587 research outputs found

    Is equilibrium point control feasible for fast goal-directed single-joint movements?

    Get PDF
    Several types of equilibrium point (EP) controllers have been proposed for the control of posture and movement. EP controllers are appealing from a computational perspective because they do not require solving the "inverse dynamic problem" (i.e., computation of the torques required to move a system along a desired trajectory). It has been argued that EP controllers are not capable of controlling fast single-joint movements. To refute this statement, several extensions have been proposed, although these have been tested using models in which only the tendon compliance, force-length-velocity relation, and mechanical interaction between tendon and contractile element were not adequately represented. In the present study, fast elbow-joint movements were measured and an attempt was made to reproduce these using a realistic musculoskeletal model of the human arm. Three types of EP controllers were evaluated: an open-loop α-controller, a closed-loop λ-controller, and a hybrid open- and closed-loop controller. For each controller we considered a continuous version and a version in which the control signals were sent out intermittently. Only the intermittent hybrid EP controller was capable of generating movements that were as fast as those of the subjects. As a result of the nonlinear muscle properties, the hybrid EP controller requires a more detailed representation of static muscle properties than generally assumed in the context of EP control. In sum, this study shows that fast single-joint movements can be realized without explicitly solving the inverse dynamics problem, but in a less straightforward manner than implied by proponents of conventional EP controllers. Copyright © 2006 The American Physiological Society

    On the intrinsic control properties of muscle and relexes: exploring the interaction between neural and musculoskeletal dynamics in the framework of the equilbrium-point hypothesis

    Get PDF
    The aim of this thesis is to examine the relationship between the intrinsic dynamics of the body and its neural control. Specifically, it investigates the influence of musculoskeletal properties on the control signals needed for simple goal-directed movements in the framework of the equilibriumpoint (EP) hypothesis. To this end, muscle models of varying complexity are studied in isolation and when coupled to feedback laws derived from the EP hypothesis. It is demonstrated that the dynamical landscape formed by non-linear musculoskeletal models features a stable attractor in joint space whose properties, such as position, stiffness and viscosity, can be controlled through differential- and co-activation of antagonistic muscles. The emergence of this attractor creates a new level of control that reduces the system’s degrees of freedom and thus constitutes a low-level motor synergy. It is described how the properties of this stable equilibrium, as well as transient movement dynamics, depend on the various modelling assumptions underlying the muscle model. The EP hypothesis is then tested on a chosen musculoskeletal model by using an optimal feedback control approach: genetic algorithm optimisation is used to identify feedback gains that produce smooth single- and multijoint movements of varying amplitude and duration. The importance of different feedback components is studied for reproducing invariants observed in natural movement kinematics. The resulting controllers are demonstrated to cope with a plausible range of reflex delays, predict the use of velocity-error feedback for the fastest movements, and suggest that experimentally observed triphasic muscle bursts are an emergent feature rather than centrally planned. Also, control schemes which allow for simultaneous control of movement duration and distance are identified. Lastly, it is shown that the generic formulation of the EP hypothesis fails to account for the interaction torques arising in multijoint movements. Extensions are proposed which address this shortcoming while maintaining its two basic assumptions: control signals in positional rather than force-based frames of reference; and the primacy of control properties intrinsic to the body over internal models. It is concluded that the EP hypothesis cannot be rejected for single- or multijoint reaching movements based on claims that predicted movement kinematics are unrealistic

    The control of interceptive arm movements

    Get PDF
    In this thesis we addressed the strategies that normal human subjects employ t o make rapid interceptive movements. In the planning and continuous control of such movements, sensory information of very different modalities has to be integrated rapidly and accurately, and has to be translated into useful movements of the hand. We addressed the problem both with and without a model. With the mass-spring model we wanted to test whether such a model gives a valid description for both manipulations of the equilibrium point and of the endpoint (chapters 2, 6 and 7; cf. Fig. 1.1). In using a mass-spring model, we supposed that subjects used one single strategy for the sensory-motor control throughout an experiment (stable control). In chapter 5 we tested the validity of this assumption of stable control. Finally we specifically addressed the question whether –and if so, how– people use velocity information (rather than only position information) to guide their action (chapters 3, 4 and 6)

