1,083 research outputs found

    Scalable Peer-to-Peer Indexing with Constant State

    Full text link
    We present a distributed indexing scheme for peer to peer networks. Past work on distributed indexing traded off fast search times with non-constant degree topologies or network-unfriendly behavior such as flooding. In contrast, the scheme we present optimizes all three of these performance measures. That is, we provide logarithmic round searches while maintaining connections to a fixed number of peers and avoiding network flooding. In comparison to the well known scheme Chord, we provide competitive constant factors. Finally, we observe that arbitrary linear speedups are possible and discuss both a general brute force approach and specific economical optimizations

    SHADHO: Massively Scalable Hardware-Aware Distributed Hyperparameter Optimization

    Full text link
    Computer vision is experiencing an AI renaissance, in which machine learning models are expediting important breakthroughs in academic research and commercial applications. Effectively training these models, however, is not trivial due in part to hyperparameters: user-configured values that control a model's ability to learn from data. Existing hyperparameter optimization methods are highly parallel but make no effort to balance the search across heterogeneous hardware or to prioritize searching high-impact spaces. In this paper, we introduce a framework for massively Scalable Hardware-Aware Distributed Hyperparameter Optimization (SHADHO). Our framework calculates the relative complexity of each search space and monitors performance on the learning task over all trials. These metrics are then used as heuristics to assign hyperparameters to distributed workers based on their hardware. We first demonstrate that our framework achieves double the throughput of a standard distributed hyperparameter optimization framework by optimizing SVM for MNIST using 150 distributed workers. We then conduct model search with SHADHO over the course of one week using 74 GPUs across two compute clusters to optimize U-Net for a cell segmentation task, discovering 515 models that achieve a lower validation loss than standard U-Net.Comment: 10 pages, 6 figure

    Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma

    Full text link
    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. On a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.Comment: 14 pages, 40 figure

    A Decomposition Approach for the Multi-Modal, Resource-Constrained, Multi-Project Scheduling Problem with Generalized Precedence and Expediting Resources

    Get PDF
    The field of project scheduling has received a great deal of study for many years with a steady evolution of problem complexity and solution methodologies. As solution methodologies and technologies improve, increasingly complex, real-world problems are addressed, presenting researchers a continuing challenge to find ever more effective means for approaching project scheduling. This dissertation introduces a project scheduling problem which is applicable across a broad spectrum of real-world situations. The problem is based on the well-known Resource-Constrained Project Scheduling Problem, extended to include multiple modes, generalized precedence, and expediting resources. The problem is further extended to include multiple projects which have generalized precedence, renewable and nonrenewable resources, and expediting resources at the program level. The problem presented is one not previously addressed in the literature nor is it one to which the existing specialized project scheduling methodologies can be directly applied. This dissertation presents a decomposition approach for solving the problem, including algorithms for solving the decomposed subproblems and the master problem. This dissertation also describes a methodology for generating instances of the new problem, extending the way existing problem generators describe and construct network structures and this class of problem. The methodologies presented are demonstrated through extensive empirical testing

    An elliptical cover problem in drone delivery network design and its solution algorithms

    Get PDF
    Given n demand points in a geographic area, the elliptical cover problem is to determine the location of p depots (anywhere in the area) so as to minimize the maximum distance of an economical delivery trip in which a delivery vehicle starts from the nearest depot to a demand point, visits the demand point and then returns to the second nearest depot to that demand point. We show that this problem is NP-hard, and adapt Cooper’s alternating locate-allocate heuristic to find locally optimal solutions for both the point-coverage and area-coverage scenarios. Experiments show that most locally optimal solutions perform similarly well, suggesting their sufficiency for practical use. The one-dimensional variant of the problem, in which the service area is reduced to a line segment, permits recursive algorithms that are more efficient than mathematical optimization approaches in practical cases. The solution also provides the best-known lower bound for the original problem at a negligible computational cost

    A game-theoretic approach for reliability evaluation of public transportation transfers with stochastic features

    Get PDF
    A game-theoretic approach based on the framework of transferable-utility cooperative games is developed to assess the reliability of transfer nodes in public transportation networks in the case of stochastic transfer times. A cooperative game is defined, whose model takes into account the public transportation system, the travel times, the transfers and the associated stochastic transfer times, and the users’ demand. The transfer stops are modeled as the players of such a game, and the Shapley value – a solution concept in cooperative game theory – is used to identify their centrality and relative importance. Theoretical properties of the model are analyzed. A two-level Monte Carlo approximation of the vector of Shapley values associated with the nodes is introduced, which is efficient and able to take into account the stochastic features of the transportation network. The performance of the algorithm is investigated, together with that of its distributed computing variation. The usefulness of the proposed approach for planners and policy makers is shown with a simple example and on a case study from the public transportation network of Auckland, New Zealand
    • …
    corecore