898 research outputs found

    Expectation Propagation for Rectified Linear Poisson Regression

    Get PDF
    The Poisson likelihood with rectified linear function as non-linearity is a physically plausible model to discribe the stochastic arrival process of photons or other particles at a detector. At low emission rates the discrete nature of this process leads to measurement noise that behaves very differently from additive white Gaussian noise. To address the intractable inference problem for such models, we present a novel efficient and robust Expectation Propagation algorithm entirely based on analytically tractable computations operating re- liably in regimes where quadrature based implementations can fail. Full posterior inference therefore becomes an attractive alternative in areas generally dominated by methods of point estimation. Moreover, we discuss the rectified linear function in the context of other common non-linearities and identify situations where it can serve as a robust alternative

    Expectation Propagation for Poisson Data

    Get PDF
    The Poisson distribution arises naturally when dealing with data involving counts, and it has found many applications in inverse problems and imaging. In this work, we develop an approximate Bayesian inference technique based on expectation propagation for approximating the posterior distribution formed from the Poisson likelihood function and a Laplace type prior distribution, e.g., the anisotropic total variation prior. The approach iteratively yields a Gaussian approximation, and at each iteration, it updates the Gaussian approximation to one factor of the posterior distribution by moment matching. We derive explicit update formulas in terms of one-dimensional integrals, and also discuss stable and efficient quadrature rules for evaluating these integrals. The method is showcased on two-dimensional PET images.Comment: 25 pages, to be published at Inverse Problem

    Scalable Data Augmentation for Deep Learning

    Full text link
    Scalable Data Augmentation (SDA) provides a framework for training deep learning models using auxiliary hidden layers. Scalable MCMC is available for network training and inference. SDA provides a number of computational advantages over traditional algorithms, such as avoiding backtracking, local modes and can perform optimization with stochastic gradient descent (SGD) in TensorFlow. Standard deep neural networks with logit, ReLU and SVM activation functions are straightforward to implement. To illustrate our architectures and methodology, we use P\'{o}lya-Gamma logit data augmentation for a number of standard datasets. Finally, we conclude with directions for future research

    Scalable Bayesian inversion with Poisson data

    Get PDF
    Poisson data arise in many important inverse problems, e.g., medical imaging. The stochastic nature of noisy observation processes and imprecise prior information implies that there exists an ensemble of solutions consistent with the given Poisson data to various extents. Existing approaches, e.g., maximum likelihood and penalised maximum likelihood, incorporate the statistical information for point estimates, but fail to provide the important uncertainty information of various possible solu- tions. While full Bayesian approaches can solve this problem, the posterior distributions are often intractable due to their complicated form and the curse of dimensionality. In this thesis, we investigate approximate Bayesian inference techniques, i.e., variational inference (VI), expectation propagation (EP) and Bayesian deep learning (BDL), for scalable posterior exploration. The scalability relies on leveraging 1) mathematical structures emerging in the problems, i.e., the low rank structure of forward operators and the rank 1 projection form of factors in the posterior distribution, and 2) efficient feed forward processes of neural networks and further reduced training time by flexibility of dimensions with incorporating forward and adjoint operators. Apart from the scalability, we also address theoretical analysis, algorithmic design and practical implementation. For VI, we derive explicit functional form and analyse the convergence of algorithms, which are long-standing problems in the literature. For EP, we discuss how to incorporate nonnegative constraints and how to design stable moment evaluation schemes, which are vital and nontrivial practical concerns. For BDL, specifically conditional variational auto-encoders (CVAEs), we investigate how to apply them for uncertainty quantification of inverse problems and develop flexible and novel frameworks for general Bayesian Inversion. Finally, we justify these contributions with numerical experiments and show the competitiveness of our proposed methods by comparing with state-of-the-art benchmarks

    Model Reduction and Neural Networks for Parametric PDEs

    Get PDF
    We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature

    Applications of Approximate Learning and Inference for Probabilistic Models

    Get PDF
    We develop approximate inference and learning methods for facilitating the use of probabilistic modeling techniques motivated by applications in two different areas. First, we consider the ill-posed inverse problem of recovering an image from an underdetermined system of linear measurements corrupted by noise. Second, we consider the problem of inferring user preferences for items from counts, pairwise comparisons and user activity logs, instances of implicit feedback. Plausible models for images and the noise, incurred when recording them, render posterior inference intractable, while the scale of the inference problem makes sampling based approximations ineffective. Therefore, we develop deterministic approximate inference algorithms for two different augmentations of a typical sparse linear model: first, for the rectified-linear Poisson likelihood, and second, for tree-structured super-Gaussian mixture models. The rectified-linear Poisson likelihood is an alternative noise model, applicable in astronomical and biomedical imaging applications, that operate in intensity regimes in which quantum effects lead to observations that are best described by counts of particles arriving at a sensor, as well as in general Poisson regression problems arising in various fields. In this context we show, that the model-specific computations for Expectation Propagation can be robustly solved by a simple dynamic program. Next, we develop a scalable approximate inference algorithm for structured mixture models, that uses a discrete graphical model to represent dependencies between the latent mixture components of a collection of mixture models. Specifically, we use tree-structured mixtures of super-Gaussians to model the persistence across scales of large coefficients of the Wavelet transform of an image for improved reconstruction. In the second part on models of user preference, we consider two settings: the global static and the contextual dynamic setting. In the global static setting, we represent user-item preferences by a latent low-rank matrix. Instead of using numeric ratings we develop methods to infer this latent representation for two types of implicit feedback: aggregate counts of users interacting with a service and the binary outcomes of pairwise comparisons. We model count data using a latent Gaussian bilinear model with Poisson likelihoods. For this model, we show that the Variational Gaussian approximation can be further relaxed to be available in closed-form by adding additional constraints, leading to an efficient inference algorithm. In the second implicit feedback scenario, we infer the latent preference matrix from pairwise preference statements. We combine a low-rank bilinear model with non-parameteric item- feature regression and develop a novel approximate variational Expectation Maximization algorithm that mitigates the computational challenges due to latent couplings induced by the pairwise comparisons. Finally, in the contextual dynamic setting, we model sequences of user activity at the granularity of single interaction events instead of aggregate counts. Routinely gathered in the background at a large scale in many applications, such sequences can reveal temporal and contextual aspects of user behavior through recurrent patterns. To describe such data, we propose a generic collaborative sequence model based on recurrent neural networks, that combines ideas from collaborative filtering and language modeling
    corecore