6,930 research outputs found

    Examples of 3D grasp quality computations

    Get PDF
    Previous grasp quality research is mainly theoretical, and has assumed that contact types and positions are given, in order to preserve the generality of the proposed quality measures. The example results provided by these works either ignore hand geometry and kinematics entirely or involve only the simplest of grippers. We present a unique grasp analysis system that, when given a 3D object, hand, and pose for the hand, can accurately determine the types of contacts that will occur between the links of the hand and the object, and compute two measures of quality for the grasp. Using models of two articulated robotic hands, we analyze several grasps of a polyhedral model of a telephone handset, and we use a novel technique to visualize the 6D space used in these computations. In addition, we demonstrate the possibility of using this system for synthesizing high quality grasps by performing a search over a subset of possible hand configurations

    A 3D descriptor to detect task-oriented grasping points in clothing

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Manipulating textile objects with a robot is a challenging task, especially because the garment perception is difficult due to the endless configurations it can adopt, coupled with a large variety of colors and designs. Most current approaches follow a multiple re-grasp strategy, in which clothes are sequentially grasped from different points until one of them yields a recognizable configuration. In this work we propose a method that combines 3D and appearance information to directly select a suitable grasping point for the task at hand, which in our case consists of hanging a shirt or a polo shirt from a hook. Our method follows a coarse-to-fine approach in which, first, the collar of the garment is detected and, next, a grasping point on the lapel is chosen using a novel 3D descriptor. In contrast to current 3D descriptors, ours can run in real time, even when it needs to be densely computed over the input image. Our central idea is to take advantage of the structured nature of range images that most depth sensors provide and, by exploiting integral imaging, achieve speed-ups of two orders of magnitude with respect to competing approaches, while maintaining performance. This makes it especially adequate for robotic applications as we thoroughly demonstrate in the experimental section.Peer ReviewedPostprint (author's final draft

    Simox: A Simulation and Motion Planning Toolbox for C++

    Get PDF

    Simox: A Simulation and Motion Planning Toolbox for C++. Version 1.1

    Get PDF
    Simox is a lightweight platform independent C++ toolbox, containing three libraries for 3D simulation of robot systems, sampling based motion planning and grasp planning
    corecore