90% 99%

Analogue and 

digital Inputs
D.7

0.00% 0.00% 99.00%0.00% 60.00% 0.00% 0.00%

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

Reference 1)M7
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
0% 0% 0% ➢

Open circuit Open circuit Open circuit 15% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
20% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 15% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 20% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation Drift & Oscillation 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

High

Failure Mode Distribution Full Claim

Low

60% 99%

PCc Claim

100%

Failure 

Detection by 

on-line 

monitoring

Test Pattern

Technique Description

Table 26262-5: 2011

Failure Mode 

Distribution
Full Claim PCc Claim

Failure 

Detection by on-

line monitoring

High

99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Failure Mode 

Leads to 

Violation of 

Safety Goal

Maintain Power - Existing Design

Analogue and 

digital Inputs
D.7

0.00% 0.00% 0.00%0.00% 0.00% 44.55%

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Medium High High High

Monitored 

outputs

99%

Multi-channel 

parallel 

output

0.00%

90% 99% 99%

Code 

protection

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d



 

 Page 448 of 458 A.R. Williams 
 

Table 202: FCCS - Measurement 18 

 

FCCS – Measurement 19 

Similar techniques as measurement 18 so not shown. 

 

Table 203: FCCS - Output 1 

 

Reference 1)M18
SG Failure 

Distribution

99.00% High 98.01% Medium 100.00%

Low Medium High

60% 90% 99%

Harness 

including splice 

and connectors

D.3
Resistive drift 

between pins / signal 

lines
0% 0% 0% ➢

Open circuit Open circuit Open circuit 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_A_SUM

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_A_SUM

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_A_SUM

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_A_SUM

Offsets Offsets 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_A_SUM

Stuck in range Stuck in range Stuck in range 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_A_SUM

Drift & Oscillation Drift & Oscillation 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ y ➢ PCc_A_SUM

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

High High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Medium High

Failure 

Detection by on-

line monitoring

High High

Maintain Power - Existing Design

Failure Mode 

Distribution
Full Claim PCc Claim

Low

Failure Mode 

Leads to 

Violation of 

Safety Goal

99% 60%

U
se

d

99% 99%99%99% 90%

0.00% 60.00% 0.00% 0.00% 0.00% 99.00% 0.00%

Element See Table

Analogue and 

digital Inputs
D.7

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

Reference 1)O1
SG Failure 

Distribution

99.00% High 98.18% Medium 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVNEG

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVNEG

Short Circuit to Vbat Short Circuit to Vbat 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVNEG

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVNEG

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ Y PCc_PSU

Power Spikes 5% 5% 5% y ➢ ➢ Y PCc_PSU

Voltage or 

current 

control 

(output)

99%

Voltage or 

current 

control 

(input)

High

60%

34.65%0.00%

99%

0.00%64.35%0.00%

99% 60%99%
D

.2
.8

.2

U
se

d

Power supply D.9

Element See Table

Low

99% 90%

High

Table 26262-5: 2011

Analogue and 

digital Outputs - 

stuck at

D.7

High HighLow High Medium

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Failure 

Detection by 

on-line 

monitoring

Monitored 

outputs

U
se

d

Failure Mode Distribution Full Claim PCc Claim

0.00% 0.00%39.00%

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

100%

Failure Mode 

Leads to 

Violation of 

Safety Goal

Failure Mode 

Distribution
Full Claim PCc Claim

Maintain Power - Existing Design

Technique Description

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1
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Table 204: FCCS - Output 2 

 

Table 205: FCCS - Output 6 

 

Reference 1)O2
SG Failure 

Distribution

99.00% High 98.18% Medium 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVPOS

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVPOS

Short Circuit to Vbat Short Circuit to Vbat 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVPOS

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_HVPOS

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ Y PCc_PSU

Power Spikes 5% 5% 5% y ➢ ➢ Y PCc_PSU

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

99% 60% 99%99%

D
.2

.8
.2

U
se

d

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 90% 99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High Medium High High High Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Power - Existing Design

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d

Reference 1)O6
SG Failure 

Distribution

99.00% High 98.18% Medium 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_FAN’s’_POWER

