1,114 research outputs found

    Multiple positive solutions to elliptic boundary blow-up problems

    Get PDF
    We prove the existence of multiple positive radial solutions to the sign-indefinite elliptic boundary blow-up problem {Δu+(a+(x)μa(x))g(u)=0,  x<1,u(x),  x1, \left\{\begin{array}{ll} \Delta u + \bigl(a^+(\vert x \vert) - \mu a^-(\vert x \vert)\bigr) g(u) = 0, & \; \vert x \vert < 1, \\ u(x) \to \infty, & \; \vert x \vert \to 1, \end{array} \right. where gg is a function superlinear at zero and at infinity, a+a^+ and aa^- are the positive/negative part, respectively, of a sign-changing function aa and μ>0\mu > 0 is a large parameter. In particular, we show how the number of solutions is affected by the nodal behavior of the weight function aa. The proof is based on a careful shooting-type argument for the equivalent singular ODE problem. As a further application of this technique, the existence of multiple positive radial homoclinic solutions to Δu+(a+(x)μa(x))g(u)=0,xRN, \Delta u + \bigl(a^+(\vert x \vert) - \mu a^-(\vert x \vert)\bigr) g(u) = 0, \qquad x \in \mathbb{R}^N, is also considered

    Exact meromorphic stationary solutions of the real cubic Swift-Hohenberg equation

    Get PDF
    We show that all meromorphic solutions of the stationary reduction of the real cubic Swift-Hohenberg equation are elliptic or degenerate elliptic. We then obtain them all explicitly by the subequation method, and one of them appears to be a new elliptic solution.Comment: 15 pages, 3 figures, to appear, Studies in Applied Mathematic

    A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations

    Full text link
    The purpose of this paper is to enhance a correspondence between the dynamics of the differential equations y˙(t)=g(y(t))\dot y(t)=g(y(t)) on Rd\mathbb{R}^d and those of the parabolic equations u˙=Δu+f(x,u,u)\dot u=\Delta u +f(x,u,\nabla u) on a bounded domain Ω\Omega. We give details on the similarities of these dynamics in the cases d=1d=1, d=2d=2 and d3d\geq 3 and in the corresponding cases Ω=(0,1)\Omega=(0,1), Ω=T1\Omega=\mathbb{T}^1 and dim(Ω\Omega)2\geq 2 respectively. In addition to the beauty of such a correspondence, this could serve as a guideline for future research on the dynamics of parabolic equations

    Global Saddles for Planar Maps

    Get PDF
    We study the dynamics of planar diffeomorphisms having a unique fixed point that is a hyperbolic local saddle. We obtain sufficient conditions under which the fixed point is a global saddle. We also address the special case of D2D_2-symmetric maps, for which we obtain a similar result for C1C^1 homeomorphisms. Some applications to differential equations are also given

    Singular solutions to a semilinear biharmonic equation with a general critical nonlinearity

    Get PDF
    We consider positive solutions uu of the semilinear biharmonic equation Δ2u=xn+42g(xn42u)\Delta^2 u = |x|^{-\frac{n+4}{2}} g(|x|^\frac{n-4}{2} u) in Rn{0}\mathbb R^n \setminus \{0\} with non-removable singularities at the origin. Under natural assumptions on the nonlinearity gg, we show that xn42u|x|^\frac{n-4}{2} u is a periodic function of lnx\ln |x| and we classify all such solutions.Comment: To V. Maz'ya on the occasion of his 80th birthday; references adde
    corecore