    Development of full-body models for human jump landing dynamics and control

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1997.Includes bibliographical references (leaves 260-269).by D. Keoki Jackson.Sc.D

    Cerebral spasticity modeled as disorded equilibrium point control

    Get PDF
    Spasticity is a highly complex phenomenon, which has not been defined in precise and quantifiable terms. Although the muscle stretch reflex is thought to play an important role in spasticity generation, the pathophysiologic basis of spasticity is not completely understood. A valid measure of spasticity is one that is chosen within the context of a theory describing the physiological mechanisms underlying the control of posture and movement in healthy individuals and possible impairments of these mechanisms leading to motor disorders. This research’s goal was to determine the role of stretch reflex threshold in the regulation of impaired motor control through the exploration of the following research questions: Can experimental measures be produced leading to the development of a model of spasticity that can be interpreted within the framework of a general theory of motor control? Can the underlying motor control framework provide unique parameters capable of describing both normal and altered/abnormal movement? Can the model be robust enough to explain active as well as passive movement? The research method outlined in this dissertation takes the novel approach of incorporating the equilibrium point hypothesis into a trajectory-based analysis of pendulum knee motion. The Equilibrium Point Hypothesis (EPH) of motor control theorizes that the central nervous system (CNS) provides a virtual trajectory of joint motion, representing space and time. A forward dynamic model has been developed that can reproduce kinematic data through the using optimized model parameters. The incorporation of the equilibrium point hypothesis in forward model was not only recognition that examination of the entire trajectory of the limb, rather than just the first amplitude of swing, was necessary, but also, that movement can be characterized by the simple extraction of three parameters: a relative damping coefficient, relative stiffness coefficient and mathematical function which can act as an approximation CNS the virtual trajectory described in the EPH. This research produced a model of passive motion with the ability to produce parameter values that not only differentiate subjects with spasticity from subjects with no clinical signs of spasticity but that can separate subjects based on severity of spastic condition. Research which began as an endeavor to model the passive motion of the pendulum knee test, led to the development of a unifying model of motor control that is robust enough to describe both active and passive movements

    Robust adaptive control modeling of human arm movements subject to altered gravity and mechanical loads

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1999.Includes bibliographical references (leaves 159-164).It has been observed that during orbital spaceflight the absence of gravitation related sensory inputs causes incongruence between the expected and the actual sensory feedback resulting from voluntary movements. This incongruence results in a reinterpretation or neglect of gravity-induced sensory input signals. Over time, new internal models develop, gradually compensating for the loss of spatial reference. The study of adaptation of goal-directed movements is the main focus of this thesis. The hypothesis is that during the adaptive learning process the neural connections behave in ways that can be described by an adaptive control method. The investigation presented in this thesis includes two different sets of experiments. A series of dart throwing experiments took place onboard the space station Mir. Experiments also took place at the Biomechanics lab at MIT, where the subjects performed a series of continuous trajectory tracking movements while a planar robotic manipulandum exerted external torques on the subjects' moving arms. The experimental hypothesis for both experiments is that during the first few trials the subjects will perform poorly trying to follow a prescribed trajectory, or trying to hit a target. A theoretical framework is developed that is a modification of the sliding control method used in robotics. The new control framework is an attempt to explain the adaptive behavior of the subjects. Numerical simulations of the proposed framework are compared with experimental results and predictions from competitive models. The proposed control methodology extends the results of the sliding mode theory to human motor control. The resulting adaptive control model of the motor system is robust to external dynamics, even those of negative gain, uses only position and velocity feedback, and achieves bounded steady-state error without explicit knowledge of the system's nonlinearities. In addition, the experimental and modeling results demonstrate that visuomotor learning is important not only for error correction through internal model adaptation on ground or in microgravity, but also for the minimization of the total mean-square error in the presence of random variability. Thus human intelligent decision displays certain attributes that seem to conform to Bayesian statistical games.by Michail Tryfonidis.Ph.D

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf
    corecore