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_FAN’s’_POWER

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_FAN’s’_POWER

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_FAN’s’_POWER

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_FAN’s’_POWER

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 20% 20% Y ➢ ➢ Y PCc_PSU

Power Spikes 5% 5% 5% Y ➢ ➢ Y PCc_PSU

Failure Mode Distribution Full Claim PCc Claim

0.00% 0.00%39.00%

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

100%

Failure Mode 

Leads to 

Violation of 

Safety Goal

Failure Mode 

Distribution
Full Claim PCc Claim

Maintain Cells in Operating Area Architecture Candidate 1

Technique Description

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Failure 

Detection by 

on-line 

monitoring

Monitored 

outputs

Power supply D.9

Element See Table

Low

99% 90%

High

Table 26262-5: 2011

Analogue and 

digital Outputs - 

stuck at

D.7

High HighLow High Medium

60%

34.65%0.00%

99%

0.00%64.35%0.00%

99% 60%99%

D
.2

.8
.2

U
se

d

U
se

d

Voltage or 

current 

control 

(output)

99%

Voltage or 

current 

control 

(input)

High

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1
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Table 206: FCCS - Output 7 

 

Table 207: FCCS - Output 10 

 

Reference 1)O7
SG Failure 

Distribution

99.00% High 98.18% Medium 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_FAN’s’_SPEED

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_FAN’s’_SPEED

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_FAN’s’_SPEED

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_FAN’s’_SPEED

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_FAN’s’_SPEED

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 20% 20% Y ➢ ➢ Y PCc_PSU

Power Spikes 5% 5% 5% Y ➢ ➢ Y PCc_PSU

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Cells in Operating Area Architecture Candidate 1

Technique Description

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High Medium High High High Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99% 60% 99%99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 90% 99%

0.00% 34.65%

D
.2

.8
.2

U
se

d

0.00% 0.00% 0.00% 64.35% 0.00%39.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d

Reference 1)O10
SG Failure 

Distribution

99.00% High 98.18% Medium 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_H2_VALVE

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_H2_VALVE

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_H2_VALVE

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_H2_VALVE

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 20% 20% Y ➢ ➢ Y PCc_PSU

Power Spikes 5% 5% 5% Y ➢ ➢ Y PCc_PSU

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Power - Existing Design

Technique Description

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High Medium High High High Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99% 60% 99%99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 90% 99%

0.00% 34.65%

D
.2

.8
.2

U
se

d

0.00% 0.00% 0.00% 64.35% 0.00%39.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d
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Table 208: FCCS - Output 11 

 

 

Table 209: FCCS - Output 12 

 

Reference 1)O11
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% Y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 0% 0% Y ➢ ➢ Y PCc_PSU

Power Spikes 5% 0% 0% Y ➢ ➢ Y PCc_PSU

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Power - Existing Design

Technique Description

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High Medium High High High Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99% 60% 99%99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 90% 99%

0.00% 34.65%

D
.2

.8
.2

U
se

d

0.00% 0.00% 0.00% 0.00% 0.00%0.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d

Reference 1)O12
SG Failure 

Distribution

99.00% High 98.18% Medium 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_STACK’s’_PURGE_VALVE

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_STACK’s’_PURGE_VALVE

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_STACK’s’_PURGE_VALVE

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_STACK’s’_PURGE_VALVE

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_STACK’s’_PURGE_VALVE

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 20% 20% Y ➢ ➢ Y PCc_PSU

Power Spikes 5% 5% 5% Y ➢ ➢ Y PCc_PSU

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Power - Existing Design

Technique Description

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High Medium High High High Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99% 60% 99%99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 90% 99%

0.00% 34.65%

D
.2

.8
.2

U
se

d

0.00% 0.00% 0.00% 64.35% 0.00%39.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d



 

 Page 452 of 458 A.R. Williams 
 

Table 210: FCCS - Output 13 

 

Table 211: FCCS - Output 16 

 

Reference 1)O13
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% Y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 0% 0% Y ➢ ➢ Y PCc_PSU

Power Spikes 5% 0% 0% Y ➢ ➢ Y PCc_PSU

Failure Mode Distribution Full Claim PCc Claim

0.00% 0.00%0.00%

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

100%

Failure Mode 

Leads to 

Violation of 

Safety Goal

Failure Mode 

Distribution
Full Claim PCc Claim

Maintain Power - Existing Design

Technique Description

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Failure 

Detection by 

on-line 

monitoring

Monitored 

outputs

Power supply D.9

Element See Table

Low

99% 90%

High

Table 26262-5: 2011

Analogue and 

digital Outputs - 

stuck at

D.7

High HighLow High Medium

60%

34.65%0.00%

99%

0.00%0.00%0.00%

99% 60%99%

D
.2

.8
.2

U
se

d

U
se

d

Voltage or 

current 

control 

(output)

