14,754 research outputs found

    Is the five-flow conjecture almost false?

    Get PDF
    The number of nowhere zero Z_Q flows on a graph G can be shown to be a polynomial in Q, defining the flow polynomial \Phi_G(Q). According to Tutte's five-flow conjecture, \Phi_G(5) > 0 for any bridgeless G.A conjecture by Welsh that \Phi_G(Q) has no real roots for Q \in (4,\infty) was recently disproved by Haggard, Pearce and Royle. These authors conjectured the absence of roots for Q \in [5,\infty). We study the real roots of \Phi_G(Q) for a family of non-planar cubic graphs known as generalised Petersen graphs G(m,k). We show that the modified conjecture on real flow roots is also false, by exhibiting infinitely many real flow roots Q>5 within the class G(nk,k). In particular, we compute explicitly the flow polynomial of G(119,7), showing that it has real roots at Q\approx 5.0000197675 and Q\approx 5.1653424423. We moreover prove that the graph families G(6n,6) and G(7n,7) possess real flow roots that accumulate at Q=5 as n\to\infty (in the latter case from above and below); and that Q_c(7)\approx 5.2352605291 is an accumulation point of real zeros of the flow polynomials for G(7n,7) as n\to\infty.Comment: 44 pages (LaTeX2e). Includes tex file, three sty files, and a mathematica script polyG119_7.m. Many improvements from version 3, in particular Sections 3 and 4 have been mostly re-writen, and Sections 7 and 8 have been eliminated. (This material can now be found in arXiv:1303.5210.) Final version published in J. Combin. Theory

    Ramanujan Coverings of Graphs

    Full text link
    Let GG be a finite connected graph, and let ρ\rho be the spectral radius of its universal cover. For example, if GG is kk-regular then ρ=2k1\rho=2\sqrt{k-1}. We show that for every rr, there is an rr-covering (a.k.a. an rr-lift) of GG where all the new eigenvalues are bounded from above by ρ\rho. It follows that a bipartite Ramanujan graph has a Ramanujan rr-covering for every rr. This generalizes the r=2r=2 case due to Marcus, Spielman and Srivastava (2013). Every rr-covering of GG corresponds to a labeling of the edges of GG by elements of the symmetric group SrS_{r}. We generalize this notion to labeling the edges by elements of various groups and present a broader scenario where Ramanujan coverings are guaranteed to exist. In particular, this shows the existence of richer families of bipartite Ramanujan graphs than was known before. Inspired by Marcus-Spielman-Srivastava, a crucial component of our proof is the existence of interlacing families of polynomials for complex reflection groups. The core argument of this component is taken from a recent paper of them (2015). Another important ingredient of our proof is a new generalization of the matching polynomial of a graph. We define the rr-th matching polynomial of GG to be the average matching polynomial of all rr-coverings of GG. We show this polynomial shares many properties with the original matching polynomial. For example, it is real rooted with all its roots inside [ρ,ρ]\left[-\rho,\rho\right].Comment: 38 pages, 4 figures, journal version (minor changes from previous arXiv version). Shortened version appeared in STOC 201

    Constructing Mutually Unbiased Bases in Dimension Six

    Full text link
    The density matrix of a qudit may be reconstructed with optimal efficiency if the expectation values of a specific set of observables are known. In dimension six, the required observables only exist if it is possible to identify six mutually unbiased complex 6x6 Hadamard matrices. Prescribing a first Hadamard matrix, we construct all others mutually unbiased to it, using algebraic computations performed by a computer program. We repeat this calculation many times, sampling all known complex Hadamard matrices, and we never find more than two that are mutually unbiased. This result adds considerable support to the conjecture that no seven mutually unbiased bases exist in dimension six.Comment: As published version. Added discussion of the impact of numerical approximations and corrected the number of triples existing for non-affine families (cf Table 3
    corecore