6,962 research outputs found

    Isomorphism Checking for Symmetry Reduction

    Get PDF
    In this paper, we show how isomorphism checking can be used as an effective technique for symmetry reduction. Reduced state spaces are equivalent to the original ones under a strong notion of bisimilarity which preserves the multiplicity of outgoing transitions, and therefore also preserves stochastic temporal logics. We have implemented this in a setting where states are arbitrary graphs. Since no efficiently computable canonical representation is known for arbitrary graphs modulo isomorphism, we define an isomorphism-predicting hash function on the basis of an existing partition refinement algorithm. As an example, we report a factorial state space reduction on a model of an ad-hoc network connectivity protocol

    Worm Monte Carlo study of the honeycomb-lattice loop model

    Full text link
    We present a Markov-chain Monte Carlo algorithm of "worm"type that correctly simulates the O(n) loop model on any (finite and connected) bipartite cubic graph, for any real n>0, and any edge weight, including the fully-packed limit of infinite edge weight. Furthermore, we prove rigorously that the algorithm is ergodic and has the correct stationary distribution. We emphasize that by using known exact mappings when n=2, this algorithm can be used to simulate a number of zero-temperature Potts antiferromagnets for which the Wang-Swendsen-Kotecky cluster algorithm is non-ergodic, including the 3-state model on the kagome-lattice and the 4-state model on the triangular-lattice. We then use this worm algorithm to perform a systematic study of the honeycomb-lattice loop model as a function of n<2, on the critical line and in the densely-packed and fully-packed phases. By comparing our numerical results with Coulomb gas theory, we identify the exact scaling exponents governing some fundamental geometric and dynamic observables. In particular, we show that for all n<2, the scaling of a certain return time in the worm dynamics is governed by the magnetic dimension of the loop model, thus providing a concrete dynamical interpretation of this exponent. The case n>2 is also considered, and we confirm the existence of a phase transition in the 3-state Potts universality class that was recently observed via numerical transfer matrix calculations.Comment: 33 pages, 12 figure

    Cyclic Coloring of Plane Graphs with Maximum Face Size 16 and 17

    Get PDF
    Plummer and Toft conjectured in 1987 that the vertices of every 3-connected plane graph with maximum face size D can be colored using at most D+2 colors in such a way that no face is incident with two vertices of the same color. The conjecture has been proven for D=3, D=4 and D>=18. We prove the conjecture for D=16 and D=17

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    Two-dimensional O(n) model in a staggered field

    Full text link
    Nienhuis' truncated O(n) model gives rise to a model of self-avoiding loops on the hexagonal lattice, each loop having a fugacity of n. We study such loops subjected to a particular kind of staggered field w, which for n -> infinity has the geometrical effect of breaking the three-phase coexistence, linked to the three-colourability of the lattice faces. We show that at T = 0, for w > 1 the model flows to the ferromagnetic Potts model with q=n^2 states, with an associated fragmentation of the target space of the Coulomb gas. For T>0, there is a competition between T and w which gives rise to multicritical versions of the dense and dilute loop universality classes. Via an exact mapping, and numerical results, we establish that the latter two critical branches coincide with those found earlier in the O(n) model on the triangular lattice. Using transfer matrix studies, we have found the renormalisation group flows in the full phase diagram in the (T,w) plane, with fixed n. Superposing three copies of such hexagonal-lattice loop models with staggered fields produces a variety of one or three-species fully-packed loop models on the triangular lattice with certain geometrical constraints, possessing integer central charges 0 <= c <= 6. In particular we show that Benjamini and Schramm's RGB loops have fractal dimension D_f = 3/2.Comment: 40 pages, 17 figure

    Markov chain sampling of the O(n)O(n) loop models on the infinite plane

    Get PDF
    It was recently proposed in https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.043322 [Herdeiro & Doyon Phys.,Rev.,E (2016)] a numerical method showing a precise sampling of the infinite plane 2d critical Ising model for finite lattice subsections. The present note extends the method to a larger class of models, namely the O(n)O(n) loop gas models for n∈(1,2]n \in (1,2]. We argue that even though the Gibbs measure is non local, it is factorizable on finite subsections when sufficient information on the loops touching the boundaries is stored. Our results attempt to show that provided an efficient Markov chain mixing algorithm and an improved discrete lattice dilation procedure the planar limit of the O(n)O(n) models can be numerically studied with efficiency similar to the Ising case. This confirms that scale invariance is the only requirement for the present numerical method to work.Comment: v2: added conclusion section, changes in introduction and appendice

    Percolation on self-dual polygon configurations

    Full text link
    Recently, Scullard and Ziff noticed that a broad class of planar percolation models are self-dual under a simple condition that, in a parametrized version of such a model, reduces to a single equation. They state that the solution of the resulting equation gives the critical point. However, just as in the classical case of bond percolation on the square lattice, self-duality is simply the starting point: the mathematical difficulty is precisely showing that self-duality implies criticality. Here we do so for a generalization of the models considered by Scullard and Ziff. In these models, the states of the bonds need not be independent; furthermore, increasing events need not be positively correlated, so new techniques are needed in the analysis. The main new ingredients are a generalization of Harris's Lemma to products of partially ordered sets, and a new proof of a type of Russo-Seymour-Welsh Lemma with minimal symmetry assumptions.Comment: Expanded; 73 pages, 24 figure
    • 

    corecore