220,559 research outputs found

    Expansion Trees with Cut

    Full text link
    Herbrand's theorem is one of the most fundamental insights in logic. From the syntactic point of view it suggests a compact representation of proofs in classical first- and higher-order logic by recording the information which instances have been chosen for which quantifiers, known in the literature as expansion trees. Such a representation is inherently analytic and hence corresponds to a cut-free sequent calculus proof. Recently several extensions of such proof representations to proofs with cut have been proposed. These extensions are based on graphical formalisms similar to proof nets and are limited to prenex formulas. In this paper we present a new approach that directly extends expansion trees by cuts and covers also non-prenex formulas. We describe a cut-elimination procedure for our expansion trees with cut that is based on the natural reduction steps. We prove that it is weakly normalizing using methods from the epsilon-calculus

    A History of Woodland Dynamics in the Owyhee’s: Encroachment, Stand Closure, Understory Dynamics, and Tree Biomass

    Get PDF
    Piñon and juniper woodlands in the cold desert of the Intermountain West occupy over 44.6 million acres (Miller and Tausch 2001). These woodlands are commonly associated with sagebrush communities forming a mosaic of shrub-steppe and woodland across the region. Numerous studies have documented the recent expansion (since the late 1800’s) of these woodlands that has resulted in the replacement of shrub-steppe communities. Recent debate has challenged the degree of expansion in terms of percent of new areas occupied by trees and the increase in total population of piñon and juniper since the late 1800’s. Various interest groups have become concerned over the limited scientific evidence documenting the expansion of these conifers at a broad scale (in other words, landscapes or across entire woodlands) in the Intermountain Region. The fear of many groups is historic woodlands that occupied landscapes prior to Eurasian settlement in the late 1800’s are being burned, cut, and chained in the name of restoration

    On the ee-positivity of trees and spiders

    Full text link
    We prove that for any tree with a vertex of degree at least six, its chromatic symmetric function is not ee-positive, that is, it cannot be written as a nonnegative linear combination of elementary symmetric functions. This makes significant progress towards a recent conjecture of Dahlberg, She, and van Willigenburg, who conjectured the result for all trees with a vertex of degree at least four. We also provide a series of conditions that can identify when the chromatic symmetric function of a spider, a tree consisting of multiple paths identified at an end, is not ee-positive. These conditions also generalize to trees and graphs with cut vertices. Finally, by applying a result of Orellana and Scott, we provide a method to inductively calculate certain coefficients in the elementary symmetric function expansion of the chromatic symmetric function of a spider, leading to further ee-positivity conditions for spiders.Comment: 23 pages, 2 figures. Updated with new conjectures and minor changes in wordin

    Canonical Proof nets for Classical Logic

    Full text link
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In [23], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK\ast in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of [23]), we give a full proof of (c) for expansion nets with respect to LK\ast, and in addition give a cut-elimination procedure internal to expansion nets - this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.Comment: Accepted for publication in APAL (Special issue, Classical Logic and Computation

    Importing SMT and Connection proofs as expansion trees

    Get PDF
    Different automated theorem provers reason in various deductive systems and, thus, produce proof objects which are in general not compatible. To understand and analyze these objects, one needs to study the corresponding proof theory, and then study the language used to represent proofs, on a prover by prover basis. In this work we present an implementation that takes SMT and Connection proof objects from two different provers and imports them both as expansion trees. By representing the proofs in the same framework, all the algorithms and tools available for expansion trees (compression, visualization, sequent calculus proof construction, proof checking, etc.) can be employed uniformly. The expansion proofs can also be used as a validation tool for the proof objects produced.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    Wilsonian renormalization, differential equations and Hopf algebras

    Full text link
    In this paper, we present an algebraic formalism inspired by Butcher's B-series in numerical analysis and the Connes-Kreimer approach to perturbative renormalization. We first define power series of non linear operators and propose several applications, among which the perturbative solution of a fixed point equation using the non linear geometric series. Then, following Polchinski, we show how perturbative renormalization works for a non linear perturbation of a linear differential equation that governs the flow of effective actions. Then, we define a general Hopf algebra of Feynman diagrams adapted to iterations of background field effective action computations. As a simple combinatorial illustration, we show how these techniques can be used to recover the universality of the Tutte polynomial and its relation to the qq-state Potts model. As a more sophisticated example, we use ordered diagrams with decorations and external structures to solve the Polchinski's exact renormalization group equation. Finally, we work out an analogous construction for the Schwinger-Dyson equations, which yields a bijection between planar Ï•3\phi^{3} diagrams and a certain class of decorated rooted trees.Comment: 42 pages, 26 figures in PDF format, extended version of a talk given at the conference "Combinatorics and physics" held at Max Planck Institut fuer Mathematik in Bonn in march 2007, some misprints correcte

    Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps

    Get PDF
    Ordinary tensor models of rank D≥3D\geq 3 are dominated at large NN by tree-like graphs, known as melonic triangulations. We here show that non-melonic contributions can be enhanced consistently, leading to different types of large NN limits. We first study the most generic quartic model at D=4D=4, with maximally enhanced non-melonic interactions. The existence of the 1/N1/N expansion is proved and we further characterize the dominant triangulations. This combinatorial analysis is then used to define a non-quartic, non-melonic class of models for which the large NN free energy and the relevant expectations can be calculated explicitly. They are matched with random matrix models which contain multi-trace invariants in their potentials: they possess a branched polymer phase and a 2D quantum gravity phase, and a transition between them whose entropy exponent is positive. Finally, a non-perturbative analysis of the generic quartic model is performed, which proves analyticity in the coupling constants in cardioid domains
    • …
    corecore