1,887 research outputs found

    MIMO Detection for High-Order QAM Based on a Gaussian Tree Approximation

    Full text link
    This paper proposes a new detection algorithm for MIMO communication systems employing high order QAM constellations. The factor graph that corresponds to this problem is very loopy; in fact, it is a complete graph. Hence, a straightforward application of the Belief Propagation (BP) algorithm yields very poor results. Our algorithm is based on an optimal tree approximation of the Gaussian density of the unconstrained linear system. The finite-set constraint is then applied to obtain a loop-free discrete distribution. It is shown that even though the approximation is not directly applied to the exact discrete distribution, applying the BP algorithm to the loop-free factor graph outperforms current methods in terms of both performance and complexity. The improved performance of the proposed algorithm is demonstrated on the problem of MIMO detection

    Some Notes on Code-Based Cryptography

    Get PDF
    This thesis presents new cryptanalytic results in several areas of coding-based cryptography. In addition, we also investigate the possibility of using convolutional codes in code-based public-key cryptography. The first algorithm that we present is an information-set decoding algorithm, aiming towards the problem of decoding random linear codes. We apply the generalized birthday technique to information-set decoding, improving the computational complexity over previous approaches. Next, we present a new version of the McEliece public-key cryptosystem based on convolutional codes. The original construction uses Goppa codes, which is an algebraic code family admitting a well-defined code structure. In the two constructions proposed, large parts of randomly generated parity checks are used. By increasing the entropy of the generator matrix, this presumably makes structured attacks more difficult. Following this, we analyze a McEliece variant based on quasi-cylic MDPC codes. We show that when the underlying code construction has an even dimension, the system is susceptible to, what we call, a squaring attack. Our results show that the new squaring attack allows for great complexity improvements over previous attacks on this particular McEliece construction. Then, we introduce two new techniques for finding low-weight polynomial multiples. Firstly, we propose a general technique based on a reduction to the minimum-distance problem in coding, which increases the multiplicity of the low-weight codeword by extending the code. We use this algorithm to break some of the instances used by the TCHo cryptosystem. Secondly, we propose an algorithm for finding weight-4 polynomials. By using the generalized birthday technique in conjunction with increasing the multiplicity of the low-weight polynomial multiple, we obtain a much better complexity than previously known algorithms. Lastly, two new algorithms for the learning parities with noise (LPN) problem are proposed. The first one is a general algorithm, applicable to any instance of LPN. The algorithm performs favorably compared to previously known algorithms, breaking the 80-bit security of the widely used (512,1/8) instance. The second one focuses on LPN instances over a polynomial ring, when the generator polynomial is reducible. Using the algorithm, we break an 80-bit security instance of the Lapin cryptosystem

    Sparsity Enhanced Decision Feedback Equalization

    Full text link
    For single-carrier systems with frequency domain equalization, decision feedback equalization (DFE) performs better than linear equalization and has much lower computational complexity than sequence maximum likelihood detection. The main challenge in DFE is the feedback symbol selection rule. In this paper, we give a theoretical framework for a simple, sparsity based thresholding algorithm. We feed back multiple symbols in each iteration, so the algorithm converges fast and has a low computational cost. We show how the initial solution can be obtained via convex relaxation instead of linear equalization, and illustrate the impact that the choice of the initial solution has on the bit error rate performance of our algorithm. The algorithm is applicable in several existing wireless communication systems (SC-FDMA, MC-CDMA, MIMO-OFDM). Numerical results illustrate significant performance improvement in terms of bit error rate compared to the MMSE solution
    • …
    corecore