71 research outputs found

    Specification and Verification of Context-dependent Services

    Full text link
    Current approaches for the discovery, specification, and provision of services ignore the relationship between the service contract and the conditions in which the service can guarantee its contract. Moreover, they do not use formal methods for specifying services, contracts, and compositions. Without a formal basis it is not possible to justify through formal verification the correctness conditions for service compositions and the satisfaction of contractual obligations in service provisions. We remedy this situation in this paper. We present a formal definition of services with context-dependent contracts. We define a composition theory of services with context-dependent contracts taking into consideration functional, nonfunctional, legal and contextual information. Finally, we present a formal verification approach that transforms the formal specification of service composition into extended timed automata that can be verified using the model checking tool UPPAAL.Comment: In Proceedings WWV 2011, arXiv:1108.208

    Towards a multi-tier runtime system for GIPSY

    Get PDF
    Intensional programming implies declarative programming, in the sense of Lucid, based on denotational semantics where the declarations are evaluated in an inherent multi-dimensional context space. The General Intensional Programming System (GIPSY) is a hybrid multi-language programming platform and a demand-driven execution environment. GIPSY aims at the long-term investigation into the possibilities of Intensional Programming. The GIPSY's compiler, GIPC, is based on the notion of Generic Intensional Programming Language (GIPL) which solved the problem of language-independence of the runtime system by allowing a common representation for all compiled programs, the Generic Eduction Engine Resources (GEER). In this thesis, we discuss the solution to GIPSY's Runtime System. The Multi-Tier framework which consists of Demand Generator Tier (DGT), Demand Store Tier (DST) and Demand Worker Tier (DWT), offers demand-driven, distributed execution and technology independent manners by integrating the previous research on the demand migration middle-ware implemented by Jini and Java Message Service (JMS

    Intensional Cyberforensics

    Get PDF
    This work focuses on the application of intensional logic to cyberforensic analysis and its benefits and difficulties are compared with the finite-state-automata approach. This work extends the use of the intensional programming paradigm to the modeling and implementation of a cyberforensics investigation process with backtracing of event reconstruction, in which evidence is modeled by multidimensional hierarchical contexts, and proofs or disproofs of claims are undertaken in an eductive manner of evaluation. This approach is a practical, context-aware improvement over the finite state automata (FSA) approach we have seen in previous work. As a base implementation language model, we use in this approach a new dialect of the Lucid programming language, called Forensic Lucid, and we focus on defining hierarchical contexts based on intensional logic for the distributed evaluation of cyberforensic expressions. We also augment the work with credibility factors surrounding digital evidence and witness accounts, which have not been previously modeled. The Forensic Lucid programming language, used for this intensional cyberforensic analysis, formally presented through its syntax and operational semantics. In large part, the language is based on its predecessor and codecessor Lucid dialects, such as GIPL, Indexical Lucid, Lucx, Objective Lucid, and JOOIP bound by the underlying intensional programming paradigm.Comment: 412 pages, 94 figures, 18 tables, 19 algorithms and listings; PhD thesis; v2 corrects some typos and refs; also available on Spectrum at http://spectrum.library.concordia.ca/977460

    Ontology-Driven Semantic Data Integration in Open Environment

    Get PDF
    Collaborative intelligence in the context of information management can be defined as A shared intelligence that results from the collaboration between various information systems . In open environments, these collaborating information systems can be heterogeneous, dynamic and loosely-coupled. Information systems in open environment can also possess a certain degree of autonomy. The integration of data residing in various heterogeneous information systems is essential in order to drive the intelligence efficiently and accurately. Because of the heterogeneous, loosely-coupled, and dynamic nature of open environment, the integration between these information systems in the data level is not efficient. Several approaches and models have been proposed in order to perform the task of data integration. Many of the existing approaches for data integration are designed for closed environment, tightly-coupled systems and enterprise data integration. They make explicit, or implicit, assumptions about the semantic structure of the data. Because of the heterogeneous and loosely-coupled nature of open environment, such assumptions are deemed unintuitive. Data integration approaches based on model that are extensional in nature are also inadequate for open environment. This is because they do not account for the dynamic nature of open environment. The need for an adequate model for describing data integration systems in open environment is quite evident. Intensional based modeling is found to be an adequate and natural choice for modeling in open environment. This is because it addresses the dynamic and loosely-coupled nature of open environment. In this work, an intensional model for the conceptualization is presented. This model is based on the theory of Properties Relations and Propositions (PRP). The proposed description takes the concepts, relations, and properties as primitive and as such, irreducible entities. The formal intensional account of both Ontology and Ontological Commitment are also proposed in light of the intensional model for conceptualization. An intensional model for ontology-driven mediated data integration in open environment is also proposed. The proposed model accounts for the dynamic nature of open environment and also intensionally describes the information of data sources. The interface between global and local ontologies and the formal intensional semantics of the query answering are then described

    Intensional Cyberforensics

    Get PDF
    This work focuses on the application of intensional logic to cyberforensic analysis and its benefits and difficulties are compared with the finite-state-automata approach. This work extends the use of the intensional programming paradigm to the modeling and implementation of a cyberforensics investigation process with backtracing of event reconstruction, in which evidence is modeled by multidimensional hierarchical contexts, and proofs or disproofs of claims are undertaken in an eductive manner of evaluation. This approach is a practical, context-aware improvement over the finite state automata (FSA) approach we have seen in previous work. As a base implementation language model, we use in this approach a new dialect of the Lucid programming language, called Forensic Lucid, and we focus on defining hierarchical contexts based on intensional logic for the distributed evaluation of cyberforensic expressions. We also augment the work with credibility factors surrounding digital evidence and witness accounts, which have not been previously modeled. The Forensic Lucid programming language, used for this intensional cyberforensic analysis, formally presented through its syntax and operational semantics. In large part, the language is based on its predecessor and codecessor Lucid dialects, such as GIPL, Indexical Lucid, Lucx, Objective Lucid, MARFL, and JOOIP bound by the underlying intensional programming paradigm
    corecore