294,338 research outputs found

    Average Drift Analysis and Population Scalability

    Get PDF
    This paper aims to study how the population size affects the computation time of evolutionary algorithms in a rigorous way. The computation time of an evolutionary algorithm can be measured by either the expected number of generations (hitting time) or the expected number of fitness evaluations (running time) to find an optimal solution. Population scalability is the ratio of the expected hitting time between a benchmark algorithm and an algorithm using a larger population size. Average drift analysis is presented for comparing the expected hitting time of two algorithms and estimating lower and upper bounds on population scalability. Several intuitive beliefs are rigorously analysed. It is prove that (1) using a population sometimes increases rather than decreases the expected hitting time; (2) using a population cannot shorten the expected running time of any elitist evolutionary algorithm on unimodal functions in terms of the time-fitness landscape, but this is not true in terms of the distance-based fitness landscape; (3) using a population cannot always reduce the expected running time on fully-deceptive functions, which depends on the benchmark algorithm using elitist selection or random selection

    Collective Decision-Making in Ideal Networks: The Speed-Accuracy Tradeoff

    Full text link
    We study collective decision-making in a model of human groups, with network interactions, performing two alternative choice tasks. We focus on the speed-accuracy tradeoff, i.e., the tradeoff between a quick decision and a reliable decision, for individuals in the network. We model the evidence aggregation process across the network using a coupled drift diffusion model (DDM) and consider the free response paradigm in which individuals take their time to make the decision. We develop reduced DDMs as decoupled approximations to the coupled DDM and characterize their efficiency. We determine high probability bounds on the error rate and the expected decision time for the reduced DDM. We show the effect of the decision-maker's location in the network on their decision-making performance under several threshold selection criteria. Finally, we extend the coupled DDM to the coupled Ornstein-Uhlenbeck model for decision-making in two alternative choice tasks with recency effects, and to the coupled race model for decision-making in multiple alternative choice tasks.Comment: to appear in IEEE TCN

    Trade-offs between Selection Complexity and Performance when Searching the Plane without Communication

    Get PDF
    We consider the ANTS problem [Feinerman et al.] in which a group of agents collaboratively search for a target in a two-dimensional plane. Because this problem is inspired by the behavior of biological species, we argue that in addition to studying the {\em time complexity} of solutions it is also important to study the {\em selection complexity}, a measure of how likely a given algorithmic strategy is to arise in nature due to selective pressures. In more detail, we propose a new selection complexity metric χ\chi, defined for algorithm A{\cal A} such that χ(A)=b+log\chi({\cal A}) = b + \log \ell, where bb is the number of memory bits used by each agent and \ell bounds the fineness of available probabilities (agents use probabilities of at least 1/21/2^\ell). In this paper, we study the trade-off between the standard performance metric of speed-up, which measures how the expected time to find the target improves with nn, and our new selection metric. In particular, consider nn agents searching for a treasure located at (unknown) distance DD from the origin (where nn is sub-exponential in DD). For this problem, we identify loglogD\log \log D as a crucial threshold for our selection complexity metric. We first prove a new upper bound that achieves a near-optimal speed-up of (D2/n+D)2O()(D^2/n +D) \cdot 2^{O(\ell)} for χ(A)3loglogD+O(1)\chi({\cal A}) \leq 3 \log \log D + O(1). In particular, for O(1)\ell \in O(1), the speed-up is asymptotically optimal. By comparison, the existing results for this problem [Feinerman et al.] that achieve similar speed-up require χ(A)=Ω(logD)\chi({\cal A}) = \Omega(\log D). We then show that this threshold is tight by describing a lower bound showing that if χ(A)<loglogDω(1)\chi({\cal A}) < \log \log D - \omega(1), then with high probability the target is not found within D2o(1)D^{2-o(1)} moves per agent. Hence, there is a sizable gap to the straightforward Ω(D2/n+D)\Omega(D^2/n + D) lower bound in this setting.Comment: appears in PODC 201

    Selection in the Presence of Memory Faults, with Applications to In-place Resilient Sorting