99%

Voltage or 

current 

control 

(input)

High

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

Reference 1)O16
SG Failure 

Distribution

99.00% High 98.18% Medium 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_DILUTION

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_DILUTION

Short Circuit to Vbat Short Circuit to Vbat 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_DILUTION

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_DILUTION

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_DILUTION

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 20% 20% Y ➢ ➢ Y PCc_PSU

Power Spikes 5% 5% 5% Y ➢ ➢ Y PCc_PSU

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Power - Existing Design

Technique Description

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High Medium High High High Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99% 60% 99%99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 90% 99%

0.00% 34.65%

D
.2

.8
.2

U
se

d

0.00% 0.00% 0.00% 64.35% 0.00%39.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d
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Table 212: FCCS - Output 17 

 

Table 213: FCCS - Output 19 

 

Reference 1)O17
SG Failure 

Distribution

99.00% High 98.18% Medium 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_PRECHG

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
20% 20% 20% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_PRECHG

Short Circuit to Vbat Short Circuit to Vbat 15% 15% 15% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_PRECHG

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 10% 10% Y ➢ Y ➢ ➢ ➢ ➢ Y ➢ PCc_PRECHG

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ Y PCc_PSU

Power Spikes 5% 5% 5% y ➢ ➢ Y PCc_PSU

0.00% 34.65%39.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

0.00% 0.00% 0.00% 64.35% 0.00%

99% 60% 99%99%

D
.2

.8
.2

U
se

d

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 90% 99%

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High Medium High High High Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Power - Existing Design

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d

Reference 1)O19
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Open circuit Open circuit Open circuit 20% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to ground
Short Circuit to ground 

(dc Coupled)

Short Circuit to ground 

(dc Coupled)
15% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short Circuit to Vbat Short Circuit to Vbat 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Short circuit between 

neighbouring pins

Short circuit between 

neighbouring pins
10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Offsets Offsets 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 10% 0% 0% Y ➢ ➢ ➢ ➢ ➢ ➢

Drift & Oscillation 0% 0% ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% Y ➢ ➢ Y PCc_PSU

Drift Drift & Oscillation 20% 0% 0% Y ➢ ➢ Y PCc_PSU

Power Spikes 5% 0% 0% Y ➢ ➢ Y PCc_PSU

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Failure Mode Distribution Full Claim PCc Claim

Table 26262-5: 2011

100%

Maintain Power - Existing Design

Technique Description

PCc Claim

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Low High Medium High High High Low High

Failure 

Detection by 

on-line 

monitoring

Test Pattern
Code 

protection

Multi-channel 

parallel 

output

Monitored 

outputs

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99% 60% 99%99%

Failure Mode 

Leads to 

Violation of 

Safety Goal

60% 99% 90% 99%

0.00% 34.65%

D
.2

.8
.2

U
se

d

0.00% 0.00% 0.00% 0.00% 0.00%0.00%

Analogue and 

digital Outputs - 

stuck at

D.7

Power supply D.9

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.2

U
se

d

D
.2

.6
.3

U
se

d

D
.2

.6
.4

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.8
.1

U
se

d
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Table 214: FCCS - Parameter 7 (subset 1) 

 

Table 215: FCCS - Parameter 7 (subset 2) 

 

Reference 1)P7
SG Failure 

Distribution

98.55% Medium 97.49% Medium 100.00%

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
15% 15% 15% Y ➢ ➢ y PCc_PSU

Drift Drift & Oscillation 15% 15% 15% Y ➢ ➢ y PCc_PSU

Power Spikes 10% 10% 10% Y ➢ ➢ y PCc_PSU

stuck at stuck at stuck at 0% 0% ➢ ➢ ➢ ➢ ➢

dc fault model dc fault model 0% 0% ➢ ➢ ➢ ➢ ➢

Incorrect frequency 0% 0% ➢ ➢ ➢ ➢ ➢

Period jitter 0% 0% ➢ ➢ ➢ ➢ ➢

stuck at stuck at stuck at 0% 0%

dc fault model dc fault model 0% 0%

stuck at stuck at stuck at 10% 10% 10% Y PCc_RAM_TEST

dc fault model dc fault model 10% 10% 10% Y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% Y PCc_RAM_TEST

