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ABSTRACT

Considering a single prediction task at a time is the most commonly paradigm in machine learn-

ing practice. This methodology, however, ignores the potentially relevant information that might

be available in other related tasks in the same domain. This becomes even more critical where

facing the lack of a sufficient amount of data in a prediction task of an individual subject may

lead to deteriorated generalization performance. In such cases, learning multiple related tasks to-

gether might offer a better performance by allowing tasks to leverage information from each other.

Multi-Task Learning (MTL) is a machine learning framework, which learns multiple related tasks

simultaneously to overcome data scarcity limitations of Single Task Learning (STL), and there-

fore, it results in an improved performance. Although MTL has been actively investigated by the

machine learning community, there are only a few studies examining the theoretical justification

of this learning framework. The focus of previous studies is on providing learning guarantees in

the form of generalization error bounds. The study of generalization bounds is considered as an

important problem in machine learning, and, more specifically, in statistical learning theory. This

importance is twofold: (1) generalization bounds provide an upper-tail confidence interval for the

true risk of a learning algorithm the latter of which cannot be precisely calculated due to its de-

pendency to some unknown distribution P from which the data are drawn, (2) this type of bounds

can also be employed as model selection tools, which lead to identifying more accurate learning

models.

The generalization error bounds are typically expressed in terms of the empirical risk of the learn-

ing hypothesis along with a complexity measure of that hypothesis. Although different complexity

measures can be used in deriving error bounds, Rademacher complexity has received considerable

attention in recent years, due to its superiority to other complexity measures. In fact, Rademacher

complexity can potentially lead to tighter error bounds compared to the ones obtained by other
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complexity measures. However, one shortcoming of the general notion of Rademacher complex-

ity is that it provides a global complexity estimate of the learning hypothesis space, which does

not take into consideration the fact that learning algorithms, by design, select functions belonging

to a more favorable subset of this space and, therefore, they yield better performing models than

the worst case. To overcome the limitation of global Rademacher complexity, a more nuanced

notion of Rademacher complexity, the so-called local Rademacher complexity, has been consid-

ered, which leads to sharper learning bounds, and as such, compared to its global counterpart,

guarantees faster convergence rates in terms of number of samples. Also, considering the fact that

locally-derived bounds are expected to be tighter than globally-derived ones, they can motivate

better (more accurate) model selection algorithms.

While the previous MTL studies provide generalization bounds based on some other complex-

ity measures, in this dissertation, we prove excess risk bounds for some popular kernel-based

MTL hypothesis spaces based on the Local Rademacher Complexity (LRC) of those hypotheses.

We show that these local bounds have faster convergence rates compared to the previous Global

Rademacher Complexity (GRC)-based bounds. We then use our LRC-based MTL bounds to de-

sign a new kernel-based MTL model, which enjoys strong learning guarantees. Moreover, we

develop an optimization algorithm to solve our new MTL formulation. Finally, we run simulations

on experimental data that compare our MTL model to some classical Multi-Task Multiple Kernel

Learning (MT-MKL) models designed based on the GRCs. Since the local Rademacher complexi-

ties are expected to be tighter than the global ones, our new model is also expected to exhibit better

performance compared to the GRC-based models.
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CHAPTER 1: INTRODUCTION

Introduction

While most traditional machine learning approaches focus on the learning of a single independent

task at a time, Multi-Task Learning (MTL), in contrast, aims to training several related tasks to-

gether, with the hope of improving the overall performance of all tasks by allowing information

sharing between them. More specially, when only a limited number of training samples per each

task exists, MTL can benefit tasks by inducing a positive inductive bias in the learning process

of multiple related tasks. Therefore, more effective training can be conducted in this way, which

leads to improved generalization performance for each task compared to the “no transfer” scenario,

where each task is learned in isolation.

Nowadays, MTL frameworks are routinely employed in a variety of settings. Some application

domains include computer vision [1, 60, 79, 122, 137, 149], HIV therapy screening [15], collabo-

rative filtering [22], age estimation from facial images [149], and sub-cellular location prediction

[142] , Information retrieval [121, 22, 123], bioinformatics [15, 142, 90] and finance [52] just to

name a few prominent ones.

The underlying assumption behind the MTL paradigm is based on tasks’ relatedness. Therefore,

the key concern of MTL is “how to capture tasks relatedness and integrate it into the learning

formulation.” In response to this question, several MTL approaches have been designed, which

employ different strategies to capture task relatedness. Although, these models differ in how they

model the relationship among tasks, they mostly formulate MTL as a regularized Empirical Risk

Minimization (ERM) problem, in which the objective function is a composition of an over-the-

tasks average error and a regularization term to encourage information sharing among tasks in
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some capacity. More precisely, similar to many machine learning models, the regularized MTL

formulation is typically given as

min
f
L(f) + λΩ(f) (1.1)

where f is a vector-valued function that consists of the tasks’ learning functions (f1, . . . , fT ), L(f)

is the averaged empirical loss over all tasks, and Ω(f) is the regularization term which is designed

to enforce information sharing among tasks. Also, λ is the regularization parameter that allows for

choosing the right trade-off betweenL(f) and Ω(f). There are many prior efforts which utilize this

framework to model task relationships, among which we refer to [47, 155, 158, 129, 103, 102], just

to name a few. It is worth pointing out that in some cases, instead of (or besides) the regularization

term, some optimization constraints are also incorporated into MTL formulation (1.1) in favor of

adding some other desired characteristics. A good example of this situation is where a clustering or

grouping strategy is needed to be considered in order to allow different level of information sharing

between different tasks. This goal can then be achieved by imposing clustering-type constraints

into Problem (1.1). Also, in order to allow more flexibility and achieve better generalization per-

formance, kernel-based regularizations have been proposed in the context of MTL [46]. Beside

flexibility, simplicity and generality of kernels and their associated Reproducing Kernel Hilbert

Space (RKHS)s, “availability of effective error bounds and stability analysis relative to perturba-

tions of the data” [109] is another attractive feature of kernel-based regularizers. Interestingly, it

can be shown that there is an equivalency (Ivanov-Tikhonov regularization equivalency) between

(1.1) and optimization problem

min
f
L(f)

s.t. Ω(f) ≤ R, (1.2)
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which can be efficiently used to identify the hypothesis space of the learning problem at hand.

In more detail, given T learning tasks, the learning problem 1.2 seeks the vector-valued function

f = (f1, . . . , fT ) from the hypothesis space F := {f = (f1, . . . , fT ) : Ω(f) ≤ R} such that the

average empirical error L(f) is minimized.

Problem Statement

The study of generalization error bounds is important in machine learning problems, as they are

uniform over the learning hypothesis space, that is, the bounds hold for any function f within the

hypothesis space under consideration. These type of bounds provide upper-tail confidence intervals

for the true risk. But, even more importantly, the same bounds can also be used as model selection

tools where, among several alternatives, one can identify the model that most likely has the lowest

risk. In particular, such a bound is usually based on an empirical measurement of its risk (error)

and a measure of its complexity. Also, it is worth pointing out that

To be more concrete regarding the importance of the generalization bounds, recall that the main

goal of any typical machine learning algorithm is to automate the process of learning a model

based on some observations from a phenomenon in order to make good predictions in the future

with the help of the learned model [21]. To make this more precise, consider a supervised learn-

ing paradigm (as we restrict ourselves to this case in this dissertation), and n training samples

{(X1, Y1), . . . , (Xn, Yn)}, which are identically and independently drawn from an unknown distri-

bution P . A supervised learning algorithm then, aims to construct a function f : X → Y , which

depends on this observed data and generalizes well over any unseen future data (X, Y ). Hence,

the goal is to select a function f ∈ F with small risk or expected loss E(X,Y )∼P [`(f(X), Y )].

However, the calculation of this quantity is impossible, as the distribution P is unknown. One

common approach to estimate the true risk E(X,Y )∼P [`(f(X), Y )] is to relate this quantity by its
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empirical counterpart along with a complexity measure of the function class F . A typical form of

a generalization bound is

E(X,Y )∼P [`(f(X), Y )] ≤ 1

n

n∑
i=1

`(f(Xi), Yi) + h (complexity of the function class F , n) (1.3)

It is worth mentioning that different complexity measures such as Vapnik-Chevonenkis (VC)

dimension, fat-shattering dimension or covering numbers can be used in deriving generaliza-

tion bounds. However, in this dissertation, we use a more recent notion of complexity called

Rademacher complexity, which, in turn, can be bounded by other complexity measures (such

as covering numbers or VC dimension), and therefore improves existing bounds based on these

other measures. More importantly, the generalization bounds based on empirical version of the

Rademacher complexity are data dependent, meaning that they measure the complexity of the

function class F based on the training samples. In other words, these data-dependent general-

ization bounds can be estimated based on finite samples and they are usually tighter than their

distribution-dependent counterparts [111]. Also, data-dependent bounds (such as Rademacher-

based bounds) are of more value as they can provide strong theoretical foundation in designing of

new learning algorithms. As an example, for kernel-based hypotheses, the empirical Rademacher-

based bounds are typically functions of the kernel matrix. This can lead to deriving kernel learning

algorithms which, by considering a regularization on the trace of the kernels, benefits from strong

learning guarantees. As an effective complexity measure, the Rademacher complexity was first

proposed by [74], [9] and [107]. However, one shortcoming of the general notion of Rademacher

complexity is that it provides the global estimation of the complexity of the function class F . In

other words, it does not take into consideration the fact that learning algorithms, typically, pick

functions belonging to a more favorable subset of the function class, and they therefore yield bet-

ter performance than the worst case. Recall that most learning algorithms tend to choose functions
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inducing small empirical errors and also (hopefully) small generalization errors. Therefore, it is

very likely that the function f̂ ∈ F minimizing the empirical risk 1
n

∑n
i=1 `(f(Xi), Yi), lies in a

neighborhood of the best function f ∗ ∈ F that minimizes the true risk E(X,Y ) [`(f(X), Y )]. To

overcome the limitation of global Rademacher complexity, a finer notion of Rademacher com-

plexity, the so-called local Rademacher complexity, has been considered which leads to sharper

learning bounds and as such also (compared to its global counterpart, i.e. GRC) guarantees a faster

rate of convergence—the rate at which the empirical risk approaches the true risk—under some

general conditions. Also, regarding the fact that local bounds are expected to be tighter than the

global ones, they can motivate more efficient model selection algorithms.

The idea of LRC is to restrict the function class F to a mush smaller subset of it, by imposing a

variance-type constraint on this class of functions. Since such a small class can also have smaller

Rademacher complexity, they can lead to sharper bounds compared to GRC-based bounds.

Contributions

Although MTL has been actively investigated by the machine learning community, there are only a

few studies examining the theoretical perspective of this learning framework. While these previous

MTL studies provide generalization bounds based on some other complexity measures such as

covering number and VC-dimension [11, 13, 2] or GRC [101, 102, 104, 105] of the learning

hypothesis, we are not aware of any study taking advantage of the LRCs to derive error bounds

for MTL. In this dissertation, we derive excess risk bounds for some popular kernel-based MTL

hypothesis spaces based on the LRC of those hypotheses. It turns out that similar to the STL

scenario, for kernel-based hypotheses, the data-dependent LRC-based MTL bounds are functions

of the tail sum of the eigenvalues of the kernel matrices. Also, as expected (and it has been

shown for STL [10]), we show that theses local bounds have faster convergence rate compared
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to previously known GRC-based bounds. Furthermore, similar to what has been done in [38] for

STL, we use our LRC-based MTL bounds to design a kernel-based MTL model which considers

a constraint based on the tail sum of the eigenvalues of the kernels. Finally, we show that our new

LRC-based MTL model consistently outperforms the traditional kernel learning algorithms, whose

performances have been proven to be difficult to surpass in the past; such as uniform combination

solution as well as convex combination of base kernels. Note that it can be shown that the latter

case—with an `1 norm constraint on kernel parameter—corresponds to a model which is derived

based on a GRC analysis. We show the superiority of our LRC model against this GRC-based

algorithm, by performing a series of experiments.

Organization

The rest of this dissertation is organized as follows: In Chapter 2, we provide some background

on statistical learning theory, and some of its concepts including supervised learning, generaliza-

tion error bounds, global and local Rademacher complexity-based bounds. Finally, we introduce

the general MTL setting and formulation at the end of Chapter 2. Chapter 3 presents a literature

review associated with MTL models and generalization bounds. Also, the methodology of our

study can be found in Chapter 4. Then, Chapter 5 details the derivation of the LRC-based gener-

alization bound for MTL. Risk bounds are eventually found for several common MTL framework

considering norm regularizers. A thorough analysis of the derived bound as well as an insightful

comparison to the existing bounds is included which demonstrates the advantages of the LRC-

based bounds. Additionally, due to the superiority of the derived LRC bounds, a new kernel-based

MTL model along with an optimization algorithm are introduced in Chapter 6. The experimental

evaluation of the work is given in Chapter 7. Chapter 8 provides summary and potential future

directions of the work.
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CHAPTER 2: BACKGROUND

With the ever-increasing amount of data, it is almost impossible for a human programmer or spe-

cialist to detect a meaningful pattern in data and translate it to some expertise or knowledge for the

future use. For this reason, machine leaning, as an automated learning tool, has become a central

part of human life over the past couple of decades. Machine learning refers to an automated process

of detecting meaningful patterns from data, and it has applications in many real world problems

where information extraction from large data sets is required. Ranking the relevant web pages

given a submitted query into a search engine, filtering email messages by an anti-spam software,

securing credit card transactions by a fraud detection software, detecting faces in digital photos,

recognizing voice commands on smart phones, and accident preventing systems in cars are just

some examples of machine learning applications in real world problems. Machine learning also

appears in many other scientific guises such as bioinformatics, medicine, and astronomy. In this

section, we provide some background on the main concepts underlying machine learning.

Automated Learning

Learning, of course, covers a wide range of processes which is difficult to define precisely. Conse-

quently, machine learning has waded into several branches, each of which dealing with a different

type of learning task. However, the common feature of all different types of machine learning

models is that they automate the process of an inductive inference including, observing a phe-

nomenon, building a model based on the observed phenomenon, and making predictions using the

constructed model.

In this dissertation, we consider a special type of this learning process which is called supervised
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learning, and primarily, we will be dealing with binary classification problems. In this framework,

the phenomenon is defined as some instance-label pairs, where a label is either +1 or −1. A

classification model is then constructed as a mapping function from the instances to the labels.

This function is expected to make future predictions for unseen instances with as few mistakes

as possible. Note that it is always possible to build a function that agrees very well with the

observed (training) data. However such a model might exhibit a poor performance in predicting

unseen future data. As example of this instance is the case where the training data are noisy. This

phenomenon is referred to as overfitting, and it happens when the model can fit the training data

too well. This type of models are usually too complex in the sense that they have too many free

parameters to tune. Therefore, one way to avoid overfitting is to restrict the choice of the learning

model to a set of predictors with less complexity. This set of predictors is called a hypothesis

class and it is typically chosen in advance based on some specific assumptions or knowledge

about the data. Another way to avoid overfitting is to add a penalty (to the learning process)

for complicated hypothesis classes. This is usually referred to as regularization technique, and it

is known as a very successful method in all machine learning problems. By using one of these

(and usually the combination of both) techniques, we can expect that the learning model can be

reasonably generalized from the observed data to future unseen instances. In other words, the

model is expected to make future predictions with as small risk as possible. In the following, we

discuss in more detail: “What is regularization technique?”, “How to quantify the complexity of a

hypothesis class?”, or“ How to measure the generalization of a model?”. Before answering these

fundamental questions, let us first to formally describe the supervised learning paradigm.
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Formalization

Consider an input space X as the set of objects we want to label. Also, assume that the output

space Y denotes the set of possible labels, which are chosen as {−1,+1} for binary classification.

We then assume that the training data {(X1, Y1), . . . , (Xn, Yn)} are identically and independently

drawn from an unknown distribution P defined on X × Y . Now, given the training data, the

objective of a learning algorithm is to choose a function f : X → Y among the functions in

the hypothesis class F , which generalizes well. In other words, this function should be chosen

in such a way that the probability of error P (f(X) 6= Y ) is small for any unseen instance pair

(X, Y ) ∈ X × Y . Therefore, the true risk of a predictor function f can be given as

R(f) := E(X,Y )∼P [(f(X) 6= Y )] = E
[
1f(X)6=Y

]
. (2.1)

Regularization

The objective of a learning algorithm is to choose a function f ∈ F that minimizes the risk

R(f). However, the true risk R(f) cannot be calculated, due to its dependency to the unknown

distribution P . But, we can quantify the consistency of the function f with the training data through

an empirical risk defined as

Rn(f) :=
1

n

n∑
i=1

1f(Xi)6=Yi . (2.2)

which is commonly used as a criterion to choose a function f from the hypothesis space F . This

algorithm, which is called Empirical Risk Minimization, is based on the idea of choosing a predic-

tor function f ∈ F which minimized (2.2). However, as mentioned earlier, this hypothesis class F

is predefined based on some priori assumptions regarding the problem. Therefore, one may want

9



to enlarge F as much as possible to increase the chances of finding a good predictor f in F . From

the other side, enlarging F might increase the risk of overfitting. Therefore, a regularizer is usually

imposed on F to prevent overfitting, while choosing a large class F . Intuitively, the regulariza-

tion function Ω(f) is a measure of the complexity of F that reflects some prior belief about the

problem. Regularized empirical risk minimization algorithms solve the following problem

min
f∈F

1

n

n∑
i=1

1f(Xi) 6=Yi + λΩ(f) (2.3)

which tries to balance between “better fit” and “less complexity” of F .

Generalization Error Bounds

In a binary classification setting, given a predictor function f : X → R, by convention, the point

X is considered to be classified as class +1 if f(X) > 0, and class −1 if f(X) < 0, and it is

considered misclassified otherwise. In other words, any instance (Xi, Yi) is classified correctly by

the predictor function f , only if Yif(Xi) > 0. Therefore, the risk associated to function f can be

defined as

E
[
1Y f(X)≤0

]
where 1Y f(X)≤0 is known as 0− 1 loss, and it is a non-convex, non-differentiable function. These

characteristics make the optimization hard. For this reason, a convex or/and differentiable surro-

gate function `, which upper-bounds this loss, is optimized. For ease of notation, let Zi := (Xi, Yi)

and Z := (X, Y ). Now we define the class of loss function LF associated with f as

LF := {`f : (X, Y )→ `(f(X), Y ), f ∈ F}
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Also, for convenience, let us introduce the shorthand notations P`f := E(X,Y )∼P [`(f(X), Y )] and

Pn`f := 1
n

∑n
i=1 `(f(Xi), Yi) as the true and empirical risks of f , respectively.

As noted earlier, the optimal goal is to characterize the true risk associated with the predictor

function f . However, as it depends on the unknown probability P , it is impossible to estimate this

quantity. One way to approximate the true risk R(f) is to relate it to its empirical counterpart,

and one prominent approach to do this is based on the theory of uniform convergence of empirical

quantities to their mean (see e.g. [140]). In other words, this theory provides an upper-bound on

the quantity

P`f − Pn`f (2.4)

It it worth pointing that the bound on (2.4) is usually expressed as a function of the complexity of

F along with a function of the number of samples n. An important aspect of the generalization

bounds is that they are uniform over the learning hypothesis space F , that is, these bounds hold for

any function f which lies within the function class F . Although, different complexity measures

can be used in deriving generalization bounds, in this dissertation, we use a more recent notion of

complexity called Rademacher complexity, which usually leads to tighter, high-quality bounds.

Relationship of Error Bounds to Empirical Processes

This section provides some insights on how the generalization error bounds can be obtained. Recall

that in order to find the generalization bounds, one needs to obtain bounds on Pf −Pnf , in which

the function f is chosen from a function space F := {f : X × Y → R}. As mentioned before,

this quantity is a random variable, and the randomness stems from (i) the unknown distribution P

and (2) the function f which depends on how a learning algorithm processes the data to select this
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function from F [20]. However, the latter randomness can be removed by considering a collection

of random variables Pf − Pnf indexed by the function set F :

{Pf − Pnf}f∈F , (2.5)

which is known as the empirical process in statistical learning theory. A more helpful quantity

associated to an empirical process is

sup
f∈F

(Pf − Pnf) . (2.6)

Note that a bound on (2.6) also acts a bound on (2.5). Since the supremum of the empirical process

Pf−Pnf in (2.6) is still random due to its dependency on the unknown distribution P , the bounds

for this quantity takes the probabilistic form

P
[
sup
f∈F

(Pf − Pnf) ≥ x

]
≤ δ, (2.7)

where δ > 0. The expression in (2.7) is usually referred to as concentration inequality which

provides a bound on the probability that a random variable Z differs from its expected value EZ

by more than a certain amount. A number of methods have been proposed to derive these type of

inequalities such as martingale methods [110, 106], decoupling methods [41], Talagrand’s induc-

tion method [133, 134, 93, 115] and the so-called “entropy method” which is based on logarithmic

Sobolev inequalities introduced in [80, 81, 16, 125, 100, 94, 17, 19, 19]. Being related to the tail

bounds of empirical processes, we are interested to obtain probabilistic bounds for {Z−EZ ≥ x},

in which Z :=
∑n

i=1Xi, whereX1, . . . , Xn are n independent random variables. One useful bound

of this form is the so-called Hoeffding’s tail inequality which is introduced bellow.

Theorem 1 (Hoeffding’s inequality). Assume thatX1, . . . , Xn are n independent bounded random
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variables such that for each i ∈ 1, . . . , n, Xi takes values in [ai, bi]. If Z :=
∑n

i=1, Xi , then for

any x > 0, the following holds

P{Z − EZ ≥ x} ≤ exp

[
−2x2∑n

i (bi − ai)2

]

and,

P{Z − EZ ≤ −x} ≤ exp

[
−2x2∑n

i (bi − ai)2

]

The generalization of Hoeffding’s inequality to functions of i.i.d. random variables is know as

McDiarmid (or bounded differences) inequality.

Theorem 2 (McDiarmid’s Inequality). For function g : X n → R, let Z := g(X1, . . . , Xi, . . . , Xn)

andZi := g(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn). Assume that for allX1, . . . , Xn, X

′
1, . . . , X

′
n ∈ X n,

and for all i ∈ {1, . . . , n},

|Z − Zi| ≤ ci.

Then, for any x > 0,

P {|Z − EZ| > x} ≤ 2 exp

[
−2x2∑n
i=1 c

2
i

]

One limitation of Hoeffding type inequalities, however, is that they ignore the information about

the variance of the Xis. Note that in many cases the variance of Z might be mush smaller than∑n
i=1 c

2
i . For this reason, sharper bounds such as Bennett’s and Bernstein’s inequalities have been

derived which provide improvements over Hoeffding’s inequality.

Theorem 3 (Bernstein’s Inequality). Let X1, . . . , Xn be n independent bounded random variables
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such that for all i = {1, . . . , n}, E[Xi] = 0, and V ar[Xi] := σ2. If Z :=
∑n

i=1Xi, and there exist

a constant c > 0 such that Xi ≤ c, then for any x > 0, we have

P{Z − EZ ≥ σ
√

2nx+
cx

3
} ≤ e−x

The functional version of Bernstein’s inequality applicable to function classes has been also pro-

posed which is known as Talagrand’s inequality. In the following, we introduce Bousquet’s version

of Talagrand’s inequality presented in [19].

Theorem 4 (Talagrand’s Concentration Inequality). Assume that for function class F := {f :

X → R}, it holds that Ef(Xi) = 0,∀i, and supf∈F ,
X∈X

f(X) ≤ 1. Let

Z := sup
f∈F

n∑
i

f(Xi),

and supf∈F
1
n

∑n
i=1 f(Xi) ≤ σ2 with the real number σ > 0. Then, for any x > 0, we have

P{Z − EZ ≥
√

2xν +
x

3
} ≤ e−x

where ν := nσ2 + 2EZ.

Now based on these McDiarmid’s and Talagrand’s inequalities, we can derive such inequalities for

the suprema of empirical processes. For this purpose, one can easily define Z := supf∈F(Pf −

Pnf) for which we obtain the following results.

Corollary 5 (McDiarmid’s Inequality for the Suprema of Empirical Processes). Let the function
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class F mapX ∈ X into [0, 1]. McDiarmid inequality then gives, with probability at least 1−e−x,

sup
f∈F

Pf − Pnf ≤ E
[
sup
f∈F

Pf − Pnf
]

+

√
2x

n

Corollary 6 (Talagrand’s Inequality for the Suprema of Empirical Processes). Let F be a class of

functions mappingX ∈ X into [0, 1]. Assume that r is a positive real value for which V ar [f(Xi)] ≤

r for all f ∈ F . Then, for every x > 0, with probability at least 1− e−x,

sup
f∈F

Pf − Pnf ≤ 2E
[
sup
f∈F

Pf − Pnf
]

+

√
2xr

n
+

4x

3n

As you can see, the term E
[
supf∈F Pf − Pnf

]
is one of the main components of the bound in

both inequalities above. Thanks to the symmetrization technique, this term can be also bounded

based on the fact that for any functions f in F , the expected deviation of the empirical mean Pnf

from its true one Pf , can be controlled by the Rademacher complexity of the function class F .

Lemma 1 (Symmetrization Technique, Lemma A.5 in [10]). For any function class F

max

{
E
[
sup
f∈F

Pf − Pnf
]
,E
[
sup
f∈F

Pnf − Pf
]}
≤ 2R(F).

R(F) is the so-called Rademacher complexity of the function class F which will be discussed in

the next section.

Rademacher Complexity

Rademacher complexity quantifies how well the functions in a hypothesis class G can correlate

with random noise, and therefore it measures the richness of the hypothesis set G. In the following,
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we provide the definition and some useful property of the Rademacher complexity which will be

used in the future chapters.

Definition 7 (Rademacher Complexity). Given a hypothesis class G := {g : Z → R} and a set of

data S := {z1, . . . zn} which are drawn identically and independently according to distribution P ,

the Empirical Rademacher Complexity of G is defined as

R̂(G) := Eσ

{
sup
g∈G

1

n

n∑
i=1

σig(zi)

}

where σis are independent uniformly-distributed {±1}-valued random variables. Also, the Rademacher

Complexity of G is defined as the expectation of the empirical Rademacher complexity over all

samples of size n drawn according to P :

R(G) := ES∼Pn
[
R̂(G)

]
.

Intuitively, for a fixed set S and a fixed Rademacher vector σ := {σ1, . . . , σn}, the supremum

measures the maximum correlation between g(zi) and σi over all functions g ∈ G. Therefore, by

taking the expectations over the random vector σ, the empirical Rademacher complexity measures

how well, on average, the functions g ∈ G can be correlated with random noise over the fixed

sample set S. Also, Rademacher complexity measures the expected noise-fitting ability of G over

any random sample set of size n drawn according to P n.

The following Talagrand lemma provides a useful property for the Rademacher Complexity. Using

this property, the Rademacher complexity of a hypothesis space F after composition with a Lips-

chitz function φ can be upper-bounded in terms of the Rademacher complexity of the hypothesis

set F .

Lemma 2 (Talagrand’s Contraction property [10]). Let φ be a Lipschitz function with constant L,
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that is, |φ(x)− φ(y)| ≤ L|x− y|. Then for every function class F there holds

EσR(φ ◦ F) ≤ LEσR(F), (2.8)

where φ ◦ F := {φ ◦ f : f ∈ F} and ◦ is the composition operator.

In the following section we introduce some fundamental theorems providing generalization bound

based on the Rademacher Complexity.

Rademacher Complexity-based Generalization Bounds

The following theorem, which is based on McDiarmid’s inequality, serves as a general tool for

providing generalization bounds based on Rademacher complexity.