    Full text link
    The selection problem, where one wishes to locate the kthk^{th} smallest element in an unsorted array of size nn, is one of the basic problems studied in computer science. The main focus of this work is designing algorithms for solving the selection problem in the presence of memory faults. These can happen as the result of cosmic rays, alpha particles, or hardware failures. Specifically, the computational model assumed here is a faulty variant of the RAM model (abbreviated as FRAM), which was introduced by Finocchi and Italiano. In this model, the content of memory cells might get corrupted adversarially during the execution, and the algorithm is given an upper bound δ\delta on the number of corruptions that may occur. The main contribution of this work is a deterministic resilient selection algorithm with optimal O(n) worst-case running time. Interestingly, the running time does not depend on the number of faults, and the algorithm does not need to know δ\delta. The aforementioned resilient selection algorithm can be used to improve the complexity bounds for resilient kk-d trees developed by Gieseke, Moruz and Vahrenhold. Specifically, the time complexity for constructing a kk-d tree is improved from O(nlog2n+δ2)O(n\log^2 n + \delta^2) to O(nlogn)O(n \log n). Besides the deterministic algorithm, a randomized resilient selection algorithm is developed, which is simpler than the deterministic one, and has O(n+α)O(n + \alpha) expected time complexity and O(1) space complexity (i.e., is in-place). This algorithm is used to develop the first resilient sorting algorithm that is in-place and achieves optimal O(nlogn+αδ)O(n\log n + \alpha\delta) expected running time.Comment: 26 page

    Improved Multi-Task Learning Based on Local Rademacher Analysis

    Get PDF
    Considering a single prediction task at a time is the most commonly paradigm in machine learning practice. This methodology, however, ignores the potentially relevant information that might be available in other related tasks in the same domain. This becomes even more critical where facing the lack of a sufficient amount of data in a prediction task of an individual subject may lead to deteriorated generalization performance. In such cases, learning multiple related tasks together might offer a better performance by allowing tasks to leverage information from each other. Multi-Task Learning (MTL) is a machine learning framework, which learns multiple related tasks simultaneously to overcome data scarcity limitations of Single Task Learning (STL), and therefore, it results in an improved performance. Although MTL has been actively investigated by the machine learning community, there are only a few studies examining the theoretical justification of this learning framework. The focus of previous studies is on providing learning guarantees in the form of generalization error bounds. The study of generalization bounds is considered as an important problem in machine learning, and, more specifically, in statistical learning theory. This importance is twofold: (1) generalization bounds provide an upper-tail confidence interval for the true risk of a learning algorithm the latter of which cannot be precisely calculated due to its dependency to some unknown distribution P from which the data are drawn, (2) this type of bounds can also be employed as model selection tools, which lead to identifying more accurate learning models. The generalization error bounds are typically expressed in terms of the empirical risk of the learning hypothesis along with a complexity measure of that hypothesis. Although different complexity measures can be used in deriving error bounds, Rademacher complexity has received considerable attention in recent years, due to its superiority to other complexity measures. In fact, Rademacher complexity can potentially lead to tighter error bounds compared to the ones obtained by other complexity measures. However, one shortcoming of the general notion of Rademacher complexity is that it provides a global complexity estimate of the learning hypothesis space, which does not take into consideration the fact that learning algorithms, by design, select functions belonging to a more favorable subset of this space and, therefore, they yield better performing models than the worst case. To overcome the limitation of global Rademacher complexity, a more nuanced notion of Rademacher complexity, the so-called local Rademacher complexity, has been considered, which leads to sharper learning bounds, and as such, compared to its global counterpart, guarantees faster convergence rates in terms of number of samples. Also, considering the fact that locally-derived bounds are expected to be tighter than globally-derived ones, they can motivate better (more accurate) model selection algorithms. While the previous MTL studies provide generalization bounds based on some other complexity measures, in this dissertation, we prove excess risk bounds for some popular kernel-based MTL hypothesis spaces based on the Local Rademacher Complexity (LRC) of those hypotheses. We show that these local bounds have faster convergence rates compared to the previous Global Rademacher Complexity (GRC)-based bounds. We then use our LRC-based MTL bounds to design a new kernel-based MTL model, which enjoys strong learning guarantees. Moreover, we develop an optimization algorithm to solve our new MTL formulation. Finally, we run simulations on experimental data that compare our MTL model to some classical Multi-Task Multiple Kernel Learning (MT-MKL) models designed based on the GRCs. Since the local Rademacher complexities are expected to be tighter than the global ones, our new model is also expected to exhibit better performance compared to the GRC-based models
    corecore