Stuck at Stuck at Stuck at 10% 10% 10% Y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 10% 10% 10% Y PCc_MICRO_TEST

dc fault model 10% 10% 10% Y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% Y PCc_MICRO_TEST

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.9
.1

U
se

d

D
.2

.9
.2

U
se

d

D
.2

.9
.3

U
se

d

D
.2

.9
.4

U
se

d

D
.2

.9
.5

U
se

d

Non-volatile 

Memory
D.5

Volatile Memory D.6

Power supply D.9

Processing Units 

:

ALU - Data Path

D.4

60% 99% 60% 90% 90% 99% 99%

Medium

Clock D.10

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Maintain Power - Existing Design

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences with 

time 

dependency

Voltage or 

current control 

(input)

Voltage or 

current control 

(output)

Watchdog with 

separate time 

base without 

time-window

Watchdog with 

separate time 

base and time-

window

Logical 

monitoring of 

program 

sequence

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences

0.00% 39.60% 0.00% 0.00% 0.00% 0.00% 0.00%

Low High Low HighMedium High

Failure Mode 

Leads to 

Violation of 

Safety Goal

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Failure Mode 

Distribution
Full Claim PCc Claim

Reference 1)P7
SG Failure 

Distribution

98.55% Medium 97.49% Medium 100.00%

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
15% 15% 15% Y PCc_PSU

Drift Drift & Oscillation 15% 15% 15% Y PCc_PSU

Power Spikes 10% 10% 10% Y PCc_PSU

stuck at stuck at stuck at 0% 0%

dc fault model dc fault model 0% 0%

Incorrect frequency 0% 0%

Period jitter 0% 0%

stuck at stuck at stuck at 0% 0% ➢ ➢ ➢ ➢ ➢

dc fault model dc fault model 0% 0% ➢ ➢ ➢ ➢ ➢

stuck at stuck at stuck at 10% 10% 10% Y ➢ y ➢ ➢ ➢ ➢ ➢ y PCc_RAM_TEST

dc fault model dc fault model 10% 10% 10% Y ➢ y ➢ ➢ ➢ ➢ ➢ y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% Y ➢ y ➢ ➢ ➢ ➢ ➢ y PCc_RAM_TEST

Stuck at Stuck at Stuck at 10% 10% 10% Y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 10% 10% 10% Y PCc_MICRO_TEST

dc fault model 10% 10% 10% Y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% Y PCc_MICRO_TEST

Technique Description Technique Description
D

.2
.4

.4

U
se

d

D
.2

.5
.1

U
se

d

D
.2

.5
.3

Specific  PCC

Technique from ISO26262 Technique from ISO26262

D
.2

.5
.2

U
se

d

D
.2

.4
.1

U
se

d

D
.2

.4
.2

D
.2

.4
.3

U
se

d

Non-volatile 

Memory
D.5

Volatile Memory D.6

Power supply D.9

U
se

d

D
.2

.5
.2

U
se

d

D
.2

.4
.1

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.4

U
se

d

U
se

d

Processing Units 

:

ALU - Data Path

D.4

High High Medium High Low

99%60%

Clock D.10

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Modified 

checksumMaintain Power - Existing Design
Parity bit

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

0.00%

Low

99% 60%

Running 

checksum/CRC

90% 99% 60% 99%

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

RAM Pattern 

test
RAM March test Parity bit

High

Memory 

signature

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

High Low

99%
Failure Mode 

Leads to 

Violation of 

Safety Goal

24.75%

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

0.00% 0.00% 0.00% 0.00% 22.50% 0.00% 0.00% 0.00% 0.00%

99%99%

High High

Failure Mode 

Distribution
Full Claim PCc Claim
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Table 216: FCCS - Parameter 7 (subset 3) 

 

 

Table 217: FCCS - Parameter 57 (subset 1) 

 