Theorem 8 (Rademacher complexity-based generalization bound for general function class F ,

Theorem 3.1 in [112]). Let G be a family of functions mapping from Z to [0, 1]. Assume that

S := {z1, . . . , zn} is a set of n samples which are drawn identically and independently according

to the probability distribution D. Then for any g ∈ G and x > 0, the following holds with

probability at least 1− e−x,

E [g(z)] ≤ 1

n

n∑
i=1

g(zi) + 2R(G) +

√
x

2n
,

E [g(z)] ≤ 1

n

n∑
i=1

g(zi) + 2R̂(G) +

√
9x

2n

where R(G) and R̂(G) are Rademchar and empirical Rademacher complexities of G.

Based on Theorem 8 and Lemma 2, now we can introduce the following Theorem which provides

a Rademacher-based bound for binary classification problem.
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Theorem 9 (Rademacher complexity-based generalization bound for binary classification, Theo-

rem 3.2 in [112]). Let LF := {`f : (X, Y )→ `(f(X), Y ), f ∈ F} be a class of loss functions

with ranges in [0, 1]. Assume that the function class F is a set of functions f : X → R, and

{(X1, Y1), . . . , (Xn, Yn)} is a set of n samples distributed identically and independently according

to P . Also let the loss function ` be an L-Lipschitz, and upper-bound the 0 − 1 loss function. Fix

L > 0, then for any f ∈ F and x > 0, with probability at least 1− e−x,

E [`(f(X), Y )] ≤ 1

n

n∑
i=1

`(f(Xi), Yi) + 2LR(F) +

√
x

2n
,

E [`(f(X), Y )] ≤ 1

n

n∑
i=1

`(f(Xi), Yi) + 2LR̂(F) +

√
9x

2n

where R(F) and R̂(F) are Rademchar and empirical Rademacher complexities of F .

Note that the first term in the right-hand side of the above inequalities is the empirical risk of func-

tion f , and the second term is a measure of complexity of hypothesis class F . Based on this obser-

vation, it is not hard to see that these error bounds can be used to design complexity-regularization

algorithms, similar to (2.3), for model selection. These type of algorithm are usually of interest,

as they minimize the upper bound on the true risk E [`(f(X), Y )], hence a better generalization

performance is expected by utilizing them as learning algorithms. Also, it can be seen that the

best error rate that can be achieved using global Rademacher complexity is at least of the order of

O(1/
√
n).

The derivations of these bounds are based on the application of McDiarmid’s inequality which is

the functional version of Hoeffding’s inequality, and it does not use any information regarding the

variance of the functions. For this reason, another type of functional inequality, namely Talagrand’s

inequality, has been used in the derivation of generalization bounds. Talagrand’s inequality is based

on Bernstein’s concentration inequality and yields sharper bounds by incorporating additional data
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on the variances of the functions into the derivations. Talagrand’s inequality was first established

in [132] and later improved by [82, 100, 125, 19]. The following section presents a generalization

bound based on Talagrand’s inequality, which requires a new definition of Rademacher complexity,

namely the local Rademacher complexity.

Local Rademacher Complexity-based Generalization Bounds

local Rademacher complexity refers to the Rademacher complexity of a subset of the function

class F which is determined by a variance constraint on the functions in that class.

Definition 10 (Local Rademacher Complexity (LRC)). Given a hypothesis class G := {g : Z →

R}, and a set of data S := {z1, . . . zn} which are drawn identically and independently according

to distribution P , the empirical local Rademacher complexity of the function class G at radius r is

defined as

R̂(G, r) := Eσ

 sup
g∈G,
Pg2≤r

1

n

n∑
i=1

σig(zi)


where σi’s are independent random variables uniformly chosen from {±1}. Also, the local Rademacher

Complexity of G is defined as the expectation of the empirical local Rademacher complexity over

all samples of size n drawn according to P :

R(G, r) := ES∼Pn
[
R̂(G, r)

]
.

The reason for the definition of local Rademacher complexity is based on the fact that by incorpo-

rating the variance constraint better error rate for the bounds can be obtained. In other words, the

key point in deriving fast rate bounds is that around the best function f ∗ (the function that mini-
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mizes the true risk), the variance of the deviation between the empirical and true errors of functions

can be controlled by a linear function of the expectation of this difference. Based on this obser-

vation, instead of considering the Rademacher complexity of the entire class, we can consider the

Rademacher complexity of a subset of the class which is usually the intersection of the class with

a ball centered at the best function f ∗ in the class [10]. Note that local Rademacher complexity is

always smaller than its corresponding global one, as it considers a smaller subset of the class.

Before presenting the localized version of error bounds, first we introduce some concepts and

definition which are used later in this section and also in the future chapters for the derivation of

local generalization bounds.

Definition 11 (Sub-Root Function). A function ψ : [0,∞]→ [0,∞] is sub-root if

1. ψ is non-negative,

2. ψ is non-decreasing,

3. r 7→ ψ(r)/
√
r is non-increasing for r > 0.

The following lemma is an immediate consequence of the above definition.

Lemma 3 (Lemma 3.2 [10]). Assume that ψ is a sub-root function. Then one can show that ψ is

continuous on [0,∞], and the equation ψ(r) = r has a unique (non-zero) solution which is known

as the fixed point of ψ and it is denotes by r∗. Moreover, for any r > 0, it holds that r > ψ(r) if

and only if r∗ ≤ r.

The following provides another useful definition that will be needed in introducing the main result

of this section.
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Definition 12 (Star-Hull). The star-hull of a function class F around the function f0 is given as

star(F , f0) := {f0 + α(f − f0) : f ∈ F , α ∈ [0, 1]}

Now, we present a lemma from [21] which indicates that the local Rademacher complexity of the

star-hull of any function class F can be considered as a sub-root function, and it has a unique fixed

point. We will see later that this fixed point plays a key role in the local error bounds.

Lemma 4 (Lemma 6 in [21]). For any function class F , the local Rademacher complexity of its

start-hull is a sub-root function.

Now, we can state the main results of this section as the following theorem which is a consequence

of Talagrand’s inequality.

Theorem 13 (Local Rademacher complexity-based generalization bound for general function class

F , Theorem 3.3 in [10]). Let F be a class of functions satisfying supx |f(x)| ≤ b. Let {Xi}ni=1 be

a sequence of n random variables which are independently and identically distributed according to

P . Assume that there exist a constant B and a function V : F → R+ such that for every f ∈ F , it

holds that Pf 2 ≤ V (f) ≤ BPf , where Pf 2 := EX∼P [(f(X))2] and similarly Pf := EX∼Pf(X).

Let ψ be a sub-root function with the fixed point r∗. Suppose that

BR(F , r) ≤ ψ(r),∀r ≥ r∗,

where R(F , r) is the LRC of the function class F defined as

R(F , r) := EX,σ

 sup
f∈F ,
Pf2≤r

1

n

n∑
i=1

σif(xi)
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Then for any f ∈ F , K > 1 and x > 0, with probability at least 1− e−x,

Pf ≤ K

K − 1
Pnf +

704K

B
r∗ +

(22b+ 26BK)x

n
.

where Pnf := 1
n

∑n
i=1 f(Xi).

Also, if F is a convex class of functions, and for any α ∈ [0, 1], V (αf) ≤ α2V (f), then for any

f ∈ F , K > 1 and x > 0 the following inequality holds with probability at least 1− e−x,

Pf ≤ K

K − 1
Pnf +

6K

B
r∗ +

(22b+ 5BK)x

n
.

Now, it can be shown (as we see later in Section 5 of Chapter 5), considering additional conditions

on the data distribution P or on the hypothesis set F , can make an improvement on the (excess)

risk bounds in term of the convergence rate. These assumptions are presented in the following.

Assumption 14. Consider the loss function ` and the function class F which satisfy the following

conditions

1. For every probability distribution P , there exists a function f ∈ F , which satisfies P`f∗ =

inff∈F P`f .

2. There is a constant B > 1, such that for every f ∈ F , we have P (f − f ∗) ≤ BP (`f − `f∗).

3. There exists a constant L, such that the loss function `(Ŷ , Y ) is L-Lipschitz in its first argu-

ment, that is for any Y, Ŷ1, Ŷ2,

|`(Ŷ1, Y )− `(Ŷ2, Y )| ≤ L|Ŷ1 − Ŷ2|.

According to [10], these assumptions are not too restrictive, as they hold for several commonly
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used regularized ERM algorithms. With the help of Assumption 14 and Theorem 13, the following

theorem presents an excess risk bound of the function class F .

Theorem 15 (Distribution-dependent local Rademacher complexity-based excess risk bound for

binary classification, Corollary 5.3 in [10]). Assume that F is a class of functions satisfying

supx |f(x)| ≤ 1. Also, let (Xi, Yi)
n
i=1 be a sequence of n independent random variables dis-

tributed according to P . Suppose that Assumption 14 holds. Define F∗ := {f − f ∗}, where f ∗ is

the function satisfying P`f∗ = inff∈F P`f . Also, let f̂ ∈ F be such that Pn`f̂ = inff∈F Pn`f . As-

sume that ψ is a sub-root function with the fixed point r∗ such that BLR(F∗, r) ≤ ψ(r), ∀r ≥ r∗,

where R(F∗, r) is the LRC of the function class F∗, and it is defined as

R(F∗, r) := EX,σ
[

sup
f∈F ,

P (f−f∗)≤r

1

n

n∑
i=1

σif(Xi)
]
.

Then for any f ∈ F , K > 1, x > 0 and ψ(r) ≤ r, with probability at least 1− e−x,

P (`f̂ − `f∗) ≤
704K

B
r∗ +

(11L+ 26BK)x

n
.

where P (`f̂ − `f∗) := EX∼P
[
`(f̂(X), Y )− `(f ∗(X), Y )

]
.

Also, if F is a convex class of functions, then for any f ∈ F , K > 1 and x > 0, the following

inequality holds with probability at least 1− e−x,

P (`f̂ − `f∗) ≤
6K

B
r∗ +

(11L+ 5BK)x

n
. (2.9)

The result of Theorem 15 uses a distribution-dependent measure of complexity of the function class

F . In other words, the sub-root function ψ in Theorem 15 is bounded in terms of the Rademacher

averages that cannot be computed without knowing the probability distribution P . The next the-
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orem, analogous to Corollary 5.4 in [10], presents a data-dependent version of (5.9) replacing the

Rademacher complexity in Theorem 15 with its empirical counterpart. Indeed, this error bound

can be directly computed from the data, without having a priori information of the distribution.

Theorem 16 (Data-dependent local Rademacher complexity-based excess risk bound for binary

classification, Corollary 5.4 in [10]). Assume that F is a convex class of functions satisfying

supx |f(x)| ≤ 1. Also, let (Xi, Yi)
n
i=1 be a sequence of n independent random variables dis-

tributed according to P . Suppose that Assumption 14 holds. Also, let f̂ ∈ F be such that

Pn`f̂ = inff∈F Pn`f . Assume that ψ̂n is a sub-root function with the fixed point r̂∗. Define

ψ̂n(r) := c1R̂(F∗, c3r) +
c2x

n
, R̂(F∗, c3r) := Eσ

[
sup
f∈F ,

L2Pn(f−f̂)2≤c3r

1

n

n∑
i=1

σif(Xi)
]
,

where c1 := 2L(B ∨ 10L), c2 := 11L2 + c1 and c3 := 2824 + 4B(11L+ 27B)/c2. Then, for any

f ∈ F , K > 1 and x > 0, with probability at least 1− 4e−x,

P (`f̂ − `f∗) ≤
705K

B
r̂∗ +

(11L+ 27BK)x

n
. (2.10)

It is worth mentioning that, the fact that data-dependent bounds of the form (2.10) can be computed

from the data, does not imply that they are easy to compute. However, for several cases including

binary classification and kernel classes they can be efficiently computed (see Section 6 of [10]).

Another interesting application of data-dependent bounds can be considered in devising efficient

learning algorithms using some criteria derived from these bounds, which potentially can lead to

more accurate models.
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Multi-Task Learning

MTL is a learning framework in which several multiple related task are jointly learned with the

hope of achieving a better generalization performance compared to learning each task indepen-

dently. As the key assumption in MTL is based on task relatedness, several MTL models have

been proposed taking different approaches in capturing and modeling task’s relations. However,

the common feature of all these models is that they formulate the MTL problem using a regular-

ized ERM framework in which the objective function is a composition of an over-the-tasks aver-

age loss function and a regularization term to encourage some sort of information sharing among

tasks. More specifically, given T multiple learning tasks, each of which presented by a training

set {(xnt , ynt )}ntn=1 , t ∈ NT , which is drawn from an unknown distribution Pt(x, y) on X × Y ,

the objective is to learn a discriminative functions ft : X → Y for each task t ∈ {1, . . . , T}.

Here X denotes the native space of samples for all tasks and Y is the corresponding output

space. In general, assuming a linear model the predictions functions are given in the form of

ft(x) = 〈wt,x〉 + bt,∀t ∈ {1, . . . , T}. The extension of these to kernel-based models have

been also proposed in the context of MTL [46] which allow more flexibility and can achieve bet-

ter generalization performance. A kernel based MTL model usually considers the linear model

ft(x) := 〈wt,φt(x)〉Ht + bt for t ∈ {1, . . . , T}, where wt is the weight vector related to task

t. Furthermore, the feature space Ht, associated to task t, is induced with the feature mapping φt

associated with the reproducing kernel function kt(xit, x
j
t) for all xit, x

j
t ∈ X . The goal is then to

learn the wt’s and bt’s jointly via the following regularized risk minimization problem:

min
f

1

nT

T∑
t=1

n∑
i=1

`(ft(x
i
t), y

i
t) + λΩ(f) (2.11)

where f := (f1, . . . , fT ) is a vector-valued function parametrized by W := (w1, . . . ,wT ) and

b := (b1, . . . , bT ). Also, Ω(f) is the so-called regularization term which is designed to en-
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force some information sharing among tasks, 1
nT

∑T
t=1

∑n
i=1 `(ft(x

i
t), y

i
t) is the averaged empir-

ical loss over all tasks, and λ is the regularization parameter. This framework—known as reg-

ularized MTL—has be extensively employed in MTL literature among which, we can refer to

[47, 155, 158, 129, 103, 102], just to name a few.

Interestingly, using the following proposition, it can be shown that Problem 2.11 can be converted

to an equivalent optimization problem.

Proposition 17. (Proposition 12 in [73], part (a)) Let f, g : C 7→ R be two functions with C ⊆ X .

For any ν > 0, there is a η > 0, such that the optimal solution of (2.12) is also optimal in (2.13)

min
x∈C

f(x) + νg(x) (2.12)

min
x∈C,g(x)≤η

f(x) (2.13)

Using Proposition 17, it is not hard to verify that Problem 2.11 is equivalent to

min
f

1

nT

T∑
t=1

n∑
i=1

`(ft(x
i
t), y

i
t)

s.t. Ω(f) ≤ R

In other words, this learning problem seeks the vector-valued function f = (f1, . . . , fT ) from the

hypothesis space F := {f = (f1, . . . , fT ) : Ω(f) ≤ R}. Once the hypothesis space of a MTL

model is given, one might be able to derive generalization bounds for the learning problem at hand.

As mentioned earlier, generalization bounds are considered as important tools in understanding

the performance of a learning model and they can reveal the potential capability of the model in a

learning task. For this reason, many MTL efforts have been concentrated on this problem since it

was first studied in [11] and later have been notably pursued in [102, 69, 105, 104, 103]. A seminal
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work in this direction—presented in [101]—derived a MTL generalization bounds based on global

Rademacher complexities. We introduce this result in the following theorem.

Theorem 18 (McDiarmiad-Type Inequality for MTL). Let F be a class of vector-valued functions

{f = (f1, . . . , fT ) : X 7→ RT}, that maps X into [−b, b]T , and let (X i
t , Y

i
t )

(n,T )
(i,t)=(1,1) be a vector

of nT independent random variables where for all fixed t, (X1
t , Y

1
t ), . . . , (Xn

t , Y
n
t ) are identically

distributed according to Pt. Also, assume ` : R→ [0, 1] be an L Lipschitz loss function domination

the 0 − 1-loss function 1(∞,0](.). Let {σit}t,i be a sequence of independent Rademacher varietals.

Then, for every x > 0 with probability at least 1− e−x, the followings hold for any f ∈ F

P`f ≤ Pn`f + 2R(F) +

√
Lbx

nT
,

and,

P`f ≤ Pn`f + 2R̂(F) +

√
9Lbx

nT

where the MTL Rademacher complexity R(F), and its empirical counterpart R̂(F) are defined as

following

R(F) := EXσ

{
sup
f∈F

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

}
, R̂(F) := Eσ

{
sup
f∈F

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

}
.

Also, the true error P`f and the corresponding empirical loss Pn`f are given as

P`f =
1

T

T∑
t=1

E(Xt,Yt)∼Pt`(ft(Xt), Yt), Pn`f =
1

nT

T∑
t=1

n∑
i=1

`(ft(X
i
t), Y

i
t ).

The results of this theorem can be easily proved based on Theorem 16 and 17 in [101] which

is based on McDiarmid inequality. It is worth pointing out that thus far, the best convergence
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rate of the error bounds achieved by global Rademacher analysis—whether distribution- or data-

dependent—in the context of MTL is of the order of O(1/
√
nT ). One thing that can be concluded

from these type of bounds is that, as the number of tasks T grows, the number of sample n per

task can be significantly increased. This indicates that MTL can be specifically advantageous

when the tasks lack a sufficient body of observed data. In recent years, these bounds and more

specifically the data-dependent version of them are efficiently used to design MTL models with

better generalization performance.

However, recall that McDiarmid-type inequities do not make use of the variances of the functions

and consequently, the bounds derived based on global analysis (GRCs) ignore the fact that learn-

ing algorithms typically choose well-performing hypotheses that belong only to a subset of the

entire hypothesis space under consideration. This motivated us to apply Talagrand’s concentration

inequality to derive generalization bounds for MTL that leads to a local analysis and the deriva-

tion of local Rademacher complexities. This local analysis provides less conservative and, hence,

sharper bounds than when a global analysis is employed. To date, there have been only a few

additional works attempting to reap the benefits of such local analysis in various contexts: active

learning for binary classification tasks [75], multiple kernel learning [71, 33], transductive learning

[136], semi-supervised learning [114] and bounds on the LRCs via covering numbers [84]. To the

best of our knowledge, there has been no study that uses the notion of local Rademacher complex-

ity in the context of MTL. Therefore, as a main contribution of this dissertation, we first derive

sharp excess risk bounds for MTL in terms of distribution- and data-dependent LRC. Then, we

propose a new MTL formulation using the criteria derived based on our data-dependent bound. At

the end, we propose an efficient algorithm to solve our new MTL problem.
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CHAPTER 3: LITERATURE REVIEW

Common traditional machine learning problems are often formulated as single task learning. These

models, by definition, use only one task at a time, that is, they use previously collected labeled or

unlabeled training data from one task to make future predictions about data of the same task. MTL,

in contrast, is a machine learning paradigm that addresses the problem of jointly learning multiple

related tasks together with the aim of improving the generalization performance of all tasks, by

allowing them to share information among themselves. MTL has attracted a lot of attention over

the past years since it was first introduced in [23]. The need of MTL may arise when only a few

samples are available for the tasks. This is typically the case in many real world applications where

gathering sufficient amount of training data for a reasonable prediction is expensive or even impos-

sible. To illustrate the utility of MTL, it is worthwhile to compare it with human learning. People

can intelligently speed up their learning process of new things while they apply knowledge and

experience learned in the past. MTL studies can be categorized into experimental and theoretical

studies; such studies are presented in the following sections.

Non-Theoretical Multi-Task Learning Studies

One of the most important and challenging problem in MTL is the assessment of tasks related-

ness, which has motivated two main research questions in this field: “How can the information

contained in multiple tasks be captured and incorporated into a MTL framework?” and “How can

the knowledge be transferred between the tasks with different levels of similarities?”. In response

to these questions various novel MTL studies have been performed which we categorize in what

follows.
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How Does Information Sharing Occur among Tasks?

This line of research considers designing approaches that capture tasks similarities and incorporate

them into a learning process. Studies in this area can be mainly categorized as outlined next:

Shared Features Learning

A commonly used approach in MTL is based on the idea that a common low-dimensional repre-

sentation is shared across multiple related tasks. Inspired by this assumption, different methods

have been proposed which aim at finding a good (shared) feature representation that captures tasks’

underlying commonalities. It is worth pointing out that a typical approach is to employ the group

Lasso-type regularizer on the tasks’ weight matrixW :

R(W ) := ‖W ‖2,1 :=
D∑
d=1

‖wd‖2,

where wd is the d-th row os the matrix W . For example, in [5], a sparse representation shared

across multiple tasks is learned by an `2,1 regularizer which controls the number of learned features

shared among tasks by imposing an `1-norm on the rows level of W . Then an equivalent convex

optimization problem is developed which jointly learns both the task functions and the features

through two alternating steps. Their formulation is interestingly equivalent to the approach of em-

ploying a trace norm as a regularizer in [4, 67, 124, 43, 119] for MTL. Different from exixting

trace norm-based MTL approaches, the authors in [58] proposed to use a capped trace norm reg-

ularizer to penalize only the singular values smaller than some threshold. Another study in [89]

addresses the problem of joint feature selection across multiple tasks using an `2,1-norm reqular-

izer which results to a convex , non-smooth optimization problem. They propose to reformulate
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the problem as its equivalent smooth convex problem and use a Nesterov’s algorithm to solve it.

A more general MTL feature section model in [154] studies the problem of determining the most

appropriate sparsity-enforcing norm by considering a family of `1,q norms for 1 ≤ q ≤ ∞. They

also provide a probabilistic interpretation of this general framework based on which they develop

a probabilistic model using the non-informative Jeffreys prior. An expectation-maximization al-

gorithm is then proposed to learn the models parameters including q. Similar works considering

the sparsity-inducing norm reqularizer on matrix W for common feature selection across tasks,

include [92, 87, 146, 113, 147, 26].

Another widely utilized approach in MTL literature is to capture tasks’ common features using a

combination of two norm regularizers. In [64], the authors proposed a combination of `∞,1-norm

along with a `1,1-norm in the from of the following regularizer

R(W ) := λ1‖W ‖∞,1 + λ2‖W ‖1,1

where the first norm encourages sparsity at the row level ofW for feature learning, and the second

norm is added for element-wise sparsity in W . In a similar attempt, the authors in [145] devel-

oped an online learning framework for Multi-Task (MT) feature selection by introducing norm

regularizers `1,1 and `2,1. A similar study is proposed in [120] in which they used the combina-

tion of norm regularizers `1,1 and `2,1 for a regression problem, and they employed an iteratively

reweighted least square algorithm to handle the optimization problem. Similarly, in [55], they pro-

posed a MT Calibrated Multivariate Regression (CMR) model using a combination of `1,2-norm

and Frobenious norm in a form of a regularizer. In [55], unlike one similar prior study in [88],

the authors showed that the dual problem of their proposed formulation is smooth which enables

developing a fast optimization algorithm to solve the problem.
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Task Relationship Learning

Another MTL paradigm assumes that closely related tasks should also share some parameters

or prior distributions of hyper-parameters among each others. Several approaches have pursued

shared parameter learning.

In [47], the authors proposed a regularized MTL framework in which all task vectors wts are as-

sumed to be the sum of two terms. In particular, for each task t, they assume that wt = w0 + vt,

wherew0 corresponds to the function common to all task, and vt is designed to capture character-

istics specific to each task. Then, they utilize the following regularization terms and estimate the

common parameter w0 as well as the task-specific parameters vt’s, simultaneously.

λ1

T

T∑
t=1

‖vt‖2 + λ2‖w0‖2 (3.1)

They also showed that this regularization is equivalent to considering the closeness of a task’s

model parameters wt to the average of these model parameters, 1
T

∑T
t=1wt, and this can be mod-

eled by letting the regularizer to be

ρ1

T∑
t=1

‖wt‖2 + ρ2

T∑
t=1

‖wt −
1

T

T∑
t=1

wt‖2 (3.2)

Similar to [47], the authors in [155] proposed a MTL formulation which (beside the task parameters

w0 and vt) finds an appropriate linear feature mapping φt(X) = φtX , which maps the tasks into

a k-dimensional latent feature space where the learned task’s hypotheses are similar. For this

purpose, they considered regularizing the mapping function’s complexity by adding the Frobenius

norm penalty ‖φt‖2
F to (3.1) and optimizing it along with ‖w0‖2 and ‖vt‖2. Based on this idea,
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they introduced the regularization term

λ1

T

T∑
t=1

‖vt‖2 + λ2‖w0‖2 +
λ3

T

T∑
t=1

‖φt‖2
F

where φt is a k×dmatrix. In another effort similar to [47], the authors in [130] employed a method

called Relative Margin Machine (RMM) to formulate a MTL problem which takes into account

the tasks relatedness as well as the spread of the data. The idea behind RMM is to maximize the

relative margin (rather than the absolute (classic) margin) of the data from a separating hyperplane

to handle the presence of arbitrary affine transformations or data drifts in particular directions in

the feature space.

Also, in [91], a weighted decomposition ofwt has been considered in the form ofwt = w0 +αtvt,

where αt (the weight of task t’s bias) represents the divergence of task t from other tasks, and is

learned along with w0 and vt during the optimization process.

Instead of the decomposition on task’s weight vectors wt’s, the authors in [2] assumed that for

each task t, the linear predictor function ft(x) can be decomposed into two predictor functions as

follows

ft(x) = wT
t φt(x) + vTt Θψt(x)

where φ is a known high-dimensional feature map and ψ corresponds to a low-dimensional fea-

ture map parameterized by an unknown matrix Θ. w and v are the weight vectors specific to each

prediction problem and Θ is designed to capture the common structure shared by all tasks. Their

formulation results in a non-convex optimization problem for semi-supervised learning. They also

investigated the computational complexity of the their proposed algorithm in terms of covering

numbers. Following the approach in [2], the authors in [26] considered the problem of learning a

shared structure from multiple related tasks using an improved alternating structure optimization.
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They also showed that their non-convex formulation can be converted into a relaxed convex for-

mulation, and they presented a theoretical condition under which the convex formulation finds a

globally optimal solution to its non-convex counterpart.

In [158], a time series problem has been formulated as a MT regression problem in which the task

(prediction at each time point) relatedness is captured through the regulirizer

T−1∑
t=1

‖wt −wt+1‖2
2 (3.3)

which ensures the smoothness between two regression models at successive time points.

Unlike the previous studies which make some prior assumptions about task relationships, there

is another approach in which the task relationships are learned automatically during the training

stage. One of the first efforts in this line of research is done by [46] in which the following

regularizer is proposed to learn the task relation

λ1

T∑
t=1

‖wt‖2 +
T∑
t=1

T∑
s=1

Ast‖wt −ws‖2 (3.4)

where the graph adjacency matrix A = Ast represents the task similarities. Graph-based regular-

ized MTL framework has been also studied in [50, 49, 144, 59, 129, 29, 30, 3].

In another attempt to explore task relationships, the model proposed in [150] formulates a MTL

problem by introducing the regularizer

λ1

2
tr(WW T ) +

λ2

2
tr(WΩ−1W T ) (3.5)

where the matrix Ω represents the relationships among tasks and is is learned during the training

phase. Similar approaches to this have also been studied in [25, 152, 153, 151]. Moreover, in
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a slightly different approach [48], the first regularization term in (3.5) is replaced with the `1-

norm λ1‖W ‖1 to enforce a sparse common subset of features among tasks. Moreover, the trace

regularization term λ3
2

tr(W TLW ) has been added to (3.5) to impose smoothness across features.

Similar to [48], a MTL formulation is introduced in [53] which switches the regularization term

λ3
2

tr(W TLW ) with the sparse inducing regularization penalty λ3‖Ω−1‖1 to impose a common

sparse structure shared among tasks.

How Can the Knowledge Be Transferred Between the Tasks with Different Levels of Similarities?

One limitation of the previous methods is that they consider similar or equal contributions of

all tasks to the joint learning process. However, this assumption might be easily violated in the

existence of “outlier” tasks, which commonly occurs in many practical applications. Therefore,

a major challenge in MTL is to enable tasks to selectively share information with only related

tasks. To be more concrete, some tasks can have full, partial or no overlap with other tasks.

In this case sharing information between unrelated tasks might be detrimental, in the sense that

it may deteriorate each task’s generalization performance. Inspired by this observation, another

influential line of research in MTL considers designing models wherein transferring knowledge

among tasks can benefit all tasks with different level of similarities. Equivalently, these approaches

are interested in a situation when transferring information might not be beneficial to all tasks, or in

the worst case it might even hurt the learning performance of a subset of tasks (or even all tasks).

This situation, which is often referred to as negative transfer, attracted a lot of attention in the past

decade.

Several models have been introduced that address this issue by exploiting the latent relationship

among tasks using different approaches. For example, some methods [8, 143, 150, 153], utilize a

probabilistic framework, where transferring information is based on a common prior among tasks.
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These approaches are usually computationally expensive.

It is worth mentioning that Clustered Multi-Task Learning (CMTL) corresponds to another family

of approaches wherein tasks can be clustered into several groups. Each group contains related

tasks in terms of some notion of similarity. Based on the current literature, clustering strategies

can be broadly categorized into two classes: task-level CMTL and feature-level CMTL.

Task-Level Clustered Multi-Task Learning

In task-level CMTL, it is assumed that the parameters of all tasks’ models within each group are

close to each other. For example, the approach in [46] assumes that the weight vectors of the

tasks assigned to the same group are close to each other. More precisely, they considered a task

clustering approach through the regularizer

λ1

c∑
k=1

T∑
t=1

ρkt ‖wt − w̄k‖2 + λ2‖w̄k‖2

where c is the number of clusters and w̄k is the average parameter of the k-th group. This work

has been later extended in [63] wherein the authors proposed the regularizer

λ1n‖w̄‖2 + λ2

c∑
k=1

mk‖w̄k − w̄‖2 + λ3

c∑
k=1

∑
t∈J (k)

‖wt − w̄k‖2

where the first term corresponds to the global penalty and measures how large the average weight

vectors are, the second term quantifies the closeness of different clusters to each other, and the last

term is a measure of within-cluster variance (quantifying the compactness of the clusters). Note

that, these models are restricted in the sense that: (i) they are designed based on an unrealistic

assumption, as similarity between tasks’ models does not necessarily implies that a meaningful

information sharing can happen between tasks, and (ii) for these methods, the group structure
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(number of groups or basis tasks) is needed to be known a priori. A more flexible clustering

approach has been proposed in [159] in which some representative tasks are identified and utilized

to cluster all other tasks. Their proposed approach uses the regularizer

λ1‖W ‖2
F +

λ2

2

T∑
t=1

T∑
s=1

Zts‖wt −ws‖2
2 +

λ3

2
‖Z‖0,q (3.6)

along with the constraints 0 � vecZ � 1TT , and ZT1T = 1T , where Z ∈ RT×T is a matrix

whose entries indicate the assignment of the tasks to the representative tasks. More specifically,

Zts is a value between 0 and 1 which quantifies the probability that task t selects task s as its

representative task. Also, letting I(x) be an indicator function (whose function value is one if

x 6= 0 and is zero otherwise), the norm penalty ‖Z‖0,q :=
∑T

t=1 I (‖Z(t, :)‖q) determines the

number of representative tasks by calculating the number of rows in Z whose `q-norm in non-

zero. This approach is considered more flexible in the sense that it allows tasks to be assigned to

multiple clusters and also it does not require a priori knowledge regarding the number of clusters.

Feature-Level Clustered Multi-Task Learning

The other clustering strategy in MTL is known as feature-level CMTL, which models task related-

ness by learning shared features among the tasks within each group.

As an example, a decomposition technique has been used in [128] where each task parameterwt is

decomposed into two components wt = ct + st, which correspond to the shared and task-specific

features, respectively. They considered the regularizer

λc‖C‖∗ + λs‖S‖1 (3.7)

where C = [c1, . . . , cT ] and S = [s1, . . . , sT ], and the nuclear norm ‖.‖∗ encourages a low
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rank solution on matrix C for coupling the related tasks, and the `1-norm penalty characterizes

the specific features by imposing the sparsity on matrix S. Then the authors used an accelerated

proximal gradient algorithm to solve the non-smooth optimization problem. A similar formulation

has been proposed in [27], where instead of the `1-norm, an `1,2-norm is employed to induce a

group-sparse structure on the column level of matrix S for identifying the outlier tasks. They adopt

an accelerated proximal method for solving their non-smooth optimization problem. A similar

framework has been introduced in [28] which utilizes an `0-norm (the number of non-zero entries)

on matrix C to capture the sparse discriminative features for each task along with a matrix rank

constraint on matrix S to encourage a shared low-rank structure among multiple tasks. Then they

applied an alternative convex relaxation technique to solve their non-convex optimization problem.

This approach has been also followed in [54] by employing the `1,2-norm on both matrices C and

S to capture the shared features among tasks and discover the outlier tasks, respectively. Also,

the combination of a `1,2-norm on matrix C and a trace norm on matrix S has been proposed in

[27] to identify the outlier tasks by imposing a group-sparse structure on matrix C, and also to

couple the related tasks by inducing a low-rank structure on matrix S. Another similar approach,

introduced in [141], also considers the decomposition scheme W = C + S, where C reflects

global similarities among tasks, and S captures the task-feature relationships. In this study, they

considered the following regularization term

λ1

T∑
t=1

‖ct −
1

T

T∑
t=1

ct‖2
2 + λ2‖S‖2

K (3.8)

where, for some non-negative integer k < min(d, T ) (corresponding to the number of clusters),

‖S‖2
K :=

∑min(d,T )
i=k+1 σ2

i (S), and σ1(S) ≥ σ2(S) ≥ . . . ≥ σmin(d,T )(S) are the singular values of

matrix S. By including the ‖.‖K-norm regularizer, they assumed that “two tasks can be related

only on a subset of features” [141]. This approach results in a non-convex formulation as well as a

co-clustering structure capturing task-feature relationships.
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Similarly, a feature-level clustering model has been introduced in [156], in which a shared feature

representation for all tasks is sought through decomposing each task parameter into two parts: one

responsible to capture the shared structure between tasks and the other to model the variations

specific to each task. Based on the interactions among tasks and features, this model constructs

different task clusters for different features through the regularization term

λ1‖C‖clus + λ2‖C‖2
F + ‖S‖2

F (3.9)

where for each feature d and each pair (ct, cs), the penalty norm ‖C‖clus =
∑D

d=1

∑
t<s |Cdt−Cds|

encourages Cdt, Cds to be close to each other, leading to feature-specific task clusters. The study

in [57] then extends this model by proposing a multi-level structure, which learns task groups in

the context of MTL.

In another outlier detection strategy [76], the existence of k latent basis tasks is assumed and each

task is presented as a linear combination of these basis tasks, that is wt = Lst or equivalently

W = LS where the columns of matrixL ∈ Rd×k represent the latent tasks, and matrix S ∈ Rk×T

contains the weights of linear combination for each task. Then, they used the sparsity inducing

`1-norm to enforce each task to be presented by only a few number of the latent tasks. Also, a

Frobenius norm on matrix L is considered to regularize the predictor weights to avoid over-fitting.

Finally as a different strategy, in [70] the tasks are clustered into G different groups. For each

group g, the group assignment matrix Qg ∈ RT×T is learned along with the model parameter W

during the training stage. The regularization term is expressed as

λ
G∑
g

tr
[
WQg (WQg)

T
]1/2

(3.10)

with the constraint
∑G

g Qg = I , which ensures that each task belongs to only one group. In
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this model, the tasks from different groups are learned independently; however, a shared feature

representation is learned for the tasks within the same group. The formulation results in a a non-

convex optimization problem. An alternating algorithm is then utilized to solve the problem, which

converges to local optima, and suffers potentially from slow convergence. Interestingly, it can

be shown [157] that an equivalent relationship exists between CMTL and alternating structure

optimization, wherein the goal is to find a low-dimensional structure shared by all tasks.

One limitation of these methods is that they do not allow information sharing between the tasks

from different groups. This might be restrictive in the sense that tasks in disjoint groups could

still be inter-related, albeit weakly. Hence, assigning tasks into different groups may not take full

advantage of MTL.

Theoretical Multi-Task Learning Studies

Most of the studies discussed above are only concerned with designing models that can capture the

task relatedness in a meaningful way. However, one main concern regarding any machine learning

problem (including MTL) is that if one can provide some generalization guarantee for the learning

problem at hand. Despite the considerable success and application of MTL to different problems,

only a few number of studies investigated the theoretical aspects and benefits of MTL since it was

first advocated in [11]. However the generalization bounds derived in this work are based on the

notion of VC dimension and depend on a complexity measure which can not be easily inferred

given a particular setting and is often too loose to be of any use in practice. Therefore, more

intuitive complexity measures such as Rademacher complexity, have been considered alternatively

in modern MTL theoretical research. More specifically, Rademacher complexities can provide

tighter generalization error bounds by incorporating the data distribution and learning samples in

computing the complexity of the learning space. It is worth pointing out that Rademacher bounds
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are always at least as good as the VC dimension bounds [68], which explains the popularity of the

Rademacher bounds in recent works.

Among the latest approaches, investigating MTL generalization guarantees using Rademacher av-

erages, the study in [101] considers linear MTL frameworks for binary classification. In these

framework, data from all tasks are pre-processed by a common bounded linear operator. More-

over, operator norm constraints are used to control the complexity of the associated hypothesis

spaces. Note that both distribution- and data-dependent error bounds derived based on GRC, the

convergence rate is of order O(1/
√
nT ). Another study, [102], provides bounds for the empirical

and expected Rademacher complexities of linear transformation classes. Based on Hölder’s in-

equality, GRC-based risk bounds of order O(1/
√
nT ) are established for MTL hypothesis spaces

with graph-based and LSq -Schatten norm regularizers, where q ∈ {2} ∪ [4,∞].

The subject of MTL generalization guarantees experienced renewed attention in recent years. In

[69], the authors take advantage of the strongly-convex nature of certain matrix-norm regularizers

to easily obtain generalization bounds for a variety of machine learning problems. Part of their

work is devoted to the realm of online and off-line MTL. In the latter case, which pertains to

the focus of our work, the paper provides a distribution-dependent GRC-based excess risk bound

of order O(1/
√
nT ). Moreover, [104] presents a global Rademacher complexity analysis lead-

ing to both data and distribution-dependent excess risk bounds of order O(
√

log(nT )/nT for a

trace norm regularized MTL model. Also, [103] examines the bounding of (global) Gaussian

complexities of function classes that result from considering composite maps, as it is typical in

MTL among other settings. An application of the paper’s results yields MTL risk bounds of order

O(1/
√
nT ). More recently, [105] presents excess risk bounds of order O(1/

√
nT ) for both MTL

and Learning-to-Learn (LTL) settings and reveals conditions, under which MTL is more beneficial

when compared to learning tasks independently.
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Finally, due to being domains related to MTL, but, at the same time, less connected to the focus

of this study, we only mention in passing a few efforts that pertain to generalization guarantees

in the realm of life-long learning and domain adaptation. Generalization performance analysis in

life-long learning has been investigated in [135, 13, 12, 117] and [116]. Also, in the context of

domain adaptation, similar considerations are examined in [96, 98, 97, 34, 148, 99] and [35].
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CHAPTER 4: METHODOLOGY

In this chapter, we generally present an overview of the methods we used to derive LRC-based

excess risk bounds for MTL.

A Concentration Inequality Using The Entropy Method

Recall that the derivation of LRC-based error bounds makes use of Talagrand’s inequality which

by itself is the application of Bernstein’s concentration inequality for function classes. As we

pointed out earlier one elegant way to prove concentration inequalities is the so-called entropy

method which is based on logarithmic Sobolev inequalities, and was first developed by [81, 80,

16, 100, 125, 19] to provide sharp concentration bounds for the suprema of empirical processes.

These inequalities are usually considered as the exponential version of the well-known Efron-

Stein inequality, and they are powerful tools, as they can provide general way to obtain results in

many applications. As an example in [17], it has been shown that this method can be applied to

retrieve the results of Talagrand’s convex-distance inequality. In the following, we first present

some notation which will be frequently used throughout the chapter.

Let X1, . . . , Xn be n independent random variables taking values in a measurable space X . As-

sume that g : X n → R is a measurable function and define

Z := g(X1, . . . , Xn),

which is the quantity we are concerned about its concentration. Let X ′1, . . . , X
′
n denote an inde-
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pendent copy of X1, . . . , Xn. Now, let

Z ′i := g(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) (4.1)

which is obtained by replacing the variable Xi with X ′i. Define the random variables V + and V −

by

V + :=
n∑
i=1

E′
[(
Z − Z ′i

)2

+

]
. (4.2)

and

V − :=
n∑
i=1

E′
[(
Z − Z ′i

)2

−

]
.

where (y)+ = max{0, y}, and (y)− = min{0, y}. Also, E′[·] := E[·|X] denotes the expectation

only with respect to the variables X ′1, . . . , X
′
n.

The first inequality we will present was proposed by [44], and later improved by [131].

Proposition 19 (Efron-Stein Inequality). Using the introduced notation above, we have

Var(Z) ≤ 1

2
E

[
n∑
i=1

(Z − Z ′i)
2

]

Note that this inequality can be also written as

Var(Z) ≤ E
[
V +
]

= E
[
V −
]
. (4.3)

Although this inequality can be very helpful in finding sharp bounds on the variance of complicated

functions, it can not take into account the exponential nature of the tails. for this reason, the
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authors in [17] showed that under some conditions the Efron-Stein inequality can be transformed

to exponential bounds.

Theorem 20 (Exponential Version of Efron-stein Inequality, Theorem 2 in [17]). Let θ > 0 and

λ ∈ (0, 1/θ). Then, the following inequalities hold

logE
(
eλ(Z−EZ)

)
≤ λθ

1− λθ
logE

[
exp

(λV +

θ

)]
,

and

logE
(
e−λ(Z−EZ)

)
≤ λθ

1− λθ
logE

[
exp

(λV −
θ

)]
.

It is worth pointing out that we will be using only the first inequality in our derivations of Tala-

grand’s inequality for MTL. However, for the sake of completeness, we provided all the results as

they appeared in Theorem 2 of [17].

Recall that the ultimate goal is to derive a concentration bound for Z. In order to achieve this

goal, the following lemma—presented in [20]— can be used to transfer the upper bound on the

log-moment generating function logE
(
e−λ(Z−EZ)

)
, in Theorem 20, to a tail probability on Z.

Lemma 5 (Lemma 2.11 in [20]). Let Z be a random variable, A,B > 0 be some constants. If for

any λ ∈ (0, 1/B) it holds

logE
(
eλ(Z−EZ)

)
≤ Aλ2

2
(
1−Bλ

) ,
then for all x ≥ 0,

P
[
Z ≥ EZ +

√
2Ax+Bx

]
≤ e−x.
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In order to take advantage of Lemma 5, one needs to make λθ
1−λθ logE

[
exp

(
λV +

θ

)]
in the form of

Aλ2

2
(

1−Bλ
) . The following results provide some helpful tools to achieve this goal.

We start by introducing a property which is satisfied by many important examples (including some

interesting empirical processes), and can be efficiently used to bound the log-moment generating

function of those empirical processes which satisfy this property.

Definition 21 (b-self bounding property, Section 3.3 in [18]). A function g : X n → [0,∞) is

said to be b-self bounding (b > 0), if there exist functions gi : X n−1 → R, such that for all

X1, . . . , Xn ∈ X and all i ∈ Nn,

0 ≤ g(X1, . . . , Xn)− gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) ≤ b,

and,

n∑
i=1

(
g(X1, . . . , Xn)− gi(X1, . . . , Xi−1, Xi+1, . . . , Xn)

)
≤ g(X1, . . . , Xn).

Theorem 22 (Theorem 6.12 in [18]). Assume that Z = g(X1, . . . , Xn) is a 1-self bounding func-

tion. Then for every λ ∈ R,

logEeλ(Z−EZ) ≤ φ(λ)EZ, (4.4)

where φ(λ) = eλ − λ− 1.

Corollary 23. Assume that Z = g(X1, . . . , Xn) is a b-self bounding function (b > 0). Then, for

any λ ∈ R we have

logEeλZ ≤
(
eλb − 1

)
b

EZ.

Proof. Note that Eq. (4.4) can be rewritten as logE[exp(λZ)] ≤ (eλ−1)E[Z]. The stated inequal-

ity follows immediately by rescaling Z to Z/b in the above inequality.
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A Talagrand-type Inequality for Suprema of Empirical Processes

The results presented above can be efficiently applied to the suprema of empirical processes which

lead to the derivation of a Talagrand-type inequalities for these interesting quantities.

We start by providing an upper bound on the variance-type quantity V + for the suprema of an

empirical process.

Theorem 24. LetX1, . . . , Xn be n independent variables which are identically distributed accord-

ing to P . Assume that F is a countably infinite set of functions defined as F = {f : X → R} such

that each function f in F satisfies E[f ] = 0. Let Z := supf∈F
∑n

i=1 f(Xi), and

Z ′i := sup
f∈F

[ n∑
j=1

f(Xj)− f(Xi) + f(X ′i)
]

where X ′1, . . . , X
′
n denote an independent copy of X1, . . . , Xn. Also, define

W := sup
f∈F

n∑
i=1

[
f(Xi)

]2
and

Υ := sup
f∈F

n∑
i=1

E
[
f(Xi)

]2
.

Then the quantity V + defined in (4.2) can be bounded as

V + ≤ W + Υ.
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Proof. Let f̂ be such that Z =
∑n

i=1 f̂(Xi). It can be shown that for any i ∈ 1, . . . , n,

Z − Z ′i ≤ f̂(Xi)− f̂(X ′i),

and therefore,

(Z − Z ′i)2
+ ≤

(
f̂(Xi)− f̂(X ′i)

)2
.

Then, it follows from the assumption E′[f(X ′i)] = 0 that

V + :=
n∑
i=1

E′
[(
Z − Z ′i

)2

+

]
≤

n∑
i=1

E′
[(
f̂(Xi)− f̂(X ′i)

)2]
=

n∑
i=1

[
f̂(Xi)

]2
+

n∑
i=1

E′
[
f̂(X ′i)

]2
≤ sup

f∈F

n∑
i=1

[
f(Xi)

]2
+ sup

f∈F

n∑
i=1

E
[
f(Xi)

]2
= W + Υ

Theorem 25. Suppose that the conditions of Theorem 24 hold. Moreover, assume that the functions

in F have ranges in [−b, b] with b > 0. Let W := supf∈F
∑n

i=1

[
f(Xi)

]2 with EW = Σ2. Then,

for any λ ∈ (0, 1/b)

logEeλ(W/b) ≤ λ

b(1− λb)
[4bR(F) + Υ] .

where Υ is defined as in Theorem 24, and the Rademacher complexity R(F) is defined according
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to Definition 7 as

R(F) := EX,σ sup
f∈F

n∑
i=1

σif(Xi)

with σi being n independent Rademacher variables.

Proof. Introduce

Wi := sup
f∈F

[ n∑
j=1

[f(Xj)]
2 − [f(Xi)]

2
]

Let f̃ be the function such that W =
∑n

i=1[f̃(Xi)]
2, and similarly f̃ i be the function achieving the

supremum in the definition of Wi. It can be shown that

W −Wi =
n∑
i=1

[f̃(Xi)]
2 − sup

f∈F

[ n∑
j=1

[f(Xj)]
2 − [f(Xi)]

2
]

≤
n∑
i=1

[f̃(Xi)]
2 −

[ n∑
j=1

[f̃(Xj)]
2 − [f̃(Xi)]

2
]

=
[
f̃(Xi)

]2 ≤ b2

Also, it can be easily shown that W −Wi ≥ 0. From the other side, we have

n∑
i=1

(W −Wi) ≤
n∑
i=1

[
f̃(Xi)

]2 ≤ sup
f∈F

n∑
i=1

[
f(Xi)

]2
= W

Therefore, according to Definition 21, W/b is a b-self bounding function. Now applying Corol-

lary 23 gives for any λ ∈ (0, 1/b),

logEeλ(W/b) ≤ eλb − 1

b2
EW =

eλb − 1

b2
Σ2 ≤ λΣ2

b(1− λb)
, (4.5)
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where the last inequality follows from (ex − 1)(1− x) ≤ x,∀x ∈ [0, 1]. Furthermore, the term Σ2

can be bounded as

Σ2 = EX sup
f∈F

n∑
i=1

[
f(Xi)

]2 −Υ + Υ

= EX sup
f∈F

n∑
i=1

[
f(Xi)

]2 − sup
f∈F

n∑
i=1

E
[
f(Xi)

]2
+ Υ

≤ EX sup
f∈F

[
n∑
i=1

[
f(Xi)

]2 − n∑
i=1

E
[
f(Xi)

]2]
+ Υ

≤ 2EX,σ sup
f∈F

[
n∑
i=1

σi
[
f(Xi)

]2]
+ Υ

≤ 4bEX,σ sup
f∈F

[
n∑
i=1

σif(Xi)

]
+ Υ

= 4bR(F) + Υ

where in the second last inequality we used Lemma 1—the standard symmetrization technique

which relates the uniform deviation of an empirical average from its expectation to the Rademacher

complexity— Also, the last inequality is the direct application of Lemma 2 with φ(x) = x2 with

Lipschitz constant 2b on interval [−b, b], and the last equality uses the definition of Rademacher

complexity. Plugging the above inequality back into (4.5) completes the proof.

Corollary 26. Assume that the conditions of Theorem 25 hold. If Z = supf∈F
∑n

i=1 f(Xi), and

W , Υ and R(F) are defined as in Theorem 25, then for any b > 0 and λ ∈ (0, 1/b),

logE
(
eλ(Z−EZ)

)
≤ λ2

(1− 2λb)
[4bR(F) + 2Υ] . (4.6)

Proof. Note that by combining the results of Theorem 20 and Theorem 24, we can get for any
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λ ∈ (0, 1/b),

logE
(
eλ(Z−EZ)

)
≤ λb

1− λb
logE

[
exp

(λ(W + Υ
)

b

)]
.

which together with Theorem 25 gives

logE
(
eλ(Z−EZ)

)
≤ λb

1− λb

[
λ

b(1− λb)
[4bR(F) + Υ] +

λΥ

b

]
.

≤ λb

1− λb

(
λ

b(1− λb)

)
[4bR(F) + 2Υ]

=
λ2

(1− λb)2
[4bR(F) + 2Υ] .

Also, regarding the fact that for any λ ∈ (0, 1/2b), it holds that (1− λb)2 ≥ 1− 2λb ≥ 0, we have

logE
(
eλ(Z−EZ)

)
≤ λ2

(1− 2λb)
[4bR(F) + 2Υ] .

Now, with the help of Lemma 5, we can convert the bound in (4.6) into a tail probability on

Z = supf∈F
∑n

i=1 f(Xi) as presented in the following.

Corollary 27. If the conditions of Corollary 26 hold, then for any x > 0, with probablity at least

1− e−x,

Z ≤ 4R(F) +
√

8xΥ + 4bx

where R(F) and Υ are defined as in Theorem 25.

Proof. Note (4.6) together with Lemma 5, for A = 2 [4bR(F) + 2Υ] and B = 2b gives with
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probability at least 1− e−x,

Z ≤ EZ +
√

4x [4bR(F) + 2Υ] + 2bx

≤ EZ + 4
√
bxR(F) +

√
8xΥ + 2bx

leqEZ + 2R(F) + 2bx+
√

8xΥ + 2bx

≤ 4R(F) +
√

8xΥ + 4bx

where the second last inequality follows from 2
√
uv ≤ u + v, and the last step uses the sym-

metrization inequality E supf∈F
∑n

i=1 f(Xi) ≤ 2E supf∈F
∑n

i=1 σif(Xi) = 2R(F) (Note that we

assumed Ef = 0).
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CHAPTER 5: LOCAL RADEMACHER COMPLEXITY-BASED EXCESS

RISK BOUNDS FOR MULTI-TASK LEARNING

Through a Talagrand-type concentration inequality adapted to the MTL case, one of the main

contributions of this dissertation is the derivation of sharp bounds on the excess MTL risk in terms

of the distribution- and data-dependent LRC. For a given number of tasks T , these bounds admit

faster (asymptotic) convergence characteristics in the number of observations per task n, when

compared to corresponding bounds hinging on the GRC. Thence, these faster rates allow for

heightened confidence that the MTL hypothesis selected by a learning algorithm approaches the

best-in-class solution as n increases beyond a certain threshold. We also derive a new bound on

the LRC, which generally holds for hypothesis classes with any norm function or strongly convex

regularizers. This bound readily facilitates the bounding of the LRC for a range of such regularizers

(not only for MTL, but also for the standard i.i.d. setting), as we demonstrate for classes induced by

graph-based, Schatten- and group-norm regularizers. Moreover, we prove matching lower bounds

showing that, aside from constants, the LRC-based bounds are tight for the considered applications.

Our derived bounds reflect that one can trade off a slow convergence speed w.r.t. T for an improved

convergence rate w.r.t. n. The latter one ranges, in the worst case, from the typical GRC-based

bounds O(1/
√
n), all the way up to the fastest rate of order O(1/n) by allowing the bound to

depend less on T . Nevertheless, the premium in question becomes less relevant to MTL, in which

T is typically considered as fixed.

In what follows, we use the following notational conventions: vectors and matrices are depicted

in bold face. The superscript T , when applied to a vector/matrix, denotes the transpose of that

quantity. We define NT := {1, . . . , T}. For any random variables X, Y and functions f we

use Ef(X, Y ) and EXf(X, Y ) to denote the expectation w.r.t. all the involved random variables
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and the conditional expectation w.r.t. the random variable X . For any vector-valued function

f = (f1, . . . , fT ), we introduce the following two notations:

Pf :=
1

T

T∑
t=1

Pft =
1

T

T∑
t=1

E(f(Xt)), Pnf :=
1

T

T∑
t=1

Pnft =
1

T

T∑
t=1

1

n

n∑
i=1

f(X i
t).

We also denote fα = (fα1 , . . . , f
α
T ),∀α ∈ R. For any loss function ` and any f = (f1, . . . , fT ) we

define `f = (`f1 , . . . , `fT ) where `ft is the function defined by `ft((Xt, Yt)) = `(ft(Xt), Yt).

Talagrand-Type Inequality for Multi-Task Learning

The derivation of our LRC-based error bounds for MTL is founded on the following modified

Talagrand’s concentration inequality adapted to the context of MTL, showing that the uniform

deviation between the true and empirical means in a vector-valued function class F can be dom-

inated by the associated multi-task Rademacher complexity plus a term involving the variance of

functions in F . We defer the proof in Appendix A.

Theorem 28 (TALAGRAND-TYPE INEQUALITY FOR MTL). Let F = {f := (f1, . . . , fT )} be a

class of vector-valued functions satisfying supt,x |ft(x)| ≤ b. Let X := (X i
t)

(T,Nt)
(t,i)=(1,1) be a vector

of
∑T

t=1Nt independent random variables where X1
t , . . . , X

n
t ,∀t are identically distributed. Let

{σit}t,i be a sequence of independent Rademacher variables. If 1
T

supf∈F
∑T

t=1 E [ft(X
1
t )]

2 ≤ r,

then, for every x > 0, with probability at least 1− e−x,

sup
f∈F

(Pf − Pnf) ≤ 4R(F) +

√
8xr

nT
+

12bx

nT
, (5.1)

where n := mint∈NT Nt, and the multi-task Rademacher complexity of function class F is defined
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as

R(F) := EX,σ

{
sup

f=(f1,...,fT )∈F

1

T

T∑
t=1

1

Nt

Nt∑
i=1

σitft(X
i
t)

}
.

Note that the same bound also holds for supf∈F(Pnf − Pf).

In Theorem 28, the data from different tasks assumed to be mutually independent, which is typical

in the MTL setting [101]. To present the results in a clear way we always assume in the following

that the available data for each task is the same, namely n.