Reference 1)P7
SG Failure 

Distribution

98.55% Medium 97.49% Medium 100.00%

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
15% 15% 15% Y PCc_PSU

Drift Drift & Oscillation 15% 15% 15% Y PCc_PSU

Power Spikes 10% 10% 10% Y PCc_PSU

stuck at stuck at stuck at 0% 0%

dc fault model dc fault model 0% 0%

Incorrect frequency 0% 0%

Period jitter 0% 0%

stuck at stuck at stuck at 0% 0%

dc fault model dc fault model 0% 0%

stuck at stuck at stuck at 10% 10% 10% Y PCc_RAM_TEST

dc fault model dc fault model 10% 10% 10% Y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% Y PCc_RAM_TEST

Stuck at Stuck at Stuck at 10% 10% 10% Y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 10% 10% 10% Y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_MICRO_TEST

dc fault model 10% 10% 10% Y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% Y ➢ y ➢ PCc_MICRO_TEST

Technique Description

Configuration 

register test

Stack 

over/under 

flow 

detection

Integrated 

hardware 

consistency 

monitoring

Self-test by 

software

Self-test 

supported by 

hardware 

(one-channel)

Medium Medium Medium High

D
.2

.3
.1

U
se

d

D
.2

.3
.2

U
se

d

U
se

d

D
.2

.3
.6

U
se

d

D
.2

.3
.7

Specific  PCC

Technique from ISO26262

99% 60% 99% 90% 99%

27% 0% 0% 0% 0% 0% 30% 0% 0%

U
se

d

D
.2

.3
.8

U
se

d

D
.2

.3
.9

U
se

d

D
.2

.3
.1

U
se

d

D
.2

.3
.3

U
se

d

D
.2

.3
.2

Non-volatile 

Memory
D.5

Volatile Memory D.6

Power supply D.9

5% 0%

U
se

d

D
.2

.3
.4

U
se

d

D
.2

.3
.5

High Low High Medium High

Processing Units 

:

ALU - Data Path

D.4

Clock D.10

Reciprocal 

comparison 

by software in 

separate 

processing 

units

HW 

redundancy 

(e.g. Dual 

Core 

Lockstep, 

asymmetric 

redundancy, 

coded 

processing)

90% 90% 90% 99% 99% 99%

High High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage

Maintain Power - Existing Design
Self-test by 

software

Self-test by 

software cross 

exchanged 

between two 

independent 

units

Self-test 

supported by 

hardware 

(one-channel)

Software 

diversified 

redundancy 

(one 

hardware 

channel)

Failure Mode 

Leads to 

Violation of 

Safety Goal

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Failure Mode 

Distribution
Full Claim PCc Claim

Reference 1)P57
SG Failure 

Distribution

98.55% Medium 97.54% Medium 100.00%

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y ➢ ➢ y PCc_PSU

Drift Drift & Oscillation 10% 10% 10% Y ➢ ➢ y PCc_PSU

Power Spikes 10% 10% 10% Y ➢ ➢ y PCc_PSU

stuck at stuck at stuck at 0% 0% ➢ ➢ ➢ ➢ ➢

dc fault model dc fault model 0% 0% ➢ ➢ ➢ ➢ ➢

Incorrect frequency 0% 0% ➢ ➢ ➢ ➢ ➢

Period jitter 0% 0% ➢ ➢ ➢ ➢ ➢

stuck at stuck at stuck at 10% 10% 10% Y PCc_NV_TEST

dc fault model dc fault model 10% 10% 10% Y PCc_NV_TEST

stuck at stuck at stuck at 10% 10% 10% Y PCc_RAM_TEST

dc fault model dc fault model 10% 10% 10% Y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% Y PCc_RAM_TEST

Stuck at Stuck at Stuck at 10% 10% 10% Y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% Y PCc_MICRO_TEST

dc fault model 5% 5% 5% Y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% Y PCc_MICRO_TEST

Specific  PCC

Technique from ISO26262

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

D
.2

.9
.1

U
se

d

D
.2

.9
.2

U
se

d

D
.2

.9
.3

U
se

d

D
.2

.9
.4

U
se

d

D
.2

.9
.5

U
se

d

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Failure Mode 

Leads to 

Violation of 

Safety Goal

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences with 

time 

dependency

Voltage or 

current control 

(input)

Voltage or 

current control 

(output)

Watchdog with 

separate time 

base without 

time-window

Watchdog with 

separate time 

base and time-

window

Logical 

monitoring of 

program 

sequence

Combination of 

temporal and 

logical 

monitoring of 

program 

sequences

Maintain Power - Existing Design

Technique Description

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Low High Low

Power supply D.9

60% 99% 60% 90% 90% 99% 99%

Medium

D.4

Medium High High

Processing Units 

:

ALU - Data Path

0.00% 29.70% 0.00% 0.00% 0.00% 0.00% 0.00%

Clock D.10

Non-volatile 

Memory
D.5

Volatile Memory D.6
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Table 218: FCCS - Parameter 57 (subset 2) 

 

Table 219: FCCS - Parameter 57 (subset 3) 

 

Table 220: FCCS - PSU 

 

Reference 1)P57
SG Failure 

Distribution

98.55% Medium 97.54% Medium 100.00%

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y PCc_PSU

Drift Drift & Oscillation 10% 10% 10% Y PCc_PSU

Power Spikes 10% 10% 10% Y PCc_PSU

stuck at stuck at stuck at 0% 0%

dc fault model dc fault model 0% 0%

Incorrect frequency 0% 0%

Period jitter 0% 0%

stuck at stuck at stuck at 10% 10% 10% Y ➢ ➢ Y ➢ ➢ Y ➢ PCc_NV_TEST

dc fault model dc fault model 10% 10% 10% Y ➢ ➢ Y ➢ ➢ Y ➢ PCc_NV_TEST

stuck at stuck at stuck at 10% 10% 10% Y ➢ y ➢ ➢ ➢ ➢ ➢ y PCc_RAM_TEST

dc fault model dc fault model 10% 10% 10% Y ➢ y ➢ ➢ ➢ ➢ ➢ y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% Y ➢ y ➢ ➢ ➢ ➢ ➢ y PCc_RAM_TEST

Stuck at Stuck at Stuck at 10% 10% 10% Y PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% Y PCc_MICRO_TEST

dc fault model 5% 5% 5% Y PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% Y PCc_MICRO_TEST

Specific  PCC

Technique from ISO26262 Technique from ISO26262

D
.2

.5
.2

U
se

d

D
.2

.4
.1

U
se

d

Running 

checksum/CRC

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Failure Mode 

Leads to 

Violation of 

Safety Goal

Parity bit

Memory 

monitoring 

using error-

detection-

correction codes 

(EDC)

Modified 

checksum

Memory 

signatureMaintain Power - Existing Design

Technique Description Technique Description

Block replication 

(for example 

double memory 

with hardware 

or software 

comparison)

RAM Pattern 

test
RAM March test Parity bit

60% 99%

D
.2

.4
.2

U
se

d

D
.2

.4
.3

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.1

U
se

d

D
.2

.5
.3

U
se

d

D
.2

.5
.2

U
se

d

99%

High

99%99%

High High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

99%

D
.2

.4
.1

U
se

d

D
.2

.4
.4

U
se

d

D
.2

.5
.4

U
se

d

Power supply D.9

High High Medium High Low

99%60%

D.4

Low High Low

90% 99% 60%

Processing Units 

:

ALU - Data Path

24.75%0.00% 19.80% 0.00% 19.80% 0.00% 22.50% 0.00% 0.00% 0.00%

Clock D.10

Non-volatile 

Memory
D.5

Volatile Memory D.6

0.00%

Reference 1)P57
SG Failure 

Distribution

98.55% Medium 97.54% Medium 100.00%

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% Y PCc_PSU

Drift Drift & Oscillation 10% 10% 10% Y PCc_PSU

Power Spikes 10% 10% 10% Y PCc_PSU

stuck at stuck at stuck at 0% 0%

dc fault model dc fault model 0% 0%

Incorrect frequency 0% 0%

Period jitter 0% 0%

stuck at stuck at stuck at 10% 10% 10% Y PCc_NV_TEST

dc fault model dc fault model 10% 10% 10% Y PCc_NV_TEST

stuck at stuck at stuck at 10% 10% 10% Y PCc_RAM_TEST

dc fault model dc fault model 10% 10% 10% Y PCc_RAM_TEST

soft error model soft error model 5% 5% 5% Y PCc_RAM_TEST

Stuck at Stuck at Stuck at 10% 10% 10% Y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_MICRO_TEST

Stuck at at gate level Stuck at at gate level 5% 5% 5% Y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_MICRO_TEST

dc fault model 5% 5% 5% Y ➢ y ➢ ➢ ➢ ➢ ➢ ➢ y ➢ ➢ PCc_MICRO_TEST

Processing Units 

:

ALU - Data Path

D.13
Soft error model for 

sequential parts
5% 5% 4% Y ➢ y ➢ PCc_MICRO_TEST

U
se

d

D
.2

.3
.3

Specific  PCC

Technique from ISO26262

U
se

d

D
.2

.3
.1

U
se

d

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Failure Mode 

Leads to 

Violation of 

Safety Goal

Maintain Power - Existing Design

Technique Description

D
.2

.3
.2Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Power supply D.9

Self-test by 

software

Self-test 

supported by 

hardware 

(one-channel)

Medium High

D.4

90% 90% 99% 99% 99%

Configuration 

register test

Stack 

over/under 

flow 

detection

Integrated 

hardware 

consistency 

monitoring

Medium Medium Medium High High High High Low High

Self-test by 

software

Self-test by 

software cross 

exchanged 

between two 

independent 

units

Self-test 

supported by 

hardware 

(one-channel)

Software 

diversified 

redundancy 

(one 

hardware 

channel)

Reciprocal 

comparison 

by software in 

separate 

processing 

units

HW 

redundancy 

(e.g. Dual 

Core 

Lockstep, 

asymmetric 

redundancy, 

coded 

processing)

0% 0%

99% 60% 99% 90% 99%90%

U
se

d

D
.2

.3
.2

U
se

d

D
.2

.3
.4

U
se

d

U
se

d

D
.2

.3
.5

U
se

d

D
.2

.3
.6

U
se

d

D
.2

.3
.7

U
se

d

D
.2

.3
.8

U
se

d

D
.2

.3
.9

D
.2

.3
.1

0% 20% 0% 0% 5% 0%

Processing Units 

:

ALU - Data Path

Clock D.10

Non-volatile 

Memory
D.5

Volatile Memory D.6

18% 0% 0%

Reference 1)PSU

Low Medium High

60% 90% 99%
Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
50% 50% 49% ➢ ➢ y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% ➢ ➢ y PCc_PSU_Mon

Power Spikes 30% 30% 30% ➢ ➢ y PCc_PSU_Mon

Power supply D.9

Technique Description

Specific  PCC

1

D
.2

.8
.1

U
se

d

D
.2

.8
.2

U
se

d

0.00% 99.00%

60% 99%

Voltage or current 

control (input)

Voltage or current 

control (output)

Low High

Element See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim PCc Claim

Failure Mode Distribution Full Claim PCc Claim

Table D.9

26262-5: 2011

100% 99% 99%

Maintain Power - Existing Design
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Table 221: FCCS - Transducer 2 

 

Table 222: FCCS - Transducer 5 

 

Table 223: FCCS - Transducer 7 

 

Reference 1)T2
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 0% 0% y ➢ ➢ ➢ ➢ Y ➢ PCc_STACK's'_TEMP

Offsets Offsets 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Stuck in range Stuck in range Stuck in range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Oscillation 5% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% y ➢ ➢ y PCc_PSU_MON

Drift Drift & Oscillation 20% 0% 0% y ➢ ➢ y PCc_PSU_MON

Power Spikes 5% 0% 0% y ➢ ➢ y PCc_PSU_MON

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0

.1

U
se

d

D
.2

.1
0

.2

U
se

d

D
.2

.8
.1

HighHigh

D
.2

.8
.2

U
se

d

Low

U
se

d

34.65%0.00% 0.00% 12.00% 0.00% 0.00% 0.00%

99%60%90%99%99%

D
.2

.1
0

.3

U
se

d

Power supply D.9

Sensors including 

Signal Switches
D.11

0.00%

Failure Mode 

Leads to 

Violation of 

Safety Goal

PCc ClaimElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99% 99% 60%

High

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Medium

Sensor 

rationality 

Check

Low

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Failure 

Detection by 

on-line 

monitoring

Test Pattern

High High

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design

Reference 1)T5
SG Failure 

Distribution

0.00% Limited 0.00% Limited 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 0% 0% y ➢ ➢ ➢ ➢ Y ➢ PCc_DILUTION

Offsets Offsets 10% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢ PCc_DILUTION

Stuck in range Stuck in range Stuck in range 30% 0% 0% y ➢ ➢ ➢ ➢ ➢ ➢

Oscillation 5% 0% 0% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_DILUTION