Remark 29. At this point, we would like to present the result of the above theorem for the special

case T = 1 which corresponds to the traditional single task learning framework. It is very easy to

verify that for T = 1, the bound in (5.1) can be written as

sup
f∈F

(Pf − Pnf) ≤ 4R(F) +

√
8xr

n
+

12bx

n
, (5.2)

where the function f is chosen from an scalar-valued function class F . This bound can be com-

pared to the result of Theorem 2.1 of [10] (for α = 1) which is presented as

sup
f∈F

(Pf − Pnf) ≤ 4R(F) +

√
2xr

n
+

8bx

n
(5.3)

Note that the difference between the constants in (5.2) and (5.3), is due to the fact that we failed

in directly applying Bousquet’s version of Talagrand inequality—similar to what has been done in

[10] for scalar-valued functions—to the class of vector-valued functions. To make it more clear,

let Z be defined as (A.1) with the jackknife replication Zs,j for which a lower bound Z
′′
s,j can be

found such that Z
′′
s,j ≤ Z − Zs,j . Then, in order to apply Theorem 2.5 of [20], one needs to

show that the quantity 1
nT

∑T
s=1

∑n
j=1 Es,j[(Z

′′
s,j)

2] is bounded. This goal, ideally, can be achieved

by including a constraint similar to 1
T

supf∈F
∑T

t=1 E [ft(X
1
t )]

2 ≤ r in Theorem 28. However,
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we could not come up with any obvious and meaningful way—appropriate for MTL—of defining

this constraint to satisfy the boundedness condition 1
nT

∑T
s=1

∑n
j=1 Es,j[(Z

′′
s,j)

2] in terms of r. We

would like emphasize that the key ingredient to the proof of Theorem 28 is the so-called Loga-

rithmic Sobolev inequality—Theorem 20—which can be considered as the exponential version of

Efron-Stein inequality.

Excess MTL Risk Bounds Based on Local Rademacher Complexities

The cornerstone of Sect. 5’s results is the presence of an upper bound of an empirical process’s vari-

ance (the second term in the right-hand side of (5.1)). In this section, we consider the Rademacher

averages associated with a smaller subset of the function class F and use them as a complex-

ity term in the context of excess risk bounds. As pointed out in [10], these (local) averages are

always smaller than the corresponding global Rademacher averages and allow for eventually de-

riving sharper generalization bounds. Herein, we exploit this very fact for MTL generalization

guarantees.

Theorem 28 motivates us to extend the definition of classical LRC R(F sclr, r) for a scalar-valued

function class F sclr as

R(F sclr, r) := EX,σ
[

sup
f∈Fsclr,V (f)≤r

1

n

n∑
i=1

σif(Xi)
]

to the Multi-Task Local Rademacher Complexity (MT-LRC) using the following definition.

Definition 30 (MULTI-TASK LOCAL RADEMACHER COMPLEXITY). For a vector-valued func-

tion class F the Local Rademacher Complexity R(F , r) and its empirical counterpart R̂(F , r)
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are defined as

R(F , r) := E
[

sup
f=(f1,...,fT )∈F

V (f)≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

]
,

R̂(F , r) := Eσ
[

sup
f=(f1,...,fT )∈F

Vn(f)≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

]
,

(5.4)

where V (f) and Vn(f) are upper bounds on the variance and empirical variances of the functions

in F , respectively. This dissertation makes the choice V (f) = Pf 2 and Vn(f) = Pnf
2 where

Pf 2 :=
1

T

T∑
t=1

Pf 2
t =

1

T

T∑
t=1

E [ft(Xt)]
2 ,

Pnf
2 :=

1

T

T∑
t=1

Pnf
2
t =

1

T

T∑
t=1

1

n

n∑
i=1

(ft(X
i
t))

2.

Analogous to single task learning, the challenge in applying MT-LRC (5.4) to refine the existing

learning rates is to find an optimal radius trading-off the size of the set {f ∈ F : V (f) ≤ r} and

its complexity, which, as we show later, reduces to the calculation of the fixed-point of a sub-root

function.

The definition of local Rademacher complexity is based on the fact that by incorporating the vari-

ance constraint, a better error rate for the bounds can be obtained. In other words, the key point in

deriving fast rate bounds is that around the best function f ∗ (the function that minimizes the true

risk), the variance of the deviation between the empirical and true errors of functions in the class

is controlled by a linear function of the expectation of this difference. We will call a class with

this property a Bernstein class, and we provide a definition of a vector-valued Berstein class F as

following.

Definition 31 (VECTOR-VALUED BERNSTEIN CLASS). A vector-valued function class F is said

to be a (β,B)-Bernstein class with respect to the probability measure P , if for every 0 < β ≤ 1,
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B ≥ 1 and any f ∈ F , there exists a function V : F → R+ such that

Pf 2 ≤ V (f) ≤ BPfβ. (5.5)

It can be shown that the Bernstein condition (5.5) is not too restrictive and it holds, for example, for

non-negative bounded functions with respect to any probability distribution [10]. Other examples

include the class of excess risk functions LF := {`f − `f∗ : f ∈ F}—with f ∗ ∈ F the minimizer

of P`f— when the function class F is convex and the loss function ` is strictly convex.

In this section, we show that under some mild assumptions on a vector-valued Bernstein class, the

LRC-based excess risk bounds can be established for MTL. We assume that the loss function `

and the vector-valued hypothesis space F satisfy the following conditions:

Assumption 32.

1. There is a function f ∗ = (f ∗1 , . . . , f
∗
T ) ∈ F satisfying P`f∗ = inff∈F P`f .

2. There is constant B′ ≥ 1, such that for every f ∈ F we have P (f −f ∗)2 ≤ B′P (`f − `f∗).

3. There exists a constant L, such that the loss function ` is L-Lipschitz in its first argument.

As it has been pointed out in [10], there are many examples of regularized algorithms for which

these conditions can be satisfied. More specifically, a uniform convexity condition on the loss func-

tion ` is usually sufficient to satisfy Assumption 32.2. As an example for which this assumption

holds, [10] refereed to the quadratic loss function `(f(X), Y ) = (f(X)− Y )2 when the functions

f ∈ F are uniformly bounded, More specifically, if for all x ∈ X , Y ∈ Y and f ∈ F , it holds

that |f(X) − Y | ∈ [0, 1], then it can be shown that the conditions of Assumption 32 are met with

L = 1 and B = 1.
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Now we can present the main result of this section showing that the excess error of MTL can

be bounded by the fixed-point of a sub-root function dominating the MT-LRC. The proof of the

results is provided in the Appendix B.

Theorem 33 (Distribution-dependent excess risk bound for MTL). Let F := {f := (f1, . . . , fT ) :

∀t, ft ∈ RX} be a class of vector-valued functions f satisfying supt,x |ft(x)| ≤ b. Also, Let

X := (X i
t , Y

i
t )

(T,n)
(t,i)=(1,1) be a vector of nT independent random variables where for each task

t, (X1
t , Y

1
t ) . . . , (Xn

t , Y
n
t ) be identically distributed. Suppose that Assumption 32 holds. Define

F∗ := {f − f ∗}, where f ∗ is the function satisfying P`f∗ = inff∈F P`f . Let B := B′L2 and

ψ be a sub-root function with the fixed point r∗ such that BLR(F∗, r) ≤ ψ(r),∀r ≥ r∗, where

R(F∗, r) is the LRC of the functions class F∗:

R(F∗, r) := EX,σ
[

sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)
]
. (5.6)

Then, we have the following bounds in terms of the fixed point r∗ of ψ(r):

1. For any f ∈ F , K > 1 and x > 0, with probability at least 1− e−x,

P (`f − `f∗) ≤
K

K − 1
Pn(`f − `f∗) + 800Kr∗ +

(48Lb+ 28BK)Bx

nT
. (5.7)

2. If the function class F is convex, then for any f ∈ F , K > 1 and x > 0, with probability at

least 1− e−x,

P (`f − `f∗) ≤
K

K − 1
Pn(`f − `f∗) + 32Kr∗ +

(48Lb+ 16BK)Bx

nT
. (5.8)

Corollary 34. Let f̂ be any element of convex class F satisfying Pn`f̂ = inff∈F Pn`f . Assume

that the conditions of Theorem 33 hold. Then for any f ∈ F , x > 0 and r > ψ(r), with probability

59



at least 1− e−x,

P (`f̂ − `f∗) ≤ 32Kr∗ +
(48Lb+ 16BK)Bx

nT
. (5.9)

Proof. The results follows by noticing that Pn(`f̂ − `f∗) ≤ 0.

The next theorem, analogous to Corollary 5.4 in [10], presents a data-dependent version of (5.9)

replacing the Rademacher complexity in Corollary 34 with its empirical counterpart. The proof of

this Theorem, which repeats the same basic steps utilized in Theorem 5.4 in [10], can be found in

Appendix B.

Theorem 35 (Data-dependent excess risk bound for MTL). Let f̂ be any element of convex class

F satisfying Pn`f̂ = inff∈F Pn`f . Assume that the condition of Theorem 33 hold. Define

ψ̂n(r) = c1R̂(F∗, c3r) +
c2x

nT
, R̂(F∗, c3r) := Eσ

[
sup
f∈F ,

L2Pn(f−f̂)2≤c3r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)
]
,

where c1 = 2Lmax (B, 16Lb), c2 = 128L2b2 + 2bc1 and c3 = 4 + 128BK + 4B2(48Lb +

16BK)/c2. Then for any f ∈ F , K > 1 and x > 0, with probability at least 1− 4e−x, we have

P (`f̂ − `f∗) ≤ 32Kr̂∗ +
(48Lb+ 16BK)Bx

nT
,

where r̂∗ is the fixed point of the sub-root function ψ̂n(r).

An immediate consequence of the results of this section is that one can derive excess risk bounds

for given regularized MTL hypothesis spaces. In the next section, by further bounding the fixed

point r∗ in Corollary 34 (and r̂∗ in Theorem 35), we will derive distribution (and data)-dependent

excess risk bounds for several commonly used norm-regularized MTL hypothesis spaces.
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Local Rademacher Complexity Bounds for Norm Regularized MTL Models

This section presents very general MT-LRC bounds, based on the distribution-dependent excess

risks established in Theorem 33, for hypothesis spaces defined by norm regularizers, which allows

us to immediately derive, as specific application cases, LRC bounds for group-norm, Schatten-

norm, and graph-regularized MTL models. It should be mentioned that similar data-dependent

MT-LRC bounds are also available by a similar deduction process.

Preliminaries

We consider linear MTL models where we associate to each task-wise function ft a weightwt ∈ H

by ft(X) = 〈wt, φ(X)〉. Here φ is a feature map associated to a Mercer kernel k satisfy-

ing k(X, X̃) = 〈φ(X), φ(X̃)〉,∀X, X̃ ∈ X and wt belongs to the reproducing kernel Hilbert

space HK induced by k with inner product 〈·, ·〉. We assume that the multi-task model W =

(w1, . . . ,wT ) ∈ H × . . .×H is learned by a regularization scheme:

min
W

Ω (W ) + C
T∑
t=1

n∑
i=1

`(
〈
wt, φ(X i

t)
〉
H , Y

i
t ), (5.10)

where the regularizer Ω(·) is used to enforce a priori information to avoid over-fitting. This regu-

larization scheme amounts to performing ERM in the hypothesis space

F :=
{
X 7→ [〈w1, φ(X1)〉 , . . . , 〈wT , φ(XT )〉]T : Ω(D1/2W ) ≤ R2

}
, (5.11)

where D is a given positive operator defined in H. Note that the hypothesis spaces corresponding

to group and Schatten norms can be recovered by taking D = I , and choosing their associated

norms. More specifically, by choosing Ω(W ) = 1
2
‖W ‖2

2,q, we can retrieve an L2,q-norm hy-
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pothesis space in (5.11). Similarly, the choice Ω(W ) = 1
2
‖W ‖2

Sq
gives an LSq -Schatten norm

hypothesis space in (5.11). Furthermore, the graph-regularized MTL [46, 102, 109] can be spe-

cialized by taking Ω(W ) = 1
2
‖D1/2W ‖2

F , wherein ‖.‖F is a Frobenius norm, and D = L + ηI

with L being a graph-Laplacian, and η being a regularization constant. On balance, all these MTL

models can be considered as norm-regularized models. Also, for specific values of q, it can be

shown that they are strongly convex.

General Bound on the Local Rademacher Complexity

Now, we can provide the main results of this section which give general LRC bounds for any

general MTL hypothesis space of the form (5.11) in which Ω(W ) is given as a strongly convex or

a norm function ofW .

Theorem 36 (Distribution-dependent MT-LRC bounds by strong convexity). Let Ω(W ) in (5.10)

be µ-strongly convex with Ω∗(0) = 0 and ‖k‖∞ ≤ K ≤ ∞. Let X1
t , . . . , X

n
t be an i.i.d. sample

drawn from Pt. Also, assume that for each task t, the eigenvalue-eigenvector decomposition of the

Hilbert-Schmidt covariance operator Jt is given by Jt := E(φ(Xt)⊗ φ(Xt)) =
∑∞

j=1 λ
j
tu

j
t ⊗ u

j
t ,

where (ujt)
∞
j=1 forms an orthonormal basis of H, and (λjt)

∞
j=1 are the corresponding eigenvalues,

arranged in non-increasing order. Then for any given positive operator D on RT , any r > 0 and

any non-negative integers h1, . . . , hT :

R(F , r) ≤ min
{0≤ht≤∞}Tt=1


√
r
∑T

t=1 ht
nT

+
R

T

√
2

µ
EX,σ ‖D−1/2V ‖2

∗

 , (5.12)

where V =
(∑

j>ht

〈
1
n

∑n
i=1 σ

i
tφ(X i

t),u
j
t

〉
ujt

)T
t=1

.
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Proof. Note that with the help of LRC definition, we have for any function class F ,

R(F , r) =
1

nT
EX,σ

 sup
f=(f1,...,fT )∈F ,

Pf2≤r

n∑
i=1

〈
(wt)

T
t=1 ,

(
σitφ(X i

t)
)T
t=1

〉
=

1

T
EX,σ

 sup
f∈F ,
Pf2≤r

〈
(wt)

T
t=1 ,

(
∞∑
j=1

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

)T

t=1

〉
≤ 1

T
EX,σ

 sup
Pf2≤r

〈(
ht∑
j=1

√
λjt
〈
wt,u

j
t

〉
ujt

)T

t=1

,

(
ht∑
j=1

√
λjt

−1
〈

1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

)T

t=1

〉 (5.13)

+
1

T
EX,σ

sup
f∈F

〈
(wt)

T
t=1 ,

(∑
j>ht

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

)T

t=1

〉 (5.14)

= A1 + A2.

where in the last equality, we defined the term in (5.13) as A1, and the term in (5.14) as A2.
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Step 1. Controlling A1: Applying Cauchy-Schwartz (C.S.) inequality on A1 yields the following

A1 ≤
1

T
EX,σ

 sup
Pf2≤r


 T∑

t=1

∥∥∥∥∥
ht∑
j=1

√
λjt
〈
wt,u

j
t

〉
ujt

∥∥∥∥∥
2
 1

2

 T∑
t=1

∥∥∥∥∥
ht∑
j=1

√
λjt

−1
〈

1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

∥∥∥∥∥
2
 1

2




=
1

T
EX,σ

 sup
Pf2≤r

( T∑
t=1

ht∑
j=1

λjt
〈
wt,u

j
t

〉2

) 1
2

 T∑
t=1

ht∑
j=1

λjt
−1

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉2
 1

2


 .

With the help of Jensen’s inequality and regarding the fact that EX,σ
〈

1
n

∑n
i=1 σ

i
tφ(X i

t),u
j
t

〉2
=

λjt
n

and Pf 2 ≤ r implies 1
T

∑T
t=1

∑∞
j=1 λ

j
t

〈
wt,u

j
t

〉2 ≤ r (see Lemma 12 in the Appendix for the

proof), we can further bound A1 as

A1 ≤

√
r
∑T

t=1 ht
nT

. (5.15)

Step 2. Controlling A2: We use strong convexity assumption on the regularizer in order to further

bound the second term A2 = 1
T
EX,σ

{
supf∈F

〈
D1/2W ,D−1/2V

〉}
.

Let λ > 0. Applying (C.1) with w = D1/2W and v = λD−1/2V gives

〈
D1/2W , λD−1/2V

〉
≤ Ω(D1/2W ) +

〈
OΩ∗ (0) , λD−1/2V

〉
+
λ2

2µ

∥∥D−1/2V
∥∥2

∗ .
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Note that, regrading the definition of V , we get Eσ
〈
OΩ∗ (0) , λD−1/2V

〉
= 0, Therefore, taking

supremum and expectation on both sides, dividing throughout by λ and T , and then optimizing

over λ gives

A2 =
1

T
EX,σ

{
sup
f∈F

〈
D1/2W ,D−1/2V

〉}
≤ min

0<λ<∞

{
R2

λT
+

λ

2µT
EX,σ

∥∥D−1/2V
∥∥2

∗

}
=
R

T

√
2

µ
EX,σ ‖D−1/2V ‖2

∗. (5.16)

Combining (5.16) with (5.15) completes the proof.

Remark 37. Note that when considering a norm regularized space similar to (5.11), more general

result can be obtained with the help of Hölder inequality which hold for any norm regularizer

Ω(D1/2W ) and not necessarily strongly convex norms. More specifically, for any regularizer

Ω(W ), which is presented as a norm function ‖.‖ of W , we can derive a general LRC bound

presented in the following theorem.

Theorem 38 (Distribution-dependent MT-LRC bounds by Hölder inequality). Let the regularizer

Ω(W ) in (5.10) be given as a norm function in the form of ‖.‖, where its dual conjugate is denoted

by ‖.‖∗. Let the kernels be uniformly bounded, that is ‖k‖∞ ≤ K ≤ ∞, and X1
t , . . . , X

n
t be an

i.i.d. sample drawn from Pt. Also, assume that for each task t, the eigenvalue-eigenvector decom-

position of the Hilbert-Schmidt covariance operator Jt is given by Jt := E(φ(Xt) ⊗ φ(Xt)) =∑∞
j=1 λ

j
tu

j
t ⊗ u

j
t , where (ujt)

∞
j=1 forms an orthonormal basis of H, and (λjt)

∞
j=1 are the corre-

sponding eigenvalues, arranged in non-increasing order. Then for any given positive operator D

on RT , any r > 0 and any non-negative integers h1, . . . , hT :

R(F , r) ≤ min
0≤ht≤∞


√
r
∑T

t=1 ht
nT

+

√
2R

T
EX,σ

∥∥D−1/2V
∥∥
∗

 , (5.17)

where V =
(∑

j>ht

〈
1
n

∑n
i=1 σ

i
tφ(X i

t),u
j
t

〉
ujt

)T
t=1
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Proof. The proof of this theorem repeats the same steps as the proof of Theorem 36, except for

controlling term A2 in (5.14), in which the Hölder inequality can be efficiently used to further

bound A2 as following

A2 =
1

T
EX,σ

sup
f∈F

〈
(wt)

T
t=1 ,

(∑
j>ht

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

)T

t=1

〉
=

1

T
EX,σ

{
sup
f∈F

〈
D1/2W ,D−1/2V

〉}
Hölder
≤ 1

T
EX,σ

{
sup
f∈F

∥∥D1/2W
∥∥ .∥∥D−1/2V

∥∥
∗

}
≤
√

2R

T
EX,σ

∥∥D−1/2V
∥∥
∗ . (5.18)

Remark 39. Notice that, obviously,
√

2EX,σ
∥∥D−1/2V

∥∥
∗ ≤

√
2
µ
EX,σ ‖D−1/2V ‖2

∗ for any µ ≤ 1.

Interestingly, for the cases considered in our study, it holds that µ ≤ 1. More specifically, from

Theorem 3 and Theorem 12 in [69], it can be shown that R(W ) = 1/2 ‖W ‖2
2,q is 1

q∗
-strongly

convex w.r.t. the group norm ‖.‖2,q. Similarly, using Theorem 10 in [69], it can be shown that the

regularization function R(W ) = 1
2
‖W ‖2

Sq
with q ∈ [1, 2] is (q − 1)-strongly convex w.r.t. the

LSq -Schatten norm ‖.‖Sq . Therefore, given the range of q in [1, 2], for which these two norms are

strongly convex, it can be easily seen that µ ≤ 1
2

and µ ≤ 1 for the group and Schatten-norm

hypotheses, respectively. Therefore, for this cases, Hölder inequality yields slightly tighter bounds

for MT-LRC.

Remark 40. It is worth mentioning that, when applied to the norm-regularized MTL models, the

result of Theorem 38 could be more general than that of Theorem 36. More specially, for L2,q-

group and LSq -Schatten norm regularizers, Theorem 36 can only be applied to the special case of

q ∈ [1, 2], for which these two norms are strongly convex. In contrast, Theorem 38 is applicable

to any value of q for these two norms. For this reason and considering the fact that very similar
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results can be obtained from Theorem 36 and Theorem 38 (see Lemma 6 and Remark 41), we will

use Theorem 38 in the sequel to find the LRC bounds of several norm regularized MTL models.

In what follows, we demonstrate the power of Theorem 38 by applying it to derive the LRC bounds

for some popular MTL models, including group norm, Schatten norm and graph regularized MTL

models extensively studied in the literature of MTL [102, 45, 7, 5, 3].

Group Norm Regularized MTL

We first consider a group norm regularized MTL capturing the inter-task relationships by the group

norm regularizer 1
2
‖W ‖2

2,q := 1
2

(∑T
t=1 ‖wt‖q2

)2/q [45, 126, 5, 92], for which the associated hy-

pothesis space takes the form

Fq :=

{
X 7→ [〈w1, φ(X1)〉 , . . . , 〈wT , φ(XT )〉]T :

1

2
‖W ‖2

2,q ≤ R2
max

}
. (5.19)

Before presenting the result for the group-norm regularized MTL, we want to bring it into attention

that A1 does not depend on the W -constraint in the hypothesis space, therefore the bound for A1

is the same for all cases we consider in this study, despite the choice of the reqularizer. However,

A2 can be further bounded for different hypothesis spaces corresponding to different choice of

regularization functions. In the following we start with a useful lemma which helps bounding

A2 for the group-norm hypothesis space (5.19). The proof of this Lemma, which is based on the

application of the Khintchine (C.2) and Rosenthal (C.3) inequalities, is presented in Appendix C.

Lemma 6. Assume that the kernels in (5.10) are uniformly bounded, that is ‖k‖∞ ≤ K ≤ ∞.

Then, for the group norm regularizer 1
2
‖W ‖2

2,q in (5.19) and for any 1 ≤ q ≤ 2, the expectation
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EX,σ
∥∥D−1/2V

∥∥
2,q∗

forD = I can be upper-bounded as

EX,σ

∥∥∥∥∥∥
(∑
j>ht

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

)T

t=1

∥∥∥∥∥∥
2,q∗

≤
√
Keq∗T

1
q∗

n
+

√√√√√eq∗2

n

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

.

Remark 41. Similarly as in Lemma 6, one can easily prove that

EX,σ

∥∥∥∥∥∥
(∑
j>ht

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

)T

t=1

∥∥∥∥∥∥
2

2,q∗

≤ Keq
∗2T

2
q∗

n2
+
eq∗2

n

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

.

(5.20)

To see this, note that in the first step of the proof of Lemma 6 (see Appendix C), by replacing the

outermost exponent 1
q∗

with 2
q∗

, and following the same procedure, one can verify (5.20). Therefore,

it can be concluded that very similar LRC bounds can be obtained via Theorem 36 and Theorem 38.

Corollary 42. Using Theorem 38, for any 1 ≤ q ≤ 2, the LRC of function class Fq in (5.19) can

be bounded as

R(Fq, r) ≤

√√√√√ 4

nT

∥∥∥∥∥∥
(
∞∑
j=1

min

(
rT 1− 2

q∗ ,
2eq∗2R2

max

T
λjt

))T

t=1

∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq

∗T
1
q∗

nT
. (5.21)

Proof Sketch: The proof of the corollary uses the result of Lemma 6 to upper bound A2 for the

group-norm hypothesis space (5.19) as,

A2(Fq) ≤

√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq

∗T
1
q∗

nT
. (5.22)
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Now, combining (5.15) and (5.22) provides the bound on R(Fq, r) as

R(Fq, r) ≤

√
r
∑T

t=1 ht
nT

+

√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq

∗T
1
q∗

nT
, (5.23)

Then using inequalities shown below which hold for any α1, α2 > 0, any non-negative vectors

a1,a2 ∈ RT , any 0 ≤ q ≤ p ≤ ∞ and any s ≥ 1,

(?)
√
α1 +

√
α2 ≤

√
2(α1 + α2) (5.24)

(??) lp − to− lq : ‖a1‖q = 〈1,a1〉
1
q

Hölder’s
≤

(
‖1‖(p/q)∗ ‖a

q
1‖(p/q)

) 1
q

= T
1
q
− 1
p ‖a1‖p (5.25)

(? ? ?) ‖a1‖s + ‖a2‖s ≤ 21− 1
s ‖a1 + a2‖s ≤ 2 ‖a1 + a2‖s , (5.26)

we can obtain the desired result. See Appendix C for the detailed proof.

Remark 43. Since the LRC bound above is not monotonic in q it is more reasonable to state the

above bound in terms of κ ≥ q; choosing κ = q is not always the optimal choice. Trivially,

for the group norm regularizer with any κ ≥ q, it holds that ‖W ‖2,κ ≤ ‖W ‖2,q and therefore

R(Fq, r) ≤ R(Fκ, r). Thus, we have the following bound on R(Fq, r) for any κ ∈ [q, 2],

R(Fq, r) ≤

√√√√√ 4

nT

∥∥∥∥∥∥
(
∞∑
j=1

min

(
rT 1− 2

κ∗ ,
2eκ∗2R2

max

T
λjt

))T

t=1

∥∥∥∥∥∥
κ∗
2

+

√
2KeRmaxκ

∗T
1
κ∗

nT
. (5.27)

Remark 44 (Sparsity-inducing group-norm). Assuming a sparse representations shared across

multiple tasks is a well-known presumption in MTL [7, 5] which leads to the use of group norm

regularizer 1
2
‖W ‖2

2,1. Notice that for any κ ≥ 1, it holds that R(F1, r) ≤ R(Fκ, r). Also,

assuming an identical tail sum
∑

j≥h λ
j for all tasks, reduces the bound in (5.27) to the function

κ∗ 7→ κ∗T 1/κ∗ in terms of κ. This function attains its minimum at κ∗ = log T . Thus, by choosing

69



κ∗ = log T it is easy to show:

R(F1, r) ≤

√√√√ 4

nT

∥∥∥( ∞∑
j=1

min
(
rT 1− 2

κ∗ ,
2eκ∗2R2

max

T
λjt

))T
t=1

∥∥∥
κ∗
2

+

√
2KeRmaxκ

∗T
1
κ∗

nT

(lκ∗
2
−to−l∞)

≤

√√√√ 4

nT

∥∥∥( ∞∑
j=1

min
(
rT,

2e3(log T )2R2
max

T
λjt

))T
t=1

∥∥∥
∞

+

√
2KRmaxe

3
2 log T

nT
.

Remark 45 (L2,q Group-norm regularizer with q ≥ 2). For any q ≥ 2, Theorem 38 provides a

LRC bound for the function class Fq in (5.19) as

R(Fq, r) ≤

√√√√√ 4

nT

∥∥∥∥∥∥
(
∞∑
j=1

min

(
rT 1− 2

q∗ ,
2R2

max

T
λjt

))T

t=1

∥∥∥∥∥∥
q∗
2

, (5.28)

where q∗ := q
q−1

.
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Proof.