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 0% 0% y ➢ ➢ y PCc_PSU_MON

Drift Drift & Oscillation 20% 0% 0% y ➢ ➢ y PCc_PSU_MON

Power Spikes 5% 0% 0% y ➢ ➢ y PCc_PSU_MON

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
.2

.1
0
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U
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d

D
.2

.1
0

.2

U
se

d

D
.2

.8
.1

HighHigh

D
.2

.8
.2

U
se

d

Low

U
se

d

34.65%0.00% 0.00% 12.00% 0.00% 0.00% 0.00%

99%60%90%99%99%

D
.2

.1
0

.3

U
se

d

Power supply D.9

Sensors including 

Signal Switches
D.11

4.95%

Failure Mode 

Leads to 

Violation of 

Safety Goal

PCc ClaimElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99% 99% 60%

High

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Medium

Sensor 

rationality 

Check

Low

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Failure 

Detection by 

on-line 

monitoring

Test Pattern

High High

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design

Reference 1)T7
SG Failure 

Distribution

99.00% High 97.54% Medium 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 20% 19% y ➢ Y ➢ ➢ ➢ ➢ PCc_A_SUM

Offsets Offsets 10% 10% 10% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_A_SUM

Stuck in range Stuck in range Stuck in range 30% 30% 29% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_A_SUM

Oscillation 5% 5% 5% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_A_SUM

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ Y PCc_PSU_MON

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ Y PCc_PSU_MON

Power Spikes 5% 5% 5% y ➢ ➢ Y PCc_PSU_MON

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d

D
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0
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Low

U
se
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34.65%0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

99%60%90%99%99%

D
.2

.1
0

.3

U
se

d

Power supply D.9

Sensors including 

Signal Switches
D.11

64.35%

Failure Mode 

Leads to 

Violation of 

Safety Goal

PCc ClaimElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99% 99% 60%

High

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Medium

Sensor 

rationality 

Check

Low

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Failure 

Detection by 

on-line 

monitoring

Test Pattern

High High

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design
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Table 224: FCCS - Transducer 8 

 

Reference 1)T8
SG Failure 

Distribution

99.00% High 97.54% Medium 100.00%

Low Medium High

60% 90% 99%

Out of range Out of range Out of range 20% 20% 19% y ➢ Y ➢ ➢ ➢ ➢ PCc_A_SUM

Offsets Offsets 10% 10% 10% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_A_SUM

Stuck in range Stuck in range Stuck in range 30% 30% 29% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_A_SUM

Oscillation 5% 5% 5% y ➢ Y ➢ ➢ ➢ ➢ ➢ PCc_A_SUM

Under and Over 

Voltage

Under and Over 

Voltage

Under and Over 

Voltage
10% 10% 10% y ➢ ➢ Y PCc_PSU_Mon

Drift Drift & Oscillation 20% 20% 20% y ➢ ➢ Y PCc_PSU_Mon

Power Spikes 5% 5% 5% y ➢ ➢ Y PCc_PSU_Mon

Technique Description

Specific  PCC

Technique from ISO26262

D
.2

.1
.1

U
se

d

D
.2

.6
.1

U
se

d

D
.2

.6
.5

U
se

d
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.2

.1
0
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.2
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D
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HighHigh

D
.2

.8
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Low

U
se

d

34.65%0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

99%60%90%99%99%

D
.2

.1
0

.3

U
se

d

Power supply D.9

Sensors including 

Signal Switches
D.11

64.35%

Failure Mode 

Leads to 

Violation of 

Safety Goal

PCc ClaimElement See Table

Analysed Failure modes for  low / medium / high 

Diagnostic Coverage Failure Mode 

Distribution
Full Claim

99% 99% 60%

High

Voltage or 

current 

control 

(input)

Voltage or 

current 

control 

(output)

Medium

Sensor 

rationality 

Check

Low

Input 

Comparison 

Voting (1oo2, 

2oo3 or better 

redundancy). 

Only if data 

flow changes 

within 

diagnostic 

test interval.

Sensor valid 

range

Sensor 

Correlation

Failure 

Detection by 

on-line 

monitoring

Test Pattern

High High

Table 26262-5: 2011

Failure Mode Distribution Full Claim PCc Claim

100%

Maintain Power - Existing Design