A2(Fq)
Hölder’s
≤ 1

T
EX,σ

{
sup
f∈Fq
‖W ‖2,q ‖V ‖2,q∗

}

≤
√

2Rmax

T
EX,σ

 T∑
t=1

∥∥∥∥∥∑
j>ht

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

∥∥∥∥∥
q∗
 1

q∗

Jensen’s
≤
√

2Rmax

T

 T∑
t=1

EX,σ

∥∥∥∥∥∑
j>ht

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

∥∥∥∥∥
2


q∗
2


1
q∗

=

√
2Rmax

T

 T∑
t=1

∑
j>ht

EX,σ

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉2


q∗
2


1
q∗

=

√
2Rmax

T

 T∑
t=1

(∑
j>ht

λjt
n

) q∗
2


1
q∗

=

√√√√√2R2
max

nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

By applying (5.24), (5.25) and (5.26), this last result together with the bound in (5.15) for A1,

yields the result.

To investigate the tightness of the bound in (5.21), we derive the lower bound which holds for the

LRC of Fq with any q ≥ 1. The proof of the result can be found in Appendix C.

Theorem 46 (Lower bound). The following lower bound holds for the local Rademacher complex-

ity of Fq in (5.21) with any q ≥ 1. There is an absolute constant c so that ∀t, if λ1
t ≥ 1/(nR2

max)

then for all r ≥ 1
n

and q ≥ 1,

R(Fq,Rmax,T , r) ≥

√√√√ c

nT 1− 2
q∗

∞∑
j=1

min

(
rT 1− 2

q∗ ,
R2
max

T
λj1

)
. (5.29)

A comparison between the lower bound in (5.29) and the upper bound in (5.21) can be clearly
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illustrated by assuming identical eigenvalue tail sums
∑

j≥∞ λ
j
t for all tasks, for which the upper

bound translates to

R(Fq,Rmax,T , r) ≤

√√√√ 4

nT 1− 2
q∗

∞∑
j=1

min

(
rT 1− 2

q∗ ,
2eq∗2R2

max

T
λjt

)
+

√
2KeRmaxq

∗T
1
q∗

nT
.

By comparing this to (5.29), we see that the lower bound matches the upper bound up to constants.

The same analysis for MTL models with Schatten norm and graph regularizers yields similar re-

sults confirming that the LRC upper bounds that we have obtained are reasonably tight.

Remark 47. It is worth pointing out that a matching lower bound on the local Rademacher com-

plexity does not necessarily imply a tight bound on the expectation of an empirical minimizer. As it

has been shown in Section 4 of [10], by direct analysis of the empirical minimizer, sharper bounds

than the LRC-based bounds can be obtained. Consequently, based on Theorem 8 in [10], there

might be cases in which the local Rademacher complexity bounds are constants, however P f̂ is

of some order depending on the number of samples n—O(1/n))—which decreases with n growing.

As it has pointed out in that paper, under some mild conditions on the loss function `, a similar

argument also holds for the class of loss functions {`f − `f∗ : f ∈ F}.

Schatten Norm Regularized MTL

In [7], the authors developed a spectral regularization framework for MTL where the LSq -Schatten

norm 1
2
‖W ‖2

Sq
:= 1

2

[
tr
(
W TW

) q
2
] 2
q is studied as a concrete example, corresponding to performing

ERM in the following hypothesis space:

FSq :=

{
X 7→ [〈w1, φ(X1)〉 , . . . , 〈wT , φ(XT )〉]T :

1

2
‖W ‖2

Sq ≤ R′2max

}
. (5.30)
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Corollary 48. For any 1 ≤ q ≤ 2 in (5.30), the LRC of function class FSq is bounded as

R(FSq , r) ≤

√√√√ 4

nT

∥∥∥( ∞∑
j=1

min
(
r,

2q∗R′2max
T

λjt

))T
t=1

∥∥∥
1
.

The proof is provided in Appendix C.

Remark 49 (Sparsity-inducing Schatten-norm (trace norm)). Trace-norm regularized MTL, corre-

sponding to Schatten norm regularization with q = 1 [104, 119], imposes a low-rank structure on

the spectrum ofW and can also be interpreted as low dimensional subspace learning [6, 77, 70].

Note that for any q ≥ 1, it holds that R(FS1 , r) ≤ R(FSq , r). Therefore, choosing the optimal

q∗ = 1, we get

R(FS1 , r) ≤

√√√√ 4

nT

∥∥∥( ∞∑
j=1

min
(
r,

2R′2max
T

λjt

))T
t=1

∥∥∥
1
.

Remark 50 (LSq Schatten-norm regularizer with q ≥ 2). For any q ≥ 2, Theorem 38 provides a

LRC bound for the function class FSq in (5.30) as

R(FSq , r) ≤

√√√√√ 4

nT

∥∥∥∥∥∥
(
∞∑
j=1

min

(
r,

2R′2max
T

λjt

))T

t=1

∥∥∥∥∥∥
1

. (5.31)

Proof. Taking q∗ := q
q−1

, we first bound the expectation EX,σ ‖V ‖Sq∗ . Take U i
t as a matrix with

T columns where the only non-zero column t of U i
t is defined as

∑
j>ht

〈
1
n
φ(X i

t),u
j
t

〉
ujt . Based

on the definition of V =
(∑

j>ht

〈
1
n

∑n
i=1 σ

i
tφ(X i

t),u
j
t

〉
ujt

)T
t=1

, we can then provide a bound for
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this expectation as

EX,σ ‖V ‖Sq∗ = EX,σ

∥∥∥∥∥∥
(∑
j>ht

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

)T

t=1

∥∥∥∥∥∥
Sq∗

= EX,σ

∥∥∥∥∥
T∑
t=1

n∑
i=1

σitU
i
t

∥∥∥∥∥
Sq∗

Jensen
≤

tr

(
T∑

t,s=1

n∑
i,j=1

EX,σ
(
σitσ

j
sU

i
t

T
U j
s

)) q∗
2


1
q∗

=

tr

(
T∑
t=1

n∑
i=1

EX
(
U i
t

T
U i
t

)) q∗
2


1
q∗

=

(
T∑
t=1

n∑
i=1

∑
j>ht

EX
〈

1

n
φ(X i

t),u
j
t

〉2
) 1

2

=

(
1

n

T∑
t=1

∑
j>ht

λjt

) 1
2

=

√√√√√ 1

n

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
1

Note that replacing this into (5.17), and with the help of (5.24), (5.25) and (5.26), one can conclude

the result.

Graph Regularized MTL

The idea underlying graph regularized MTL is to force the models of related tasks to be close to

each other, by penalizing the squared distance ‖wt−ws‖2 with different weights ωts. We consider

the following MTL graph regularizer [102]

Ω(W ) =
1

2

T∑
t=1

T∑
s=1

ωts‖wt −ws‖2 + η
T∑
t=1

‖wt‖2 =
T∑
t=1

T∑
s=1

(L+ ηI)ts 〈wt,ws〉 ,
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where L is the graph-Laplacian associated to a matrix of edge-weights ωts, I is the identity

operator, and η > 0 is a regularization parameter. According to the identity
∑T

t=1

∑T
s=1

(
L +

ηI
)
ts

〈
wt,ws

〉
= ‖(L+ ηI)1/2W ‖2

F , the corresponding hypothesis space is:

FG :=
{
X 7→ [

〈
w1, φ(X1)

〉
, . . . ,

〈
wT , φ(XT )

〉
]T :

1

2
‖D1/2W ‖2

F ≤ R′′2max

}
. (5.32)

where we defineD := L+ ηI .

Corollary 51. For any given positive definite matrixD in (5.32), the LRC of FG is bounded by

R(FG, r) ≤

√√√√ 4

nT

∥∥∥( ∞∑
j=1

min
(
r,

2D−1
tt R

′′2
max

T
λjt)
))T

t=1

∥∥∥
1
. (5.33)

where
(
D−1

tt

)T
t=1

are the diagonal elements ofD−1.

See Appendix C for the proof.

Excess Risk Bounds for Norm Regularized MTL Models

In this section we will provide the distribution and data-dependent excess risk bounds for the

hypothesis spaces considered earlier. Note that the proofs are provided only for the hypothesis

space Fq with q ∈ [1, 2] in (5.19). However, in the cases involving the L2,q-group norm with

q ≥ 2, as well as the LSq -Schatten and graph norms, the proofs can be obtained in a very similar

way. More specifically, by using the LRC bounds of Remark 45, Corollary 48, Remark 50 and

Corollary 51, one can follow the same steps of the proofs of this section to arrive at the results

pertaining to these cases.

Theorem 52. (Distribution-dependent excess risk bound for a L2,q group-norm regularized

MTL) Assume thatFq in (5.19) is a convex class of functions with ranges in [−b, b], and let the loss
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function ` of Problem (5.10) be such that Assumption 32 is satisfied. Let f̂ be any element of Fq

with 1 ≤ q ≤ 2 which satisfies Pn`f̂ = inff∈Fq Pn`f . Assume moreover that k is a positive semi-

definite kernel on X such that ‖k‖∞ ≤ K ≤ ∞. Denote by r∗ the fixed point of 2BLR(Fq, r
4L2 ).

Then, for any f ∈ F , K > 1 and x > 0, with probability at least 1 − e−x, the excess loss of

function class Fq is bounded as

P (`f̂ − `f∗) ≤ 32Kr∗ +
(48Lb+ 16BK)Bx

nT
, (5.34)

where for the fixed point r∗ of the local Rademacher complexity 2BLR(Fq, r
4L2 ), it holds that

r∗ ≤ min
0≤ht≤∞

B2
∑T

t=1 ht
Tn

+ 4BL

√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+
4
√

2KeRmaxq
∗T

1
q∗

nT
,

(5.35)

where h1, . . . , hT are arbitrary non-negative integers.

Proof. First notice that Fq is convex, thus it is star-shaped around any of its points. Hence ac-

cording to Lemma 10, R(Fq, r) is a sub-root function. Moreover, because of the symmetry of σit

and because Fq is convex and symmetric, it can be shown that R(F∗q , r) ≤ 2R(Fq, r
4L2 ), where

R(F∗q , r) is defined according to (5.6) for the class of functions Fq. Therefore, it suffices to find

the fixed point of 2BLR(Fq, r
4L2 ) by solving φ(r) = r. For this purpose, we will use (5.23) as a

bound for R(Fq, r), and solve
√
αr+γ = r (or equivalently r2− (α+2γ)r+γ2 = 0) for r, where

we define

α =
B2
∑T

t=1 ht
Tn

, and γ = 2BL

√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+
2
√

2KeRmaxBLq
∗T

1
q∗

nT
.

(5.36)
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It is not hard to verify that r∗ ≤ α+ 2γ. Substituting the definition of α and γ gives the result.

Remark 53. If the conditions of Theorem 38 hold, then it can be shown that the following results

hold for the fixed point of the considered hypothesis spaces in (5.19), (5.30) and (5.32).

• Group norm: For the fixed point r∗ of the local Rademacher complexity 2BLR(Fq, r
4L2 )

with any 1 ≤ q ≤ 2 in (5.19), it holds

r∗ ≤ min
0≤ht≤∞

B2
∑T

t=1 ht
Tn

+ 4BL

√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+
4
√

2KeRmaxq
∗BLT

1
q∗

nT
.

(5.37)

Also, for any q ≥ 2 in (5.19), it holds

r∗ ≤ min
0≤ht≤∞

B2
∑T

t=1 ht
Tn

+ 4BL

√√√√√2R2
max

nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

. (5.38)

• Schatten-norm: For the fixed point r∗ of the local Rademacher complexity 2BLR(FSq , r
4L2 )

with any 1 ≤ q ≤ 2 in (5.30), it holds

r∗ ≤ min
0≤ht≤∞

B2
∑T

t=1 ht
Tn

+ 4BL

√√√√√2q∗R′2max
nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
1

. (5.39)

Also, for any q ≥ 2 in (5.30), it holds

r∗ ≤ min
0≤ht≤∞

B2
∑T

t=1 ht
Tn

+ 4BL

√√√√√2R′2max
nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
1

. (5.40)

• Graph regularizer: For the fixed point r∗ of the local Rademacher complexity 2BLR(FG, r
4L2 )
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with any positive operatorD in (5.32), it holds

r∗ ≤ min
0≤ht≤∞

B2
∑T

t=1 ht
Tn

+ 4BL

√√√√√2R′′2max
nT 2

∥∥∥∥∥∥
(
D−1

tt

∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
1

. (5.41)

Regarding the fact that λjts are decreasing with respect to j, we can assume ∃dt : λjt ≤ dtj
−αt for

some αt > 1. As examples, this assumption holds for finite rank kernels as well as convolution

kernels. Thus, it can be shown that

∑
j>ht

λjt ≤ dt
∑
j>ht

j−αt ≤ dt

∫ ∞
ht

x−αtdx = dt

[
1

1− αt
x1−αt

]∞
ht

= − dt
1− αt

h1−αt
t . (5.42)

Note that via lp − to− lq conversion inequality in (5.25), for p = 1 and q = q∗
2

, we have

B2
∑T

t=1 ht
Tn

≤ B

√
B2T

∑T
t=1 h

2
t

n2T 2

(??)

≤ B

√√√√B2T 2− 2
q∗
∥∥∥(h2

t )
T
t=1

∥∥∥
q∗
2

n2T 2
.

Now, applying, (5.24) and (5.26), and inserting (5.42) into (5.35), it holds for group norm regular-

ized MTL with 1 ≤ q ≤ 2,

r∗ ≤ min
0≤ht≤∞

2B

√√√√√
∥∥∥∥∥∥
(
B2T 2− 2

q∗ h2
t

n2T 2
− 32dteq∗2R2

maxL
2

nT 2(1− αt)
h1−αt
t

)T

t=1

∥∥∥∥∥∥
q∗
2

+
4
√

2KeRmaxBLq
∗T

1
q∗

nT
.

(5.43)

Taking the partial derivative of the above bound with respect to ht and setting it to zero yields the

optimal ht as

ht =
(

16dteq
∗2R2

maxB
−2L2T

2
q∗−2n

) 1
1+αt .
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Note that substituting the above for α := mint∈NT αt and d = maxt∈NT dt into (5.43), we can

upper-bound the fixed point of r∗ as

r∗ ≤ 14B2

n

√
α + 1

α− 1

(
dq∗2R2

maxB
−2L2T

2
q∗−2n

) 1
1+α

+
10
√
KRmaxBLq

∗T
1
q∗

nT
,

which implies that

r∗ = O

(T 1− 1
q∗

q∗

) −2
1+α

n
−α
1+α

 .

It can be seen that the convergence rate can be as slow as O
(
q∗T 1/q∗

T
√
n

)
(for small α, where at least

one αt ≈ 1), and as fast as O(n−1) (when αt → ∞, for all t). The bound obtained for the fixed

point together with Theorem 52 provides a bound for the excess risk, which leads to the following

remark.

Remark 54 (Excess risk bounds for selected norm regularized MTL problems). Assume that Fq,

FSq and FG are convex classes of functions with ranges in [−b, b], and let the loss function ` of

Problem (5.10) be such that Assumption 32 are satisfied. Assume moreover that k is a positive

semidefinite kernel on X such that ‖k‖∞ ≤ K ≤ ∞. Also, denote α := mint∈NT αt and d =

maxt∈NT dt.

• Group norm: Assume that f̂ satisfies Pn`f̂ = inff∈Fq Pn`f , and r∗ is the fixed point of the

local Rademacher complexity 2BLR(Fq, r
4L2 ) with 1 ≤ q ≤ 2 in (5.19). Then, for any

f ∈ Fq, K > 1 and x > 0, it holds with probability at least 1− e−x,

P (`f̂ − `f∗) ≤ min
κ∈[q,2]

448K

√
α + 1

α− 1

(
dκ∗2R2

maxL
2
) 1

1+α B
2α
α+1

(
T

2
κ

) −1
1+α

n
−α
1+α

+
320
√
KRmaxBKLκ

∗T
1
κ∗

nT
+

(48Lb+ 16BK)Bx

nT
. (5.44)
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Also, for any K > 1, x > 0 and f ∈ Fq with q ≥ 2 in (5.19), it holds with probability at

least 1− e−x,

P (`f̂ − `f∗) ≤ min
q∈[2,∞]

256K

√
α + 1

α− 1

(
dR2

maxL
2
) 1

1+α B
2α
α+1

(
T

2
q

) −1
1+α

n
−α
1+α

+
(48Lb+ 16BK)Bx

nT
. (5.45)

• Schatten-norm: Assume that f̂ satisfies Pn`f̂ = inff∈FSq Pn`f , and r∗ is the fixed point of

the local Rademacher complexity 2BLR(FSq , r
4L2 ) with 1 ≤ q ≤ 2 in (5.30). Then, for any

f ∈ FSq , K > 1, x > 0, it holds with probability at least 1− e−x,

P (`f̂ − `f∗) ≤ min
q∈[1,2]

256K

√
α + 1

α− 1

(
dq∗R′2maxL

2
) 1

1+α B
2α
α+1T

−1
1+αn

−α
1+α

+
(48Lb+ 16BK)Bx

nT
. (5.46)

Also, for any K > 1, x > 0 and f ∈ FSq with q ≥ 2 in (5.30), it holds with probability at

least 1− e−x,

P (`f̂ − `f∗) ≤ 256K

√
α + 1

α− 1

(
dR′2maxL

2
) 1

1+α B
2α
α+1T

−1
1+αn

−α
1+α

+
(48Lb+ 16BK)Bx

nT
. (5.47)

• Graph regularizer: Assume that f̂ satisfies Pn`f̂ = inff∈FG Pn`f , and r∗ is the fixed point of

the local Rademacher complexity 2BLR(FG, r
4L2 ) with any positive operator D in (5.32).

Then, for any f ∈ FG, K > 1 and x > 0, it holds with probability at least 1− e−x,

P (`f̂ − `f∗) ≤ 256K

√
α + 1

α− 1

(
dR′′2maxL

2D−1
max

) 1
1+α B

2α
α+1T

−1
1+αn

−α
1+α

+
(48Lb+ 16BK)Bx

nT
. (5.48)
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whereD−1
max := maxt∈NT D

−1
tt .

Corollary 55. (Data-dependent excess risk bound for a MTL problem with a L2,q group-norm

regularizer) Assume the convex class Fq in (5.19) has ranges in [−b, b], and let the loss function

` in Problem (5.10) be such that Assumption 32 are satisfied. Let f̂ be any element of Fq with

1 ≤ q ≤ 2 which satisfies Pn`f̂ = inff∈Fq Pn`f . Assume moreover that k is a positive semidefinite

kernel on X such that ‖k‖∞ ≤ K ≤ ∞. Let Kt be the n× n normalized Gram matrix (or kernel

matrix) of task t with entries (Kt)ij := 1
n
k(X i

t , X
j
t ) = 1

n

〈
φ̂(X i

t), φ̂(Xj
t )
〉

. Let λ̂1
t , . . . λ̂

n
t be the

ordered eigenvalues of matrixKt, and r̂∗ be the fixed point of

ψ̂n(r) = c1R̂(F∗q , c3r) +
c2x

nT
,

where c1 = 2Lmax (B, 16Lb), c2 = 128L2b2 + 2bc1 and c3 = 4 + 128BK + 4B2(48Lb +

16BK)/c2, and

R̂(F∗q , c3r) := Eσ

 sup
f∈Fq ,

L2Pn(f−f̂)
2
≤c3r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

∣∣∣∣∣ {xit}t∈NT ,i∈Nn
 . (5.49)

Then, for any f ∈ F , K > 1 and x > 0, with probability at least 1 − 4e−x the excess loss of

function class Fq is bounded as

P (`f̂ − `f∗) ≤ 32Kr̂∗ +
(48Lb+ 16BK)Bx

nT
, (5.50)

where for the fixed point r̂∗ of the empirical local Rademacher complexity ψ̂n(r), it holds

r̂∗ ≤ c2
1c3

∑T
t=1 ĥt

nTL2
+ 4

√√√√√√2c2
1q
∗2R2

max

nT 2

∥∥∥∥∥∥
 n∑
j>ĥt

λ̂jt

T

t=1

∥∥∥∥∥∥
q∗
2

+
2c2x

nT
,
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where ĥ1, . . . , ĥT are arbitrary non-negative integers, and (λ̂jt)
n
j=1 are eigenvalues of the normal-

ized Gram matrixK obtained from kernel function k.

Proof. The proof of the result is provided in Appendix D.

Discussion

Global vs. Local Rademacher Complexity Bounds

This section is devoted to compare the excess risk bounds based on local Rademacher complexity

to those of the global ones.

First, note that to obtain the GRC-based bounds, we apply Theorem 16 of [101], as we consider

the same setting and assumptions for tasks’ distributions as considered in this work. This theorem

presents an MTL bound based on the notion of GRC.

Theorem 56 (MTL excess risk bound based on GRC; Theorem 16 of [101] ). Let the vector-valued

function class F be defined as F := {f = (f1, . . . , fT ) : X 7→ [−b, b]T}. Assume that X =

(X t
i )

(n,T )
(i,t)=(1,1) is a vector of independent random variables where for all fixed t, X t

1, . . . , X
t
n are

identically distributed according to Pt. Let the loss function ` be L-Lipschitz in its first argument.

Then for any f ∈ F and x > 0, with probability at least 1− e−x,

P (`f − `f∗) ≤ Pn(`f − `f∗) + 2LR(F) +

√
2Lbx

nT
. (5.51)

Proof. As it has been shown in [101], the proof of this theorem is based on using McDiarmid’s

inequality for Z defined in Theorem 28, and noticing that for the function class F with values in

[−b, b], it holds that |Z − Zs,j| ≤ 2b/nT .
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It can be observed that, in order to obtain the excess risk bound in the above theorem, one has

to bound the GRC term R(F) in (5.51). Therefore, we first upper-bound the GRC of different

hypothesis spaces considered in the previous sections.

Theorem 57 (Distribution-dependent GRC bounds). Assume that the conditions of Theorem 36

hold. Then, the following results hold for the GRC of the hypothesis spaces in (5.19), (5.30) and

(5.32), respectively.

• Group-norm regularizer: For any 1 ≤ q ≤ 2 in (5.19), the GRC of the function class Fq can

be bounded as

∀κ ∈ [q, 2] : R(Fq) ≤

√
2eκ∗2R2

max

nT 2

∥∥∥(tr (Jt))
T
t=1

∥∥∥
κ∗
2

+

√
2KeRmaxκ

∗T
1
κ∗

nT
. (5.52)

Also, for any q ≥ 2 in (5.19), the GRC of the function class Fq can be bounded as

R(Fq) ≤

√
2R2

max

nT 2

∥∥∥(tr (Jt))
T
t=1

∥∥∥
q∗
2

. (5.53)

• Schatten-norm regularizer: For any 1 ≤ q ≤ 2 in (5.30), the GRC of the function class FSq

can be bounded as

R(FSq) ≤
√

2q∗R′2max
nT 2

∥∥∥(tr (Jt))
T
t=1

∥∥∥
1
. (5.54)

Also, for any q ≥ 2 in (5.30), the GRC of the function class FSq can be bounded as

R(FSq) ≤
√

2R′2max
nT 2

∥∥∥(tr (Jt))
T
t=1

∥∥∥
1
. (5.55)

• Graph regularizer: For any positive operatorD in (5.32), the GRC of the function class FG
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can be bounded as

R(FG) ≤
√

2R′′2max
nT 2

∥∥∥(D−1
tt tr(Jt)

)T
t=1

∥∥∥
1
. (5.56)

where for the covariance operator Jt = E(φ(Xt)⊗ φ(Xt)) =
∑∞

j=1 λ
j
tu

j
t ⊗ u

j
t , the trace tr(Jt) is

defined as

tr(Jt) :=
∑
j

〈
Jtu

j
t ,u

j
t

〉
=
∞∑
j=1

λjt .

Proof. The proof of the results can be found in Appendix D.

Notice that, assuming a unique bound for the traces of all tasks’ kernels, the bound in (5.52) is

determined by O
(
q∗T

1
q∗

T
√
n

)
. Also, taking q∗ = log T , we obtain a bound of order O

(
log T
T
√
n

)
. We

can also remark that, when the kernel traces are bounded, the bounds in (5.53), (5.54), (5.55) and

(5.56) are of the order of O
(

1√
nT

)
.

Note that for the purpose of comparison, we concentrate only on the parameters R, n, T, q∗ and α

and assume all the other parameters are fixed and hidden in the big-O notation. Also, for the sake

of simplicity, we assume that the eigenvalues of all tasks satisfy λjt ≤ dj−α (with α > 1). Note that

from Theorem 56, it follows that a bound on the global Rademacher complexity provides also a

bound on the excess risk. This together with Theorem 57, gives the GRC-based excess risk bounds
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of the following forms, for any f ∈ F (note that q ≥ 1)

Group norm: (a) ∀κ ∈ [q, 2], P (`f̂ − `f∗) = O

(
(R2

maxκ
∗2)

1
2

(
T

2
κ

)− 1
2
n−

1
2

)
.

(b) ∀q ∈ [2,∞], P (`f̂ − `f∗) = O

(
(R2

max)
1
2

(
T

2
q

)− 1
2
n−

1
2

)
.

Schatten-norm: (c) ∀q ∈ [1, 2], P (`f̂ − `f∗) = O
(

(R′2maxq
∗)

1
2T−

1
2n−

1
2

)
.

(d) ∀q ∈ [2,∞], P (`f̂ − `f∗) = O
(

(R′2max)
1
2T−

1
2n−

1
2

)
.

Graph regularizer: (e) P (`f̂ − `f∗) = O
(

(R′′2max)
1
2T−

1
2n−

1
2

)
. (5.57)

which can be compared to their LRC-based counterparts as following

Group norm: (a) ∀κ ∈ [q, 2], P (`f̂ − `f∗) = O

(
(R2

maxκ
∗2)

1
1+α

(
T

2
κ

)− 1
1+α

n
−α
1+α

)
.

(b) ∀q ∈ [2,∞], P (`f̂ − `f∗) = O

(
(R2

max)
1

1+α

(
T

2
q

)− 1
1+α

n
−α
1+α

)
.

Schatten-norm: (c) ∀q ∈ [1, 2], P (`f̂ − `f∗) = O
(

(R′2maxq
∗)

1
1+αT

−1
1+αn

−α
1+α

)
.

(d) ∀q ∈ [2,∞], P (`f̂ − `f∗) = O
(

(R′2max)
1

1+αT
−1
1+αn

−α
1+α

)
.

Graph regularizer: (e) P (`f̂ − `f∗) = O
(

(R′′2max)
1

1+αT
−1
1+αn

−α
1+α

)
. (5.58)

It can be seen that holding all the parameters fixed when n approaches to infinity, the local bounds

yield faster rates, since α > 1. However, when T grows to infinity, the convergence rate of the

local bounds could be only as good as those obtained by the global analysis.

A close appraisal of the results in (5.57) and (5.58) points to a conservation of asymptotic rates

between n and T , when all other remaining quantities are held fixed. This phenomenon is more

apparent for the Schatten norm and graph-based regularization cases. It can be seen that, for both

the global and local analysis results, the rates (exponents) of n and T sum up to −1. In the local

analysis case, the trade-off is determined by the value of α, which can facilitate faster n-rates
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and compromise with slower T -rates. A similar trade-off is witnessed in the case of group norm

regularization, but this time between n and T 2/κ, instead of T , due to the specific characteristic of

the group norm.

As mentioned earlier in Remark 43, the bounds for the class of group norm regularizer for 1 ≤

q ≤ 2 is not monotonic in q; they are minimized for q∗ = log T . Therefore, we split our analysis

for this case as follows:

1. First, we consider q∗ ≥ log T , which leads to the optimal choice κ∗ = q∗, and taking the

minimum of the global and local bounds gives

P (`f̂ − `f∗) ≤O
(
min

{
(Rmaxq

∗)(T
2
q )−

1
2n−

1
2 , (Rmaxq

∗)
2

1+α (T
2
q )−

1
1+αn

−α
1+α

})
. (5.59)

It is worth mentioning that, for any value of α > 1, if the number of tasks T as well as the

radius Rmax of the L2,q ball can grow with n, the local bound improves over the global one

whenever T 1/q

Rmax
= O(

√
n).

2. Secondly, assume that q∗ ≤ log T , in which case the best choice is κ∗ = log T . Then, the

excess risk bound reads

P (`f̂ − `f∗) ≤ O

(
min

{(
Rmax log T

T

)
n−1/2,

(
Rmax log T

T

) 2
1+α

n
−α
1+α

})
, (5.60)

and the local analysis improves over the global one, when T
Rmax log T

= O(
√
n).

Also, a similar analysis for Schatten norm and graph regularized hypothesis spaces shows that the

local analysis is beneficial over the global one, whenever the number of tasks T and the radius R

can grow, such that
√
T
R

= O(
√
n).
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Comparisons to Related Works

Also, it would be interesting to compare our (global and local) results for the trace norm regularized

MTL with the GRC-based excess risk bound provided in [104] wherein they apply a trace norm

regularizer to capture the tasks’ relatedness. It is worth mentioning that they consider a slightly

different hypothesis space forW , which in our notation reads as

FS1 :=

{
W :

1

2
‖W ‖2

S1
≤ TR′2max

}
. (5.61)

It is based on the premise that, assuming a common vector w for all tasks, the regularizer should

not be a function of number of tasks [104]. Given the task-averaged covariance operator C :=

1/T
∑T

t=1 Jt, the excess risk bound in [104] reads as

P (`f̂ − `f∗) ≤ 2
√

2LR′max

(√
‖C‖∞
n

+ 5

√
ln(nT ) + 1

nT

)
+

√
bLx

nT
.

where loss function ` is L-Lipschitz and F has ranges in [−b, b]. One can easily verify that the

trace norm is a Schatten norm with q = 1. Note that for any q ≥ 1 it holds that FS1 ⊆ FSq , which

implies R(FS1) ≤ R(FSq). This fact, in conjunction with Theorem 57 and Theorem 56 (applied to

the class of excess loss functions) yields a GRC-based excess risk bound. Therefore, considering

the trace norm hypothesis space (5.61) and the optimal value of q∗ = 2, translates our global and

local bounds to the following

1. GRC-based excess risk bound:

P (`f̂ − `f∗) ≤ 4LR′max

√√√√∥∥∥(tr (Jt))
T
t=1

∥∥∥
1

nT
+

√
bLx

nT
.
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2. LRC-based excess risk bound (∀α > 1):

P (`f̂ − `f∗) ≤ 256K

√
α + 1

α− 1

(
2dR′2maxL

2
) 1

1+α B
2α
α+1n

−α
1+α +

(48Lb+ 16BK)Bx

nT
. (5.62)

Now, assume that each operator Jt is of rank M and denote its maximum eigenvalue by λmaxt . If

λmax := maxt∈NT {λmaxt }, then it is easy to verify that tr(Jt) ≤Mλmaxt and ‖C‖∞ ≤ λmax, which

leads to the following GRC-based bounds

Ours: P (`f̂ − `f∗) ≤ 4LR′max

√
Mλmax
n

+

√
bLx

nT
, (5.63)

[104]: P (`f̂ − `f∗) ≤ 2
√

2LR′max

(√
λmax
n

+ 5

√
ln(nT ) + 1

nT

)
+

√
bLx

nT
. (5.64)

One can observe that as n → ∞, in all cases the bound vanishes. However, it does so at a rate of

n−α/1+α for our local bound in (5.62), at a slower rate of 1/
√
n for our global bound in (5.63), and

at the slowest rate of
√

lnn/n for the one in (5.64).

We remark that, as T → ∞, all bounds converge to a non-zero limit: our local bound in (5.62)

at a fast rate of 1/T , the one in (5.63) at a slower rate of
√

1/T , and the bound in (5.64) at a the

slowest rate of
√

lnT/T .

Another interesting comparison can be performed between our bounds and the one introduced in

[102] for a graph regularized MTL. For this purpose we consider the following hypothesis space

similar to [102]

FG =

{
W :

1

2

∥∥D1/2W
∥∥2

F
≤ TR′′2max

}
. (5.65)

A bound on the empirical GRC of the aforementioned hypothesis space has been provided in [102].
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However, similar to the proof of Corollary 51, we can easily convert it to a distribution dependent

GRC bound which matches our global bound in (5.56) (for the defined hypothesis space (5.65))

and in our notation reads as

R (FG) ≤
√

2R′′2max
nT

∥∥∥(D−1
tt tr(Jt)

)T
t=1

∥∥∥
1
.

Now, with D := L+ ηI (where L is the graph-Laplacian, I is the identity operator, and η > 0 is

a regularization parameter) and the assumption that the Jts are of rank M , it can be shown that

∥∥∥(D−1
tt tr(Jt)

)T
t=1

∥∥∥
1

=
T∑
t=1

D−1
tt tr(Jt) ≤Mλmax

(
T∑
t=1

D−1
tt

)
= Mλmaxtr

(
D−1

)
=

= Mλmaxtr (L+ ηI)−1 = Mλmax

(
T∑
t=1

1

δt + η
+

1

η

)
≤Mλmax

(
T

δmin + η
+

1

η

)
.

where λmax is defined as before. Also, we define (δt)
T
t=1 as the eigenvalues of Laplacian matrix L

with δmin := mint∈NT δt. Therefore, the matching GRC-based excess risk bounds can be obtained

as

Ours & [102] : P (`f̂ − `f∗) ≤
2LR′′max√

n

√
2Mλmax

(
1

δmin
+

1

Tη

)
+

√
bLx

nT

(5.66)

Also, from Remark 54, the LRC-based bound is given as

P (`f̂ − `f∗) ≤ 256K

√
α + 1

α− 1

(
dR′′2maxL

2D−1
max

) 1
1+α B

2α
α+1n

−α
1+α +

(48Lb+ 16BK)Bx

nT
. (5.67)

The above results show that when n → ∞, both GRC and LRC bounds approach zero, albeit, the

global bound with a rate of
√

1/n, and the local one with a faster rate of n−α/α+1, since α > 1.

Also, as T → ∞, both bounds approach non-zero limits. However, the global bound does so at a
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rate of
√

1/T and the local one at a faster rate of 1/T .
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CHAPTER 6: A NEW MULTI-TASK LEARNING MODEL USING

LOCAL RADEMACHER COMPLEXITY

As we showed in the previous chapter, the local Rademacher complexity of kernel-based MT

hypotheses can be both upper- and lower-bounded in terms of the tail sum of the eigenvalues of

the kernel matrix. Motivated by this observation, in this chapter, we introduce a new family of

MTL hypothesis based on convex combination of base kernels, in which the tail sum of kernels’

eigenvalues is constrained. Furthermore, we extend the LRC-based kernel learning algorithm in

[33] to a MTL setting. As shown in [33]—for the single task learning case—, it turns out that

our algorithm for MTL also leads to a convex optimization problem, which can be solved using

existing kernel learning algorithms.

Motivation and Analysis

As pointed out earlier in Chapter 1, a commonly utilized information sharing strategy for MTL is

to use a (partially) common feature mapping φ to map the data from all tasks to a (partially) shared

feature space H. Such an MTL approach, not only allows information sharing across tasks, but

also enjoys the non-linearity that is brought by the feature mapping φ. However, when applying

kernel-based models, it is crucial to carefully choose the kernel function, as using inappropriate

kernel functions may lead to deteriorated generalization performance. A widely adapted strategy

for kernel selection is to learn a convex combination of some base kernels [71, 78], which combined

with MTL, results in the MT-MKL approach. Such a method conically combines M pre-selected

basis kernel functions k1, · · · , kM , with the combination coefficients θ := [θ1, · · · , θM ], which are

learned during the training stage in a pre-defined feasible region. For example, a widely used and

theoretically well studied feasible region is given by the Lp-norm constraint [71]: Ψ(θ) := {θ :
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θ � 0, ‖θ‖p ≤ 1}. As such, each task features a common kernel function k(., .) :=
∑M

m=1 θmkm.

One such MT-MKL model is proposed in [127]. Besides, a more general MT-MKL approach with

conically combined multiple objective functions and Lp-norm Multiple Kernel Learning (MKL)

constraint is introduced in [86], and further extended and theoretically studied in [85]. A MT-MKL

model that allows both feature and kernel selection is proposed in [65] and extended in [66].

In this section, we consider a MT-MKL approach where T inter-related tasks are learned via a

standard MKL scheme using a prescribed collection of RKHSs {Hm}Mm=1, such that each Hm is

equipped with an inner product 〈·, ·〉Hm and that has an associated feature mapping φm : X → Hm.

The associated reproducing kernel km : X×X → R is such that km(x1, x2) = 〈φm(x1), φm(x2)〉Hm
for all x1, x2 ∈ X . It can be shown that this consideration implies an equivalent RKHS where the

feature space of task t is served by Ht :=
⊕M

m=1

√
θmt Hm with induced feature mapping φt :=

[
√
θ1
tφ1
′ · · ·

√
θMt φM

′]′ and endowed with the inner product 〈·, ·〉Ht,θ =
∑M

m=1 〈·, ·〉Hm . Moreover,

the reproducing kernel function for this feature space is given as kt,θ(xit, x
j
t) =

∑M
m=1 θ

m
t km(xit, x

j
t)

for all xit, x
j
t ∈ X . Note that each φm : X 7→ Hm is selected before training. Finally, we consider

the following MT-MKL hypothesis:

F :=

{
f := (f1, . . . , fT ) : ∀t,wt ∈ Ht,

T∑
t=1

‖wt‖2
Ht ≤ R,θ � 0

}
, (6.1)

where, for each task t, ft := 〈wt, φt(x)〉 + bt, where bt ∈ R and wt := (w1
t , . . . ,w

M
t ). Also,

θ := (θ1, . . . ,θT ) with θt := (θ1
t , . . . , θ

M
t ). It is worth pointing out that the (global) Rademacher

complexity of the hypothesis space F can be upper-bounded in terms of the trace of the combined

kernel kt,θ (see Theorem 57 in Chapter 5 for more details). Similar results have been shown in

the context of single task learning, which inspired most kernel learning algorithms to restrict their

hypothesis to the constraint tr(kθ) ≤ 1, where kθ is a non-negative linear combination of M base

kernels with the combination coefficient θ := (θ1, . . . , θM).
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As demonstrated in the previous chapter, however, the LRC-based MTL-bounds are determined by

the tail sum of the eigenvalues of the kernel, instead of its trace, i.e. the sum of all its eigenvalues.

Also, regarding the fact that LRCs can potentially lead to tighter learning bounds compared to

their GRC counterparts [33], this motivates us to consider an LRC-based constraint to restrict the

hypothesis class F as

F ′ :=

{
f := (f1, . . . , fT ) ∈ F :

T∑
t=1

∑
j>ht

λjt(kt,θ) ≤ 1

}
, (6.2)

where the non-negative integers h1, . . . , hT are free parameters used to control the tail sum. Note

that the hypothesis class F ′ is not convex, since the tail sum of the eigenvalues can be written

as the difference between the trace and the head sum of the eigenvalues, which are both convex

functions. Therefore, following the approach in [33], we work with a more convenient hypothesis

space which defines a convex set. For each task t and each kernel m, denoting θ̃mt := θmt /‖θt‖1 ,

one can show

T∑
t=1

∑
j>ht

λjt(kt,θ) =
T∑
t=1

∑
j>ht

λjt

(
M∑
m=1

θ̃mt ‖θt‖1km

)
≥

T∑
t=1

M∑
m=1

θ̃mt
∑
j>ht

λjt (‖θt‖1km)

=
T∑
t=1

M∑
m=1

θmt
∑
j>ht

λjt(km) (6.3)

where the inequality is due to the concavity of the function
∑

j>ht
λjt(.). Now, we alternatively

consider the following hypothesis class

F ′′ :=

{
f := (f1, . . . , fT ) ∈ F :

T∑
t=1

M∑
m=1

θmt
∑
j>ht

λjt(km) ≤ 1

}
, (6.4)

which is convex (and therefor, more convenient to work with), since it is just the restriction of the

convex class F with the linear constraint
∑T

t=1

∑M
m=1 θ

m
t

∑
j>ht

λjt(km) ≤ 1. Moreover, F ′′ is a
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richer class compared to F ′, as one can easily show that F ′ ⊆ F ′′ (see Propositions 4 and 5 in

[33]).

A New Convex Formulation for MTL

In this section, we present our new MTL model corresponding to the hypothesis F ′′. First note that

for each task t, if one normalizes the base kernels kms as k̃mt := km∑
j>ht

λjt (km)
, then the hypothesis

class F ′′ can be equivalently written as

F ′′ =

{
f := (f1, . . . , fT ) : ∀t,wt ∈ H̃t,

T∑
t=1

‖wt‖2
H̃t ≤ R,θ � 0, ‖θ‖1,1 ≤ 1

}
, (6.5)

where ‖θ‖1,1 :=
∑T

t=1

∑M
m=1 θ

m
t , and H̃t is the feature space of task t induced by the normalized

kernels k̃mt s. At this point, we would like to remark that, in practice, one needs to replace the

kernels kms by their empirical counterparts, that is, the kernel matrices Kms, and consequently,

considers the eigenvalues of the kernel matrices.

Here, we consider a linear MTL model involving T tasks. We assume that each task is presented by

a training set {(xit, yit)}
n
i=1 sampled from X × Y based on some probability distribution Pt(x, y),

where X denotes an arbitrary set that serves as the native space of samples for all tasks, and Y

represents the output space corresponding to the labels. Without loss of generality, we assume that

the same number n of labeled samples are available for learning each task. Now, utilizing a reg-

ularized empirical risk minimization framework, we consider solving the following optimization
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problem

min
w,b,θ

1

2

T∑
t=1

‖wt‖2
H̃t + C

T∑
t=1

n∑
i=1

`
(
ft(x

i
t), y

i
t

)
s.t. θ � 0, ‖θ‖1,1 ≤ 1. (6.6)

where b := (b1, . . . , bT ). Note that one just requires to normalize the kernel matrices Km
t s as

K̃M
t := Km∑

j>ht
λjt (Km)

, and then use any of the existing `1-norm MKL solvers in order to solve

the above optimization problem. Finally, as pointed out earlier, the eigenvalue-tail sum of the

kernel Km, for each task t, can be computed as
∑

j>ht
λjt(Km) = tr(Km)−

∑ht
j=1 λ

j
t(Km) with

a computational complexity of the order O(htn
2).

In this dissertation and for our experiments (presented in the next chapter), we consider T inter-

related Support Vector Machine (SVM) problems. Therefore, (6.6) can be equivalently expressed

as

min
w,b,θ,ξ

1

2

T∑
t=1

‖wt‖2
Ht + C

T∑
t=1

n∑
i=1

ξit

s.t. ∀i, yit
(〈
wt, φt

(
xit
)〉
Ht

+ bt

)
≥ 1− ξit, ξit ≥ 0

θ � 0, ‖θ‖1,1 ≤ 1. (6.7)

where ξ := (ξ1, . . . , ξT ). Note that a very similar formulation can be derived for regression using

algorithms such as SVR at this stage. Thus, the algorithm that we present in the following can be

easily extended to regression problems by considering the ε-insensitive loss function used in the

SVR context [56].
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Algorithm

One can easily verify that the primal-dual form of (6.7) with respect to {θ} and {w, b, ξ} can be

given as

min
θ

max
α

T∑
t=1

α′t1n −
1

2

T∑
t=1

α′tYtKtYtαt

s.t. ∀t, 0 � αt � C1, y′tαt = 0

θ � 0, ‖θ‖1,1 ≤ 1. (6.8)

where α := (α1, . . . ,α1) with αt being the Lagrangian dual variable for the minimization prob-

lem w.r.t.{wt, bt, ξt}. A block coordinate descent framework, also known as the non-linear Gauss-

Seidel method, applied to decompose Problem 6.8 into two subproblems. A convergence proof of

this method can be found in [14], p. 268-269. The first subproblem is given as the following

maximization problem with respect to α,

max
α

T∑
t=1

α′t1n −
1

2

T∑
t=1

α′tYtKtYtαt

s.t. ∀t, 0 � αt � C1, y′tαt = 0 (6.9)

the above problem can be efficiently solved via LIBSVM [24]. In the second block, we consider T

independent minimization problems each of which with respect to the task-specific parameter θt

as

min
θt
θ′tqt

s.t. θt � 0, ‖θt‖1 ≤ 1. (6.10)
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where qt := (q1
t , . . . , q

M
t ) and qmt := −1

2
α′tYtK

m
t Ytαt. Note that a closed form solution can be

found for the linear optimization problem (6.10) as

(
θjt
)M
j=1

=


1 if j = arg mini q

i
t, and qjt < 0

0 otherwise.
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CHAPTER 7: EXPERIMENTS

In this chapter, we present the results of our experiments with the algorithm we introduced in Chap-

ter 6. We compare the performance of our model in (6.7) with several kernel learning algorithms

on both classification and regression problems. In particular, we compare our model, denoted by

LRC-conv, with the following algorithms:

1. Uniform combination (unif): This model is the most straightforward MKL algorithm

whose performance has been difficult to surpass in the past [36, 31]. In this model, the kernel

parameters are all fixed and set equal to 1/M , where M is the number of base kernels.

2. `1-regularized combination (l1-com): We also evaluate the performance of our model

against the classical `1-norm MKL [78]. In this model, an `1-norm constraint is imposed

on kernel parameters θms, and they are learned during the training process. It is worth point-

ing out that if one normalizes the base kernels such that they all have a trace of one, then the

`1-norm MKL corresponds to the learning of a non-negative linear combination of kernels

with a linear constraint in the form of tr(Kθ) ≤ Λ on the trace of the combined kernel.

3. `2-regularized combination (l2-com): This algorithm optimizes the kernel parameter θms,

by imposing an `2-norm constraint on them. We consider this model for our experiments, as

it has been shown [37] that it can achieve significant improvement over the `1-norm MKL in

some cases, specially when dealing with large number of base kernels.

4. Finally, an Independent Task Learning (ITL) model is used as a baseline, wherein each task

is trained in isolation via a traditional single-task MKL strategy. The average performance

over all tasks is taken to gauge the effectiveness of this method versus alternatives.
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Experimental Setting

For all experiments, we have utilized 1 Linear, 1 Polynomial of degree 2, and a combination of

Gaussian kernels of the formKσ(xi,xj) = exp (−‖xi − xj‖2
2/σ), with varying spread parameter

σ ∈ {2σ0 , 2σ0+1 . . . , 21−σ1 , 2σ1}. An exception is the case of SARCOS dataset, for which, we only

used Gaussian kernels after noticing that adding linear kernels can lead to degraded performance

in all algorithms. Note that similar to the approach of base kernel selection in [39], the values of σ0

and σ1 for different datasets are chosen in a way so that the base kernels are sufficiently different.

However, for the sake of a fair comparison, we use the same set of kernels across different methods.

All kernel functions are normalized as k(x1,x2)← k(x1,x2)/
√
k(x1,x1)k(x2,x2). Note that, in

order to accentuate the need for MTL, we intentionally keep the training set size small as only 10%

of the samples we use for each experiment. The rest of the data is split in equal sizes for validation

and testing. Also, the SVM regularization parameter C is chosen over the set {2−13, . . . , 213}, and

the optimal model parameters hts for our LRC-conv model are determined via cross-validation

over the set {20, . . . 25} in all experiments.

Benchmark Datasets

We evaluate the performance of our method on the following datasets:

Letter Recognition: This dataset is a collection of handwritten words which are collected by Rob

Kassel at MIT spoken Language System Group. This dataset consists of eight tasks discriminating

between the letters: ‘c’ vs. ‘e’, ‘g’ vs. ‘y’, ‘m’ vs. ‘n’, ‘a’ vs. ‘g’, ‘i’ vs. ‘j’, ‘a’ vs. ‘o’, ‘f’

vs. ‘t’ and ‘h’ vs. ‘n’. Each letter is represented by 8 by 16 pixel image, which forms a 128

dimensional feature vector. 200 samples are randomly chosen for each letter. However, we made

an exception for the letter j, for which only 189 samples were available. Note that some features,
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such as curvature of lines, number of strokes or contiguity of characters, are universal between

different letters, while some other features are specific to each letter. Such adaptive characteristics

of different letters, makes the MTL a suitable framework for letter recognition problem.

Landmine Detection dataset consist of 29 binary classification tasks collected from various land-

mine fields. Each data sample is represented by a 9-dimensional feature vector extracted from

radar images and is associated to a binary class label y. The feature vectors correspond to regions

of landmine fields and include four moment-based features, three correlation-based features, one

energy ratio feature, and one spatial variance feature. The objective is to identify whether there is

a landmine or not based on a region’s features. An information sharing in this example can occur,

since some region features such as surface reflection coefficient, energy-ratio and spatial variance

are common/similar in different geographical landmine fields.

Spam Detection dataset was obtained from ECML PAKDD 2006 Discovery challenge for the

spam detection problem. For our experiments, we used the Task B dataset, which contains labeled

training data (emails) from inboxes of 15 different users. The goal is to construct a binary classifier

for each user, detecting spam (+) emails from the non-spam (−) ones. Each email is represented

by the term frequencies of the words resulting in 150K features from which we chose the 1000

most frequent ones. Since some aspects of relevant or junk emails are usually common across

users (e.g. some spams are universal to all users), the problem of learning spam detection models

for a set of users can be cast as a MTL problem.

Sentiment Analysis dataset contains Amazon product reviews on different domains, such as

books, dvd ans so on. We choose 24 domains (corresponding to 24 tasks), and 100 reviews per

domain. Each domain is considered as a binary classification task with reviews labeled (+) when

rating > 3, and labeled (−) when rating < 3. Note that the reviews with rating = 3 are excluded

in this experiment as such sentiments were ambiguous and hard to predict, even with very large
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amount of data. Our features were defined using the 4000 most frequent bigrams, yielding a dic-

tionary of size 76. Note that usually the same set of words are used to describe“good” or “bad”

items in all domains. This commonality can be efficiently captured using an MTL framework.

SARCOS Inverse Kinematics dataset is generated from an inverse dynamics prediction system

of a seven degrees-of-freedom (DOF) SARCOS anthropomorphic robot arm. This dataset consists

of 28 dimensions: the first 21 dimensions are considered as features (including 7 joint positions,

7 joint velocities and 7 joint accelerations), and the last 7 dimensions, corresponding to 7 joint

torques, are used as outputs. Therefore, there are 7 tasks and the inputs are shared among all

the tasks. for each 21-dimensional observation, the goal is then to predict 7 joint torques for

the seven DOF. This dataset involves 48933 observations from which we randomly sampled 2000

examples for our experiments. An MTL model is expected to show a promising performance in

this problem, as all tasks (joints) shares the same set of features including joint positions, velocities

and accelerations.

Short-term Electricity Load Forecasting dataset which was released for the Global Energy Fore-

casting Competition (GEFComp2012). This dataset contains hourly-load history of a US utility in

20 different zones from January 1st, 2004 to December 31, 2008. The goal is to predict the 1-hour-

ahead electricity load of these 20 zones. For this purpose, we considered predictors consisting

of a delay vector of 8 lagged hourly loads along with the calendar information including years,

seasons, months, weekdays and holidays. Note that we normalized the data to unify the units of

different features. Finally, we randomly sampled 2000 (non-sequential) examples per each task for

our experiments. It is not hard to verify that the consumption patterns of some users in different

zones might share some similarities, which might be properly captured using an MTL model.
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Experimental Report

In this section, we report the results of our experiments with LRC-conv, and compare it with

other kernel-based methods that we mentioned earlier in this chapter. For the statistical analysis

of our experiments, we used the approach in [42], which has been widely applied by the machine

learning community to compare multiple methods over multiple datasets. This is a common cir-

cumstance, specifically when the general performance of a method (and not its performance on a

particular problem) is required to be assessed. In particular, we use Friedman’s test [51] which

can be considered as the non-parametric equivalent of the repeated-measures ANOVA. It is note-

worthy that the repeated-measures ANOVA method is usually considered as the common statistical

method for comparing between more than two related sample means. However, the assumptions

of this method are most likely violated while studying the performance of machine learning al-

gorithms. As an example, one assumption made by ANOVA is that the data come from normal

distributions, although no guarantee exists for normality of performance distributions over a set of

problems. The more important assumption of ANOVA is sphericity which refers to the situation

where the variances of the differences between all possible pairs of groups are equal, i.e. the level

of dependence between pairs of groups is roughly equal. However, this condition cannot be taken

for granted when analyzing machine learning algorithms on multiple datasets. The violation of

this assumption can have a great effect on the post-hoc test, and thus, it is not a suitable test for

comparing learning algorithms.

For the reasons mentioned above, here we use Friedman’s test to perform a statistical compari-

son between the methods that we considered in our study. Using this test, all algorithms for each

dataset are ranked separately with the best performing algorithm being ranked first, and the second

best ranked second and so on. Note that the average rank is assigned in the case of ties. The null

hypothesis is that all methods are indistinguishable in terms of performance. Once the null hypoth-
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esis is rejected, a post-hoc test is usually employed for pairwise comparisons between methods.

The post-hoc tests are usually designed for situation in which one has already performed an F-

test consisting of three or more means, but an additional exploration is needed to provide specific

informations on which mean(s) are significantly different from others.

Suppose that we are provided with K algorithms and N datasets, where rkn denotes the rank of the

kth method on the nth dataset. Assuming that the average rank for each algorithm is obtained as

Rk := 1
N

∑N
n=1 r

n
k , then Friedman’s test compares the average rank of the algorithms under the

null hypothesis of the equivalency of all algorithms (all Rks are equal). The statistic for this test is

given as

χ2
F :=

12N

K(K + 1)

(
K∑
k=1

R2
k −

K(K + 1)2

4

)
,

which is χ2
F with degrees of freedom K − 1. A more advanced statistic (a modified version of

Friedman test’s statistic) was derived later by [62] as

FF :=
(N − 1)χ2

F

N(K − 1)− χ2
F

which is F -distributed with (K − 1, (K − 1)(N − 1)) degrees of freedom.

Now, when the null hypothesis is rejected, a post-hoc test can be further used to compare the

general performance of the methods among themselves. More specifically, if one is interested to

compare one—most likely a newly proposed—model against alternatives, a simple method such

as Holm’s test [61] can be further used. Defining SE :=
√

K(K+1)
6N

, this test is a sequentially

step-down procedure with the test statistic

z :=
Rk −Rl

SE

to compare the kth method against the lth one. In more detail, Holm’s test requires one to find the
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p-values for all pairwise comparisons and then sort them from the most to the least significant one,

so that p1 ≤ p2 ≤ . . . ≤ pK−1. Now, considering the significance level α, if p1 is smaller than

α/(K − 1), then the hypothesis corresponding to p1 will be rejected and one proceeds with the

next comparison, that is, p2 to α/(K − 2). We continue this process until a certain null hypothesis

cannot be rejected in which case all remaining hypotheses are retained as well.

Table 7.1 reports the average performance over all task, and 20 runs of randomly sampled training

sets. We used the accuracy percentage for classification problems, and the Mean Square Error

(MSE) for the regression ones. The rank of each model is indicated by a superscript next to the

performance of that model on the relevant data set, while the superscript next to the name of each

model reflects its average rank over all data sets.

Table 7.1: Experimental comparison between LRC-conv and four other methods on six bench-
mark datasets. The superscript next to each model indicates its rank. The best performing algo-
rithm gets rank of 1.

Classification Accuracy Regression MSE

Landmine Letter Spam Sentiment SARCOS Load×10−4

σ 1, 16 1, 14 3, 18 1, 3 8, 16 3, 18

ITL(4.5) 59.13(2) 83.75(5) 84.12(5) 57.83(5) 19.95(5) 46.17(5)

unif(3.1) 59.01(3) 84.62(4) 85.15(3) 59.70(3) 15.39(2) 45.34(4)

l1-com(3) 58.63(5) 85.94(2) 85.17(2) 59.86(2) 19.75(4) 44.13(3)

l2-com(3.33) 58.76(4) 85.63(3) 84.68(4) 59.52(4) 17.03(3) 43.77(2)

LRC-conv(1) 61.86(1) 89.58(1) 88.34(1) 61.32(1) 11.19(1) 41.40(1)

The results show that the LRC-based kernel learning approach leads to consistent improvements

over all other kernel-based methods in all experiments. This is even more evident in two datasets

Landmine and Sentiment, which are more difficult tasks as the classification accuracies are below

60%. Also, we observe that in 5 out of 6 datasets, ITL has the worst performance among all other
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methods. This observation is consistent with the fact that MTL, in general, may improve over ITL,

specially when a meaningful relationship exists between all tasks, and only a limited number of

training samples per each task is available.

We used Friedman’s and Holm’s post-hoc tests for our statistical analysis at the significance level

α = 0.05. Applying the Friedman’s test, on can easily verify that all algorithms are not equivalent.

Therefore, we employ Holm’s post-hoc test as following for our further analysis.

Table 7.2: Comparison of our LRC-conv method against the other methods with Holm’s test

k Methods z = Rk−RLRC

SE
p value Adjusted α

1 ITL 3.83 0.0001 0.01
2 l2-com 2.55 0.0106 0.017
3 l1-com 2.37 0.0171 0.025
4 unif 2.19 0.0285 0.05

As shown in Table 7.2, the advantage of our model is statistically significant compared to all other

methods. In particular, one can observe that in all experiments, our model outperforms all other

kernel learning algorithms, since their corresponding p-values are all smaller than the adjusted

α values obtained by Holm’s post-hoc test. With this observation, one can verify the benefit of

learning kernels based on our LRC approach, compared to other kernel learning methods (consid-

ered here) including `1-combination MKL, which can be viewed as learning a trace-constrained.

Note that the latter case corresponds to a kernel learning algorithm based on a GRC analysis. This

may justify the fact that using a LRC-based MTL hypothesis space (similar to (6.5)) can improve

over the traditional MT-MKL algorithms such as uniform combination and `2-norm, as well as the

GRC-based `1-norm MKL methods.
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CHAPTER 8: CONCLUSION AND FUTURE DIRECTIONS

With the ever increasing amount of data being collected in many domains and applications ev-

eryday, an urgent need arises for tools to extract the patterns in large and complex datasets and

translate them into meaningful information buried in the data. Machine learning strives to ad-

dress this problem by building algorithms, which observe a phenomenon, construct a model and

then use it for future predictions. A very common example of this automated learning process

deals with supervised learning scenario in which the training data are given as input-output pairs

{(x1, y1), . . . , (xn, yn)}. For each pair, the variable x is related to y. This relationship is encapsu-

lated by an unbeknown distribution P (x, y), and can be modeled by a predictor function f which

is supposed to generalize well in the future. That is to say, the mapping function f—from the input

space X to the output space Y—should be constructed in such a way that it minimizes the proba-

bility of error when comparing the response f(x) to y for a pair (x, y) drawn independently from

P . Mathematically speaking, given the performance measure ` : Y × Y → R, the expected loss

R(f) := E(x,y)∼P `(f(x), y)—associated to f on the pair (x, y)—should be as small as possible.

Note thatR(f) cannot be evaluated, as it depends on the unknown distribution P . However, its em-

pirical counterpart, known as empirical loss, can be calculated as R̂(f) := 1/n
∑n

i=1 `(f(xi), yi).

Note that the empirical loss cannot tell anything about the generalization error on unseen new data.

Therefore, the important question here is that “is there a way to create a learning algorithm with

a guarantee that the deviation between R(f) and R̂(f) is small for a large sample size n?” It is

worth mentioning that the practical successes of machine learning algorithms largely rely on these

guarantees which also ensure the quality of the solution produced.

The machine learning theory tries to address this question with the help of concentration inequal-

ities, which quantify the gap between empirical averages and their expected values. These in-

equalities provide probabilistic upper-bounds on the deviation of empirical and expected errors in
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the form of generalization error bounds. Beside characterizing the predictive ability of a learn-

ing model, generalization error bounds can be used in designing new learning algorithms, which

potentially lead to more accurate prediction models as they enjoy strong learning guarantees. Fur-

thermore, minimizing generalization bounds can be considered as an alternative to model selection,

which tries to identify the “right” complexity of the learning space to prevent overfitting.

With all these being said, one commonly occurring problem when applying machine learning to

solve application problems, is the lack of a sufficient amount of training data to attain acceptable

performance results; either obtaining such data may be very costly or they may be unavailable due

to technological limitations. In such situations, relying solely on the scarce data per individual pre-

diction task most often leads to inadequate predictive performance. MTL leverages the underlying

common links among a group of related tasks, while respecting the tasks individual idiosyncrasies

to the extent warranted. This is achieved by phrasing the learning process as a joint, mutually de-

pendent learning problem which has been shown to be beneficial compared to learning each task in

isolation, as typically done in practice. Nowadays, MTL frameworks are routinely employed in a

variety of settings. Some recent applications include computational genetics, image segmentation,

HIV therapy screening, collaborative filtering, age estimation from facial images, and sub-cellular

location prediction, just to name a few prominent ones.

A commonly utilized information sharing strategy for MTL is to use a (partially) common feature

mapping φ to map the data from all tasks to a (partially) shared feature space H. Such a method,

named kernel-based MTL, not only allows information sharing across tasks, but also enjoys the

non-linearity that is brought by the feature mapping φ. Although, the practical aspect of kernel-

based MTL has been widely studied by machine learning community, the theoretical research of

such settings is limited to a few studies.

The theoretical analysis of MTL in the existing work mostly investigates the generalization learn-
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ing guarantees in the form of error bounds in terms of the (global) Rademacher complexities. To

formally recapitulate the essence of these efforts, let T denote the number of tasks being co-learned

and n denote the number of available observations per task. Then, in terms of convergence rates in

the number of samples and tasks, respectively, the fastest-converging error or excess risk bounds

derived in these efforts—whether distribution- or data-dependent—are of the order O(
√

1/nT ).

In this dissertation, we investigate MTL generalization guarantees based on a more nuanced no-

tion of complexity, termed Local Rademacher Complexity (LRC), as opposed to the original

Global Rademacher Complexity (GRC). This new, modified function class complexity measure

is attention-worthy, since an LRC-based analysis is capable of producing more rapidly-converging

excess risk bounds (“fast rates”), when compared to the ones obtained via a GRC analysis. Note

that the convergence rate is considered as an important factor in analyzing error bounds associated

to a learning problem. This importance can be understood from the definition of the convergence

rate; the rate at which the empirical risk of the learning problem approaches its true counterpart.

As one of the main contributions of this dissertation, through a Talagrand-type concentration in-

equality adapted to the MTL case, we derived sharp bounds on the MTL excess risk in terms of the

distribution- and data-dependent LRC. For a given number of tasks T , these bounds admit faster

(asymptotic) convergence characteristics in the number of observations per task n, when compared

to corresponding bounds hinging on the GRC. Hence, these faster rates allow us to increase the

confidence that the MTL hypothesis selected by a learning algorithm approaches the best-in-class

solution as n increases beyond a certain threshold. Our derived bounds reflect that one can trade off

a slow convergence speed w.r.t. T for an improved convergence rate w.r.t. n. The latter one ranges,

in the worst case, from the typical GRC-based bounds O(
√

1/n), all the way up to the fastest rate

of orderO(1/n) by allowing the bound to depend less on T . Nevertheless, the premium in question

becomes less relevant to MTL, in which T is typically considered as fixed.

Also, we show that our LRC-based bounds can be both upper- and lower-bounded in terms of
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the tails sum of the eigenvalues of the tasks’ kernel matrices. This motivated us to design a new

kernel-based MTL formulation based on a non-negative combination of kernels with an LRC-based

constraint on the tail sum of the eigenvalues of the kernel matrices. The resulting optimization

problem is convex and can be efficiently solved using existing kernel learning algorithms. Finally,

via a series of experiments, we show that our new MTL model consistently outperforms traditional

MT kernel learning approaches, which have shown promising performances in the past.

To summarize the contributions of this work, we prove the first Talagrand’s concentration inequal-

ity for vector-valued MTL function classes. Note that the existing Talagrand’s bounds are appli-

cable only to scalar-valued function classes associated to STL scenario. Therefore, the initial step

of deriving Talagrand’s bound needs to be revisited such that it can be applied to vector-valued

function spaces, appropriate for MTL. This step itself, relies on proving a Logorithmic Sobolev

inequality, which is considered as the exponential version of Efron-Stein inequality; a powerful

tool in bounding the variance of general functions of independent random variables. Based on our

revised Talagrand’s concentration inequality, we then develop a new excess risk bound for MTL,

which improves over the existing bounds in the context of MTL. Our risk bound achieves a faster

convergence rate compared to McDiarmid-based bounds. Furthermore, in order to derive a more

informative form of the improved bound, we consider the application of our risk bound to a number

of common kernel-based MTL spaces. It turns out that the bounds for all cases that we considered

in this study are functions of the tail-sum of the eigenvalues of tasks’ kernels. Based on this new

piece of information, we finally propose a new MTL model which outperforms traditional MTL

approaches, including a model designed based on a GRC analysis.

While MTL mainly focuses on improving the generalization performance of all available tasks,

there exists another transfer learning scenario, which focuses on doing well only on a new target

task, by exploiting the knowledge from past experiences. This learning paradigm is known as

Learning-To-Learn (LTL), and it transfers knowledge from some previously learned tasks to im-
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prove learning of a new task. Similar to MTL, though, the assumption is that the tasks share some

common properties, which can be utilized to enhance the learning of future tasks. The success

in this line of research can have major impact in real world applications, as it can help building

machines which learn from experience to perform a new task. A direction for future investigation,

then, is to extend our MTL analysis in this dissertation to the case of LTL. Regarding the fact that

there are only a few efforts investigating the theoretical aspects of this problem, an improved local

analysis (similar to what has been done for MTL here) might lead to designing more powerful LTL

frameworks.

Beside LTL, our study here can be extended to other learning frameworks such as deep Neural

Networks, which have been proven to achieve remarkable performance in many areas such as nat-

ural language processing, speech recognition, social network filtering, image captioning, machine

translation and bioinformatics. Despite the success of deep networks in solving machine learn-

ing problems, there exist a lack of a theoretical analysis in designing of the network architecture

and the training process. Filling this theoretical gap can remedy some difficulties of training deep

networks. For instance, tight generalization bounds in this context can guide the design of new

learning algorithms in which one does not need to pre-specify the number of layers of the network.

Instead the network architecture is leaned in an adaptive fashion based on the complexity of the

learning problem at hand. Such an adaptive structural learning has been studied based on a global

analysis in [32], which can be extended to local analysis similar to what has been done in this

dissertation.
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Proofs of the results for “Talagrand-Type Inequality for Multi-Task Learning”

Proof of Theorem 28

Before laying out the details, we first provide a sketch of the proof. Defining

Z := sup
f∈F

[ 1

T

T∑
t=1

1

Nt

Nt∑
i=1

[Eft(X i
t)− ft(X i

t)]
]
, (A.1)

we first apply Theorem 20 to control the log-moment generating function logE
(
eλ(Z−EZ)

)
. From

Theorem 20, we know that the main component to control logE
(
eλ(Z−EZ)

)
is the variance-type

quantity V + =
∑T

s=1

∑Ns
j=1 E′

[(
Z − Z ′s,j

)2

+

]
. In the next step, we show that V + can also be

bounded in terms of two other quantities denoted byW and Υ. Applying Theorem 20 for a specific

value of θ, then gives a bound for logE
(
eλ(Z−EZ)

)
in terms of logE[e

λ
b′ (W+Υ)]. We then turn to

controlling W and Υ, respectively. Our idea to tackle W is to show that it is a self-bounding

function, according to which we can apply Corollary 23 to control logE[e
λW
b′ ]. The term Υ is

closely related to the constraint imposed on the variance of functions in F , and can be easily upper

bounded in terms of r. We finally apply Lemma 5 to transfer the upper bound on the log-moment

generating function logE
(
eλ(Z−EZ)

)
to the tail probability on Z. To clarify the process we divide

the proof into four main steps.

Step 1. Controlling the log-moment generating function of Z with the random variable W

and variance Υ. Let X ′ := (X ′it )
(T,Nt)
(t,i)=(1,1) be an independent copy of X := (X i

t)
(T,Nt)
(t,i)=(1,1). Define

the quantity
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Z ′s,j := sup
f∈F

[ 1

TNs

[
E′fs(X ′js )− fs(X ′js )

]
− 1

TNs

[
Efs(Xj

s )− fs(Xj
s )
]

+
1

T

T∑
t=1

1

Nt

Nt∑
i=1

[Eft(X i
t)− ft(X i

t)]
]
, (A.2)

where Z ′s,j is obtained from Z by replacing the variable Xj
s with X ′js . Let f̂ := (f̂1, . . . f̂T ) be such

that Z = 1
T

∑T
t=1

1
Nt

∑Nt
i=1

[
Ef̂t(X i

t)− f̂t(X i
t)
]
, and introduce

W := sup
f∈F

[ 1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

[Eft(X i
t)− ft(X i

t)]
2
]
,

Υ := sup
f∈F

[ 1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

E[Eft(X i
t)− ft(X i

t)]
2
]
.

It can be shown that for any j ∈ Nn and any s ∈ NT :

Z − Z ′s,j ≤
1

TNs

[
Ef̂s(Xj

s )− f̂s(Xj
s )
]
− 1

TNs

[
E′f̂s(X ′js )− f̂s(X ′js )

]
and therefore

(Z − Z ′s,j)2
+ ≤

1

T 2N2
s

(
[Ef̂s(Xj

s )− f̂s(Xj
s )]− [E′f̂s(X ′js )− f̂s(X ′js )]

)2
.
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Then, it follows from the identity E′[E′f̂s(X ′js )− f̂s(X ′js )] = 0 that

T∑
s=1

Ns∑
j=1

E′
[(
Z − Z ′s,j

)2

+

]
≤

T∑
s=1

Ns∑
j=1

1

T 2N2
s

E′
[(

[Ef̂s(Xj
s )− f̂s(Xj

s )]− [E′f̂s(X ′js )− f̂s(X ′js )]
)2]

=
T∑
s=1

Ns∑
j=1

1

T 2N2
s

[Ef̂s(Xj
s )− f̂s(Xj

s )]
2 +

T∑
s=1

Ns∑
j=1

1

T 2N2
s

E′[E′f̂s(X ′js )− f̂s(X ′js )]2

≤ sup
f∈F

T∑
s=1

Ns∑
j=1

1

T 2N2
s

[Efs(Xj
s )− fs(Xj

s )]
2 + sup

f∈F

T∑
s=1

Ns∑
j=1

1

T 2N2
s

E[Efs(Xj
s )− fs(Xj

s )]
2

= W + Υ.

Introduce b′ := 2b
nT

. Applying Theorem 20 and the above bound on
∑T

s=1

∑Ns
j=1 E′

[(
Z − Z ′s,j

)2

+

]
then gives the following bound on the log-moment generating function of Z:

logE
(
eλ(Z−EZ)

)
≤ λb′

1− λb′
logEe

λ
b′ (W+σ2), ∀λ ∈ (0, 1/b′). (A.3)

Step 2. Controlling the log-moment generating function of W . We now upper bound the

log-moment generating function of W by showing that it is a self-bounding function. For any

s ∈ NT , j ∈ NNs , introduce

Ws,j := sup
f∈F

[ 1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

[Eft(X i
t)− ft(X i

t)]
2 − 1

T 2N2
s

[Efs(Xj
s )− fs(Xj

s )]
2
]
.

Note that Ws,j is a function of {X i
t , t ∈ NT , i ∈ Nt}\{Xj

s}. Letting f̃ := (f̃1, . . . , f̃T ) be the

function achieving the supremum in the definition of W , it can be checked that (note that b′ = 2b
nT

)

T 2[W −Ws,j] ≤
1

N2
s

[Ef̃s(Xj
s )− f̃s(Xj

s )]
2 ≤ 4b2

n2
= T 2b′2. (A.4)

Similarly, if f̃ s,j := (f̃ s,j1 . . . , f̃ s,jT ) is the function achieving the supremum in the definition of
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Ws,j , then one can derive the following inequality

T 2[W −Ws,j] ≥
1

N2
s

[Ef̃ s,js (Xj
s )− f̃ s,js (Xj

s )]
2 ≥ 0.

Also, it can be shown that

T∑
s=1

Ns∑
i=1

W −Ws,j ≤
1

T 2

T∑
s=1

1

N2
s

Ns∑
i=1

[Ef̃s(Xj
s )− f̃s(Xj

s )]
2

= sup
f∈F

[ 1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

[Eft(X i
t)− ft(X i

t)]
2
]
. (A.5)

Therefore (according to Definition 21), W/b′ is a b′-self bounding function. Applying Corollary 23

then gives the following inequality for any λ ∈ (0, 1/b′):

logEeλ(W/b′) ≤ (eλb
′ − 1)

b′2
EW =

(eλb
′ − 1)

b′2
Σ2 ≤ λΣ2

b′(1− λb′)
, (A.6)

where we introduce Σ2 := EW and the last step uses the inequality (ex−1)(1−x) ≤ x,∀x ∈ [0, 1].

Furthermore, the term Σ2 can be controlled as follows: (here (σit) is a sequence of independent

Rademacher variables, independent of X i
t ):

Σ2 ≤ 1

T 2
EX sup

f∈F

[ T∑
t=1

1

N2
t

Nt∑
i=1

[
Eft(X i

t)− ft(X i
t)
]2 − T∑

t=1

1

N2
t

Nt∑
i=1

E
[
Eft(X i

t)− ft(X i
t)
]2]

+ Υ

≤ 2EX,σ
[

sup
f∈F

1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

σit
[
Eft(X i

t)− ft(X i
t)
]2]

+ Υ

≤ 8bEX,σ
[

sup
f∈F

1

T 2

T∑
t=1

1

N2
t

Nt∑
i=1

σit
[
Eft(X i

t)− ft(X i
t)
]]

+ Υ

≤ 16bR(F)

nT
+ Υ,

where the first inequality follows from the definition ofW and Υ, and the second inequality follows
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from the standard symmetrization technique used to related Rademacher complexity to uniform

deviation of empirical averages from their expectation [10]. The third inequality comes from a

direct application of Lemma 2 with φ(x) = x2 (with Lipschitz constant 4b on [−2b, 2b]), and

the last inequality uses Jensen’s inequality together with the definition of R(F) and the fact that

1
N2
t
≤ 1

nNt
. Plugging the previous inequality on Σ2 back into (A.6) gives

logEeλ(W/b′) ≤ λ

b′(1− λb′)

[16bR(F)

nT
+ Υ

]
, ∀λ ∈ (0, 1/b′). (A.7)

Step 3. Controlling the term Υ. Note that Υ can be upper bounded as

Υ : = sup
f∈F

[ 1

T 2

T∑
s=1

1

N2
s

Ns∑
j=1

E[Efs(Xj
s )− fs(Xj

s )]
2
]

≤ 1

nT 2
sup
f∈F

[ T∑
s=1

E[Efs(X1
s )− fs(X1

s )]2
]

≤ 1

nT 2
sup
f∈F

[ T∑
s=1

E[fs(X
1
s )]2
]

≤ r

nT
.

(A.8)

where the last inequality follows from the assumption 1
T

supf∈F

[∑T
s=1 E[fs(X

1
s )]2
]
≤ r of the

theorem.

Step 4. Transferring from the bound on log-moment generating function of Z to tail proba-

bilities. Plugging the bound on logEeλW/b′ given in (A.7) and the bound on Υ given in (A.8) back

into (A.3) immediately yields the following inequality on the log-moment generating function of
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Z for any λ ∈ (0, 1/2b′):

logE[eλ(Z−EZ)] ≤ λb′

1− λb′
[ λ

b′(1− λb′)
[
16(nT )−1bR(F) + Υ] +

λΥ

b′

]
≤ λb′

1− λb′
λ

b′(1− λb′)

[16bR(F)

nT
+ 2Υ

]
≤ 2λ2

2(1− 2λb′)

[16bR(F)

nT
+

2r

nT

]
,

(A.9)

where the second inequality uses (1 − λb′)2 ≥ 1 − 2λb′ > 0 since λ ∈ (0, 1/2b′). That is, the

conditions of Lemma 5 hold and we can apply it (with A = 2
[16bR(F)

nT
+ 2r

nT

]
and B = 2b′) to get

the following inequality with probability at least 1− e−x (note that b′ = 2b
nT

):

Z ≤ E[Z] +

√
4x
[16bR(F)

nT
+

2r

nT

]
+ 2b′x

≤ E[Z] + 8

√
bxR(F)

nT
+

√
8xr

nT
+

4bx

nT

≤ E[Z] + 2R(F) +
8bx

nT
+

√
8xr

nT
+

4bx

nT

≤ 4R(F) +

√
8xr

nT
+

12bx

nT
,

where the third inequality follows from 2
√
uv ≤ u + v, and the last step uses the following

inequality due to the symmetrization technique (here the ghost sample X ′ is an i.i.d. copy of the
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initial sample X)

EZ = EX
[

sup
f∈F

1

T
EX′
[ T∑
t=1

1

Nt

Nt∑
i=1

(
ft
(
X ′it
)
− ft

(
X i
t

))]]
≤ EX,X′

[
sup
f∈F

1

T

T∑
t=1

1

Nt

Nt∑
i=1

(
ft
(
X ′it
)
− ft

(
X i
t

))]
= EX,X′,σ

[
sup
f∈F

1

T

T∑
t=1

1

Nt

Nt∑
i=1

σit
(
ft
(
X ′it
)
− ft

(
X i
t

))]
≤ 2R(F).

Note that the second identity holds since for any σit, the random variable ft(X ′it )− ft(X i
t) has the

same distribution as σit(ft(X
′i
t )− ft(X i

t)).
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APPENDIX B: PROOFS OF THE RESULTS II
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Proofs of the results for “Excess MTL Risk Bounds based on Local Rademacher Complexities”

Theorem 59 is at the core of proving Theorem 33 in Sect. 5. We first present some useful lemmas.

Lemma 7 (Young’s inequality). If p, q > 0 with p−1 + q−1 = 1, then we have

xp

p
+
yq

q
≥ xy, ∀x, y ≥ 0. (B.1)

Lemma 8. Let c1, c2 > 0 and s > q > 0. Then the equation xs − c1x
q − c2 = 0 has a unique

positive solution x0 satisfying

x0 ≤
[
c

s
s−q
1 +

sc2

s− q

] 1
s
.

Furthermore, for any x ≥ x0, we have xs ≥ c1x
q + c2.

Proof. Denote p(x) := xs − c1x
q − c2. The uniqueness of a positive solution for the equation

p(x) = 0 is shown in Lemma 7.2 in [40]. Let x0 be this unique positive solution. Then, it follows

from Young’s inequality (B.1) that

xs0 = c1x
q
0 + c2 ≤

x
q· s
q

0
s
q

+
c

s
s−q
1
s
s−q

+ c2 =
q

s
xs0 +

s− q
s

c
s
s−q
1 + c2,

from which we have xs0 ≤ c
s
s−q
1 + sc2

s−q . The inequality p(x) ≥ 0 for any x ≥ x0 follows immediately

from p(x0) = 0, limx→∞ p(x) = ∞ and the uniqueness of zero points for the equation p(x) =

0.

Also, we will need the following lemma for the second step of the proof of Theorem 59.

Lemma 9. Let K > 1, r > 0. Assume that F = {f := (f1, . . . , fT ) : ∀t, ft ∈ RX} is a

120



vector-valued (β,B)-Bernstein class of functions. Also, let the rescaled version of F be defined as

Fr :=

{
f ′ =

(
f ′1, . . . , f

′
T

)
: f ′t :=

rft
max (r, V (f))

,f = (ft, . . . , fT ) ∈ F
}
.

If V +
r := supf ′∈Fr [Pf

′ − Pnf ′] ≤ r
1
β

BK
, then

∀f ∈ F Pf ≤ K

K − β
Pnf +

r
1
β

K
. (B.2)

Proof. We prove (B.2) by considering two cases. Let f be any element in F . If V (f) ≤ r, then

f ′ = f and the inequality V +
r ≤ r

1
β

BK
translates to

Pf ≤ Pnf +
r

1
β

BK
≤ K

K − β
Pnf +

r
1
β

K
. (B.3)

If V (f) ≥ r, then f ′ = rf/V (f) and the inequality V +
r ≤ r

1
β

BK
translates to

Pf ≤ Pnf +
r

1
β
−1V (f)

BK
≤ Pnf +

r
1
β
−1Pfβ

K

= Pnf +
1

TK

T∑
t=1

E
[
r

1
β
−1fβt

]
(B.1)
≤ Pnf +

1

TK

T∑
t=1

E
[ [fβt ]

1
β

1
β

+
[r

1
β
−1]

1
1−β

1
1−β

]
= Pnf +

β

K
Pf +

(1− β)r
1
β

K
,

where we have used the Bernstein’s condition V (f) ≤ BPfβ . The above inequality can be
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equivalently written as

Pf ≤ K

K − β
Pnf +

1− β
K − β

r
1
β ≤ K

K − β
Pnf +

r
1
β

K
. (B.4)

Eq. (B.2) follows by combining (B.3) and (B.4) together.

The following provides another useful definition that will be needed in introducing the result of

Theorem 59.

Definition 58 (Star-Hull). The star-hull of a function class F around the function f0 is defined as

star(F , f0) := {f0 + α(f − f0) : f ∈ F , α ∈ [0, 1]}

Now, we present a lemma from [10] which indicates that the local Rademacher complexity of the

star-hull of any function class F is a sub-root function, and it has a unique fixed point.

Lemma 10 (Lemma 3.4 in [10]). For any function class F , the local Rademacher complexity of

its start-hull is a sub-root function.

Theorem 59 (Distribution-dependent bound for MTL). Let F = {f := (f1, . . . , fT ) : ∀t, ft ∈

RX} be a class of vector-valued functions satisfying supt,x |ft(x)| ≤ b. Let X := (X i
t , Y

i
t )

(T,n)
(t,i)=(1,1)

be a vector of nT independent random variables where (X1
t , Y

1
t ), . . . , (Xn

t , Y
n
t ),∀t ∈ NT are

identically distributed. Assume that F is a (β,B)-Bernstein class of vector-valued functions. Let

ψ be a sub-root function with the fixed point r∗. Suppose that

BR(F , r) ≤ ψ(r), ∀r ≥ r∗,

where R(F , r) := E
[

supf∈F ,V (f)≤r
1
nT

∑T
t=1

∑n
i=1 σ

i
tft(X

i
t)
]

is the LRC of the function class F .

Then,
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1. For any K > 1, and x > 0, with probability at least 1− e−x, every f ∈ F satisfies

Pf ≤ K

K − β
Pnf + (2K)

β
2−β 20

2
2−β max

(
(r∗)

1
2−β , (r∗)

1
β

)
+
(2β+3B2Kβx

nT

) 1
2−β

+
24Bbx

(2− β)nT
. (B.5)

2. If F is convex and V (αf) ≤ α2V (f) for any α ∈ [0, 1], f ∈ F , then for any K > 1, and

x > 0, the following inequality holds with probability at least 1− e−x for every f ∈ F

Pf ≤ K

K − β
Pnf + (2K)

β
2−β 4

2
2−β max

(
(r∗)

1
2−β , (r∗)

1
β

)
+
(2β+3B2Kβx

nT

) 1
2−β

+
24Bbx

(2− β)nT
. (B.6)

Proof. Similar to Lemma 9, define for the vector-valued function class F ,

Fr :=

{
f ′ =

(
f ′1, . . . , f

′
T

)
: f ′t :=

rft
max (r, V (f))

,f = (ft, . . . , fT ) ∈ F
}
.

The proof can be broken down in two steps. The first step applies Theorem 28 and the seminal

peeling technique [138, 139] to establish an inequality on the uniform deviation over the function

class Fr. The second step then uses the Bernstein assumption V (f) ≤ BPfβ to convert this

inequality stated for Fr to a uniform deviation inequality for F .

Step 1. Controlling uniform deviations for Fr. To apply Theorem 28 to Fr, we need to control

the variances and uniform bounds for elements in Fr. We first show Pf ′2 ≤ r,∀f ′ ∈ Fr. Indeed,

for any f ∈ F with V (f) ≤ r, the definition of Fr implies f ′t = ft and, hence, Pf ′2 = Pf 2 ≤

V (f) ≤ r. Otherwise, if V (f) ≥ r, then f ′t = rft/V (f) and we get

Pf ′2 =
1

T

T∑
t=1

Pf ′2t =
r2[

V (f)
]2( 1

T

T∑
t=1

Pf 2
t

)
≤ r2[

V (f)
]2V (f) ≤ r.
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Therefore, 1
T

supf ′∈Fr
∑T

t=1 E[f ′t(Xt)]
2 ≤ r. Also, since functions in F admit a range of [−b, b]

and since 0 ≤ r/max(r, V (f)) ≤ 1, the inequality supt,x |f ′t(x)| ≤ b holds for any f ′ ∈ Fr.

Applying Theorem 28 to the function class Fr then yields the following inequality with probability

at least 1− e−x,∀x > 0

sup
f ′∈Fr

[Pf ′ − Pnf ′] ≤ 4R(Fr) +

√
8xr

nT
+

12bx

nT
. (B.7)

It remains to control the Rademacher complexity of Fr. Denote F(u, v) :=
{
f ∈ F : u ≤

V (f) ≤ v
}
,∀0 ≤ u ≤ v, and introduce the notation

Rnf
′ :=

1

nT

T∑
t=1

n∑
i=1

σitf
′
t(X

i
t), Rn(Fr) := sup

f ′∈Fr

[
Rnf

′
]
.

Note that R(Fr) = ERn(Fr). Our assumption implies V (f) ≤ BPfβ ≤ Bbβ,∀f ∈ F . Fix

λ > 1 and define k to be the smallest integer such that rλk+1 ≥ Bbβ . Then, it follows from the

union bound inequality

R(G1 ∪ G2) ≤ R(G1) + R(G2) (B.8)
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that

R(Fr) = E
[

sup
f ′∈Fr

Rnf
′
]

= E
[

sup
f∈F

1

nT

T∑
t=1

n∑
i=1

r

max(r, V (f))
σitft(X

i
t)

]
(B.8)
≤ E

[
sup

f∈F(0,r)

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

]
+ E

[
sup

f∈F(r,Bbβ)

1

nT

T∑
t=1

n∑
i=1

r

V (f)
σitft(X

i
t)

]
(B.8)
≤ E

[
sup

f∈F(0,r)

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

]
+

k∑
j=0

λ−jE
[

sup
f∈F(rλj ,rλj+1)

Rnf

]

≤ R(F , r) +
k∑
j=0

λ−jR
(
F , rλj+1

)
≤ ψ(r)

B
+

1

B

k∑
j=0

λ−jψ(rλj+1).

The sub-root property of ψ implies that for any ξ ≥ 1, ψ(ξr) ≤ ξ
1
2ψ(r), and hence

R(Fr) ≤
ψ(r)

B

(
1 +
√
λ

k∑
j=0

λ−j/2
)
≤ ψ(r)

B

(
1 +

λ√
λ− 1

)
.

Taking the choice λ = 4 in the above inequality implies that R(Fr) ≤ 5ψ(r)/B, which, together

with the inequality ψ(r) ≤
√
r/r∗ψ(r∗) =

√
rr∗,∀r ≥ r∗, gives

R(Fr) ≤
5

B

√
rr∗, ∀r ≥ r∗.

Combining (B.7) and the above inequality together, for any r ≥ r∗ and x > 0, we derive the

following inequality with probability at least 1− e−x,

sup
f ′∈Fr

[Pf ′ − Pnf ′] ≤
20

B

√
rr∗ +

√
8xr

nT
+

12bx

nT
. (B.9)

Step 2. Transferring uniform deviations for Fr to uniform deviations for F . Setting A =
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20
√
r∗/B +

√
8x/nT and C = 12bx/nT , the upper bound (B.9) can be written as A

√
r+C, that

is, supf ′∈Fr [Pf
′−Pnf ′] ≤ A

√
r+C. Now, according to Lemma 9, if supf ′∈Fr [Pf

′−Pnf ′] ≤ r
1
β

BK
,

then for any f ∈ F ,

Pf ≤ K

K − β
Pnf +

r
1
β

K
.

Therefore, in order to use the result of Lemma 9, we let A
√
r + C = r

1
β /(BK). Assume r0 is the

unique positive solution of the equation A
√
r + C = r

1
β /(BK), which can be written as

r
1
β − ABKr

1
2 −BKC = 0.

Lemma 8 then implies

r
1
β

0 ≤ (ABK)
2

2−β +
2BKC

2− β

≤ (BK)
2

2−β 2
β

2−β

[
(20B−1)

2
2−β (r∗)

1
2−β +

( 8x

nT

) 1
2−β
]

+
24BKbx

(2− β)nT
,

(B.10)

where we have used the inequality (x + y)p ≤ 2p−1(xp + yp) for any x, y ≥ 0, p ≥ 1. If r∗ ≤ r0,

we can take r = r0 in (B.9) to derive V +
r0
≤ A
√
r0 + C = r

1
β

0 /(BK), which, coupled with (B.10)

and Lemma 9, then implies

Pf ≤ K

K − β
Pnf + (2K)

β
2−β 20

2
2−β (r∗)

1
2−β +

(2β+3B2Kβx

nT

) 1
2−β

+
24Bbx

(2− β)nT
, (B.11)

If r∗ > r0, Lemma 8 implies A
√
r∗ + C ≤ (r∗)

1
β /(BK). We now take r = r∗ in (B.9) to derive

V +
r∗ ≤ A

√
r∗ + C ≤ (r∗)

1
β /(BK), from which, via Lemma 9, we get that

Pf ≤ K

K − β
Pnf +

r
1
β
∗

K
. (B.12)

The stated inequality (B.5) follows immediately by combining (B.11) and (B.12) together.
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The proof of the second part follows from the fact that Fr ⊆ {f ∈ star(F , 0) : V (f) ≤ r}, where

star(F , f0) is defined according to Definition 58. Also, since any convex class F is star-shaped

around any of its points, we have Fr ⊆ {f ∈ F : V (f) ≤ r}. Therefore, R(Fr) in (B.7) can be

bounded as R(Fr) ≤ R(F , r) ≤ ψ(r)/B. The rest proof of (B.6) is analogous to that of the first

part and is omitted for brevity.

Proof of Theorem 33

Note that the proof of this theorem relies on the results of Theorem 59. Introduce the following

class of excess loss functions

H∗F := {hf = (hf1 , . . . , hfT ), hft : (Xt, Yt) 7→ `(ft(Xt), Yt)− `(f ∗t (Xt), Yt),f ∈ F} . (B.13)

It can be shown that supt,x |hft(x, y)| = supt,x |`(ft(x), y) − `(f ∗t (x), y)| ≤ L supt,x |ft(x) −

f ∗t (x)| ≤ 2Lb. Also, Assumption 32 implies

P (`f − `f∗)2 ≤ L2P (f − f ∗)2 ≤ B′L2P (`f − `f∗), ∀hf ∈ H∗F ,

By taking B = B′L2, we have for all hf ∈ H∗F ,

V (hf ) := Ph2
f ≤ L2P (f − f ∗)2 ≤ BP (`f − `f∗) = BPhf .
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which implies that H∗F is a (1, B)-Bernstein class of vector-valued functions. Also, note that one

can verify

BR(H∗F , r) = BEX,σ

 sup
f∈F ,

V (hf )≤r

1

nT

T∑
t=1

n∑
i=1

σithft(X
i
t , Y

i
t )


= BEX,σ

 sup
f∈F ,

V (hf )≤r

1

nT

T∑
t=1

n∑
i=1

σit`ft(X
i
t , Y

i
t )


≤ BLR(F∗, r) ≤ ψ(r),

where the second last inequality is due to Talagrand’s Lemma [83]. Applying Theorem 59 (which is

the extension of Theorem 3.3 of [10] to MTL function classes) to the function classH∗F completes

the proof.

The following lemma, as a consequence of Corollary 2.2 in [10], is essential in proving Theo-

rem 35.

Lemma 11. Assume that the functions in vector-valued function class F = {f = (f1, . . . , fT )}

satisfy supt,x |ft(x)| ≤ b with b > 0. For every x > 0, if r satisfies

r ≥ 32L2bEσ,X

 sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

+
128L2b2x

nT
,

then, with probability at least 1− e−x,

{
f ∈ F : L2P (f − f ∗)2 ≤ r

}
⊂
{
f ∈ F : L2Pn (f − f ∗)2 ≤ 2r

}
.
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Proof. First, define

F∗r :=
{
f ′ = (f ′1, . . . , f

′
T ) : ∀t, f ′t = (ft − f ∗t )2,f = (f1, . . . , fT ) ∈ F , L2P (f − f ∗)2 ≤ r

}
.

Note that for all t ∈ NT , (ft − f ∗t )2 ∈ [0, 4b2]. Also, for any function in F∗r , it holds that

Pf ′2 =
1

T

T∑
t=1

Pf ′2t =
1

T

T∑
t=1

P (ft − f ∗t )4 ≤ 4b2

T

T∑
t=1

P (ft − f ∗t )2 = 4b2P (f − f ∗)2 ≤ 4b2r

L2
.

Therefore, by Theorem 28, with probability at least 1− e−x, every f ′ ∈ F∗r satisfies

Pnf
′ ≤ Pf ′ + 4R(F∗r ) +

√
32b2xr

nTL2
+

48b2x

nT
, (B.14)

where

R(F∗r ) = Eσ,X

 sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σit(ft(X
i
t)− f ∗t (X i

t))
2


≤ 4bEσ,X

 sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

 . (B.15)

The last inequality follows from the facts that g(x) = x2 is 4b-Lipschitz on [−2b, 2b] and f ∗ is

fixed. This together with (B.14), gives

Pnf
′ ≤ Pf ′ + 16bEσ,X

 sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

+

√
32b2xr

nTL2
+

48b2x

nT

≤ r

L2
+ 16bEσ,X

 sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

+
r

2L2
+

64b2x

nT
. (B.16)
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Multiplying both sides by L2 completes the proof.

Proof of Theorem 35

With c1 = 2Lmax (B, 16Lb) and c2 = 128L2b2 + 2bc1, define the function ψ(r) as

ψ(r) =
c1

2
E

 sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

+
(c2 − 2bc1)x

nT
. (B.17)

Since F is convex, it is star-shaped around any of its points, thus using Lemma 3.4 in [10] it can

be shown that ψ(r) defined in (B.17) is a sub-root function. With the help of Corollary 34 and

Assumption 32, we have with probability at least 1− e−x

L2P
(
f̂ − f ∗

)2

≤ BP
(
`f̂ − `f∗

)
≤ 32BKr +

(48Lb+ 16BK)B2x

nT
. (B.18)

where B := B′L2. Denote the right hand side of the last inequality by s. Since s ≥ r ≥ r∗, then

by the property of sub-root functions it holds that s ≥ ψ(s) which together with (B.17), gives

s ≥ 32L2bE

 sup
f∈F ,

L2P (f−f∗)2≤s

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

+
128L2b2x

nT
.

Applying Lemma 11, we have with probability at least 1− e−x,

{
f ∈ F , L2P (f − f ∗)2 ≤ s

}
⊂
{
f ∈ F , L2Pn (f − f ∗)2 ≤ 2s

}
.

130



Combining this with (B.18), gives with probability at least 1− 2e−x,

L2Pn

(
f̂ − f ∗

)2

≤ 2

(
32BKr +

(48Lb+ 16BK)B2x

nT

)
≤ 2

(
32BK +

(48Lb+ 16BK)B2

c2

)
r = cr. (B.19)

where c := 2(32BK + (48Lb + 16BK)B2/c2) and in the last inequality we used the fact that

r ≥ ψ(r) ≥ c2x/nT . Applying the triangle inequality, if (B.19) holds, then for any f ∈ F , we

have

L2Pn

(
f − f̂

)2

≤

(√
L2Pn (f − f ∗)2 +

√
L2Pn

(
f ∗ − f̂

)2
)2

≤
(√

L2Pn (f − f ∗)2 +
√
cr

)2

. (B.20)

Now, applying Lemma 11 for r ≥ ψ(r), implies that with probability at least 1− 3e−x,

{
f ∈ F , L2P (f − f ∗)2 ≤ r

}
⊂
{
f ∈ F , L2Pn (f − f ∗)2 ≤ 2r

}
,

which coupled with (B.20), implies that with probability at least 1− 3e−x,

{
f ∈ F , L2P (f − f ∗)2 ≤ r

}
⊂
{
f ∈ F , L2Pn

(
f − f̂

)2

≤
(√

2 +
√
c
)2

r

}
.

Also, with the help of Lemma A.4 in [10], it can be shown that with probability at least 1− e−x,

E

 sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

 ≤ 2Eσ

 sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

+
4bx

nT
.
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Thus, we will have with probability at least 1− 4e−x,

ψ(r) ≤ c1Eσ

 sup
f∈F ,

L2P (f−f∗)2≤r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

∣∣∣∣∣ {xit}t∈NT ,i∈Nn
+

c2x

nT

≤ c1Eσ

 sup
f∈F ,

L2Pn(f−f̂)2≤(
√

2+
√
c)

2
r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

∣∣∣∣∣ {xit}t∈NT ,i∈Nn
+

c2x

nT

≤ c1Eσ

 sup
f∈F ,

L2Pn(f−f̂)2≤(4+2c)r

1

nT

T∑
t=1

n∑
i=1

σitft(X
i
t)

∣∣∣∣∣ {xit}t∈NT ,i∈Nn
+

c2x

nT

≤ ψ̂(r). (B.21)

Setting r = r∗ and applying Lemma 4.3 of [10], gives r∗ ≤ r̂∗ which together with (B.18) yields

the result.
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APPENDIX C: PROOFS OF THE RESULTS III
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Proofs of the results for “Local Rademacher Complexity Bounds for MTL models with Strongly

Convex Regularizers”

In the following, we would like to provide some basic notions of convex analysis which are helpful

in understanding the results of Sect. 5.

Definition 60 (STRONG CONVEXITY). A function R : X 7→ R is µ-strong convex w.r.t. a norm

‖.‖ if and only if ∀x, y ∈ X and ∀α ∈ (0, 1), we have

R(αx+ (1− α)y) ≤ αR(x) + (1− α)R(y)− µ

2
α(1− α)‖x− y‖2.

Definition 61 (STRONG SMOOTHNESS). A functionR∗ : X 7→ R is 1
µ

-strong smooth w.r.t. a norm

‖.‖∗ if and only if R∗ is everywhere differentiable and ∀x, y ∈ X , we have

R∗(x+ y) ≤ R∗(x) + 〈OR∗(x), y〉+
1

2µ
‖y‖2

∗ .

Property 62 (Theorem 3 in [69]: strong convexity/strong smoothness duality). A function R is

µ-strongly convex w.r.t. the norm ‖.‖ if and only if its Fenchel conjugate R∗ is 1
µ

-strongly smooth

w.r.t. the dual norm ‖.‖∗. The Fenchel conjugate R∗ is defined as

R∗(w) := sup
v
{〈w,v〉 −R(v)} .

Property 63 (FENCHEL-YOUNG INEQUALITY). The definition of Fenchel dual implies that for

any strong convex function R,

∀w,v ∈ S, 〈w,v〉 ≤ R(w) +R∗(v).
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Combining this with the strong duality property of R∗ gives the following

〈w,v〉 −R(w) ≤ R∗(v) ≤ R∗(0) + 〈OR∗(0),v〉+
1

2µ
‖v‖2

∗ . (C.1)

Lemma 12. Assume that the conditions of Theorem 36 hold. Then, for ever f ∈ Fq,

(a) Pf 2 ≤ r implies 1/T
∑T

t=1

∑∞
j=1 λ

j
t

〈
wt,u

j
t

〉2 ≤ r.

(b) EX,σ
〈

1
n

∑n
i=1 σ

i
tφ(X i

t),u
j
t

〉2
=

λjt
n

.

Proof.

Part (a)

Pf 2 =
1

T

T∑
t=1

E
(〈
wt, φ(X i

t)
〉)2 1

T

T∑
t=1

E
(〈
wt ⊗wt, φ(X i

t)⊗ φ(X i
t)
〉)

=
1

T

T∑
t=1

〈
wt ⊗wt,EX

(
φ(X i

t)⊗ φ(X i
t)
)〉

=
1

T

T∑
t=1

∞∑
j=1

λjt
〈
wt ⊗wt,u

j
t ⊗ u

j
t

〉
=

1

T

T∑
t=1

∞∑
j=1

λjt
〈
wt,u

j
t

〉 〈
wt,u

j
t

〉
=

1

T

T∑
t=1

∞∑
j=1

λjt
〈
wt,u

j
t

〉2 ≤ r.

Part (b)

EX,σ

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉2

=
1

n2
EX,σ

n∑
i,k=1

σitσ
k
t

〈
φ(X i

t),u
j
t

〉 〈
φ(Xk

t ),ujt
〉

σti.i.d.
=

1

n2
EX

(
n∑
i=1

〈
φ(X i

t),u
j
t

〉2

)
=

1

n

〈
1

n

n∑
i=1

EX
(
φ(X i

t)⊗ φ(X i
t)
)
,ujt ⊗ u

j
t

〉

=
1

n

∞∑
l=1

λlt
〈
ult ⊗ ult,u

j
t ⊗ u

j
t

〉
=
λjt
n
.
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The following lemmas are used in the proof of the LRC bound for the L2,q-group norm regularized

MTL in Corollary 42.

Lemma 13 (Khintchine-Kahane Inequality [118]). LetH be an inner-product space with induced

norm ‖·‖H, v1, . . . , vM ∈ H and σ1, . . . , σn i.i.d. Rademacher random variables. Then, for any

p ≥ 1, we have that

Eσ

∥∥∥∥∥
n∑
i=1

σivi

∥∥∥∥∥
p

H

≤

(
c

n∑
i=1

‖vi‖2
H

) p
2

. (C.2)

where c := max {1, p− 1}. The inequality also holds for p in place of c.

Lemma 14 (Rosenthal-Young Inequality; Lemma 3 of [72]). Let the independent non-negative

random variables X1, . . . , Xn satisfy Xi ≤ B < +∞ almost surely for all i = 1, . . . , n. If q ≥ 1
2
,

cq := (2qe)q, then it holds

E

(
1

n

n∑
i=1

Xi

)q

≤ Cq

[(
B

n

)q
+

(
1

n

n∑
i=1

EXi

)q]
. (C.3)
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Proof of Lemma 6

For the group norm regularizer ‖W ‖2,q, we can further bound the expectation term in (5.16) for

D = I as follows

E := EX,σ

∥∥∥∥∥∥
(∑
j>ht

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

)T

t=1

∥∥∥∥∥∥
2,q∗

= EX,σ

 T∑
t=1

∥∥∥∥∥∑
j>ht

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

∥∥∥∥∥
q∗
 1

q∗

Jensen
≤ EX

 T∑
t=1

Eσ

∥∥∥∥∥∑
j>ht

〈
1

n

n∑
i=1

σitφ(X i
t),u

j
t

〉
ujt

∥∥∥∥∥
q∗
 1

q∗

(C.2)
≤ EX

 T∑
t=1

q∗ n∑
i=1

∥∥∥∥∥∑
j>ht

〈
1

n
φ(X i

t),u
j
t

〉
ujt

∥∥∥∥∥
2


q∗
2


1
q∗

=

√
q∗

n
EX

 T∑
t=1

(∑
j>ht

1

n

n∑
i=1

〈
φ(X i

t),u
j
t

〉2

) q∗
2


1
q∗

Jensen
≤
√
q∗

n

 T∑
t=1

EX

(∑
j>ht

1

n

n∑
i=1

〈
φ(X i

t),u
j
t

〉2

) q∗
2


1
q∗

(C.4)

Note that for q ≤ 2, it holds that q∗/2 ≥ 1. Therefore, we cannot employ Jensen’s inequality to

move the expectation operator inside the inner term, and instead we need to apply the Rosenthal-
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Young (R+Y) inequality (see Lemma 14 in the Appendix), which yields

E
R+Y
≤
√
q∗

n

 T∑
t=1

(eq∗)
q∗
2

(K
n

) q∗
2

+

(∑
j>ht

1

n

n∑
i=1

EX
〈
φ(X i

t),u
j
t

〉2

) q∗
2


1
q∗

=

√
q∗

n

 T∑
t=1

(eq∗)
q∗
2

(K
n

) q∗
2

+

(∑
j>ht

λjt

) q∗
2


1
q∗

. (C.5)

The last quantity can be further bounded using the sub-additivity of q∗
√
. and √. respectively in

(††) and (†) below,

E
(†)
≤ q∗

√
e

n


T (K

n

) q∗
2

 1
q∗

+

 T∑
t=1

(∑
j>ht

λjt

) q∗
2


1
q∗


(††)
≤ q∗

√
e

n

T 1
q∗

√
K
n

+

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
1
2

q∗
2


=

√
Keq∗T

1
q∗

n
+

√√√√√eq∗2

n

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

. (C.6)

Proof of Corollary 42

Substituting the result of Lemma 6 into (5.18) gives,

A2(Fq) ≤

√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq

∗T
1
q∗

nT
. (C.7)
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Now, combining (5.15) and (C.7) provides the bound on R(Fq, r) as

R(Fq, r) ≤

√
r
∑T

t=1 ht
nT

+

√√√√√2eq∗2R2
max

nT 2

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq

∗T
1
q∗

nT
(C.8)

(?)

≤

√√√√√√ 2

nT

r T∑
t=1

ht +
2eq∗2R2

max

T

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq

∗T
1
q∗

nT

(??)

≤

√√√√√√ 2

nT

rT 1− 2
q∗
∥∥∥(ht)

T
t=1

∥∥∥
q∗
2

+
2eq∗2R2

max

T

∥∥∥∥∥∥
(∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq

∗T
1
q∗

nT

(???)

≤

√√√√√ 4

nT

∥∥∥∥∥∥
(
rT 1− 2

q∗ ht +
2eq∗2R2

max

T

∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq

∗T
1
q∗

nT
.

where in (?), (??) and (? ? ?) we applied following inequalities receptively, according which for

all non-negative numbers α1 and α2, and non-negative vectors a1,a2 ∈ RT with 0 ≤ q ≤ p ≤ ∞

and s ≥ 1 it holds

(?)
√
α1 +

√
α2 ≤

√
2(α1 + α2)

(??) lp − to− lq : ‖a1‖q = 〈1,a1〉
1
q

Hölder
≤

(
‖1‖(p/q)∗ ‖a

q
1‖(p/q)

) 1
q

= T
1
q
− 1
p ‖a1‖p

(? ? ?) ‖a1‖s + ‖a2‖s ≤ 21− 1
s ‖a1 + a2‖s ≤ 2 ‖a1 + a2‖s .
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Since inequality (? ? ?) holds for all non-negative ht, it follows

R(Fq, r) ≤

√√√√√ 4

nT

∥∥∥∥∥∥
(

min
ht≥0

rT 1− 2
q∗ ht +

2eq∗2R2
max

T

∑
j>ht

λjt

)T

t=1

∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq

∗T
1
q∗

nT

≤

√√√√√ 4

nT

∥∥∥∥∥∥
(
∞∑
j=1

min

(
rT 1− 2

q∗ ,
2eq∗2R2

max

T
λjt

))T

t=1

∥∥∥∥∥∥
q∗
2

+

√
2KeRmaxq

∗T
1
q∗

nT
.
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Proof of Theorem 46

R(Fq,R,T , r) =
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According to [108], it can be shown that there is a constant c such that if λ1
t ≥ 1

nR2
max

, then for

all r ≥ 1
n

it holds R(F
1,RT

− 1
q ,1
, r) ≥

√
c
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(
r, R2T−

2
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)
, which with some algebra

manipulations gives the desired result.
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The following lemma is used in the proof of the LRC bounds for the LSq -Schatten norm regularized

MTL in Corollary 48.

Lemma 15 (Non-commutative Khintchine’s inequality [95]). LetQ1, . . . ,Qn be a set of arbitrary

m×nmatrices, and let σ1, . . . , σn be a sequence of independent Bernoulli random variables. Then

for all p ≥ 2,

Eσ
∥∥∥∥∥

n∑
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σiQi
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p

Sp

1/p

≤ p1/2 max
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i Qi
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Sp

,
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(

n∑
i=1

QiQ
T
i

)1/2
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Sp

 . (C.9)

Proof of Corollary 48

In order to find an LRC bound for a LSq -Schatten norm regularized hypothesis space (5.30), one

just needs to bound the expectation term in (5.12). Define U i
t as a matrix with T columns, whose

only non-zero tth column equals
∑

j>ht

〈
1
n
φ(X i

t),u
j
t

〉
ujt . Also, note that for the Schatten norm
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regularized hypothesis space (5.30), it holds thatD = I . Therefore, we will have
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where in (†††), we assumed that the first term in the max argument is the largest one.
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Proof of Corollary 51

Similar to the proof of Corollary 48, for the graph regularized hypothesis space (5.32), one can

bound the expectation term in (5.12) as
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APPENDIX D: PROOFS OF THE RESULTS IV
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Proof of the results for “Excess Risk Bounds for MTL models with Strongly Convex

Regularizers”

Proof of Corollary 55

First notice that R̂(F∗q , c3r) ≤ 2R̂(Fq, c3r4L2 ). Assume that (ûjt)j≥1 is an orthonormal basis of HK

of matrixKt. Then similar to the proof of Theorem 38 it can be shown that
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Now, similar to the proof of Lemma 6, it can be shown that
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j>ĥt

〈
1

n

n∑
i=1

σitφ̂(X i
t), û
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.

Note that, for the empirical LRC, the expectation is taken only with respect to the Radamacher

146



variables (σit)
(T,n)
(t,i=1). Therefore, we get
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Denote the right hand side by ψ̂ubn (r). Solving the fixed point equation ψ̂ubn (r) =
√
αr + γ = r for

α =
c2

1c3

∑T
t=1 ĥt
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, (D.1)

gives r̂∗ ≤ α + 2γ. Substituting α and γ completes the proof.

Proof of the results in Sect. 5: “Discussion”

Proof of Theorem 57

Note that regarding the definition of A2 in (5.14), the global rademacher complexity for each case

can be obtained by replacing the tail-sum
∑

j>ht
λjt in the bound of its corresponding A2(F) by∑∞

j=1 λ
j
t = tr(Jt). Indeed, similar to the proof of Lemma 6, it can be shown that for the group
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norm with q ∈ [1, 2],
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where the inequality is obtained in a similar way as in Lemma 6. The GRC bounds for the other

cases can be easily derived in a very similar manner.

148



LIST OF REFERENCES

[1] Qi An, Chunping Wang, Ivo Shterev, Eric Wang, Lawrence Carin, and David B Dunson.

Hierarchical kernel stick-breaking process for multi-task image analysis. In Proceedings of

the 25th international conference on Machine learning, pages 17–24. ACM, 2008.

[2] Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from

multiple tasks and unlabeled data. Journal of Machine Learning Research, 6(Nov):1817–

1853, 2005.
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[50] Rémi Flamary, Alain Rakotomamonjy, and Gilles Gasso. Learning constrained task simi-

larities in graph-regularized multi-task learning. Regularization, Optimization, Kernels, and

Support Vector Machines, page 103, 2014.

[51] Milton Friedman. A comparison of alternative tests of significance for the problem of m

rankings. The Annals of Mathematical Statistics, 11(1):86–92, 1940.

[52] Joumana Ghosn and Yoshua Bengio. Multi-task learning for stock selection. Advances in

Neural Information Processing Systems, pages 946–952, 1997.
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