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Abstract

It has been observed that during orbital spaceflight the absence of gravitation related sensory inputs causes
incongruence between the expected and the actual sensory feedback resulting from voluntary movements. This
incongruence results in a reinterpretation or neglect of gravity-induced sensory input signals. Over time, new
internal models develop, gradually compensating for the loss of spatial reference.

The study of adaptation of goal-directed movements is the main focus of this thesis. The hypothesis is that
during the adaptive learning process the neural connections behave in ways that can be described by an adaptive
control method. The investigation presented in this thesis includes two different sets of experiments. A series of
dart throwing experiments took place onboard the space station Mir. Experiments also took place at the Biome-
chanics lab at MIT, where the subjects performed a series of continuous trajectory tracking movements while a
planar robotic manipulandum exerted external torques on the subjects' moving arms. The experimental hypothesis
for both experiments is that during the first few trials the subjects will perform poorly trying to follow a prescribed
trajectory, or trying to hit a target. A theoretical framework is developed that is a modification of the sliding control
method used in robotics. The new control framework is an attempt to explain the adaptive behavior of the subjects.
Numerical simulations of the proposed framework are compared with experimental results and predictions from
competitive models.

The proposed control methodology extends the results of the sliding mode theory to human motor control.
The resulting adaptive control model of the motor system is robust to external dynamics, even those of negative
gain, uses only position and velocity feedback, and achieves bounded steady-state error without explicit knowledge
of the system's nonlinearities. In addition, the experimental and modeling results demonstrate that visuomotor
learning is important not only for error correction through internal model adaptation on ground or in microgravity,
but also for the minimization of the total mean-square error in the presence of random variability. Thus human
intelligent decision displays certain attributes that seem to conform to Bayesian statistical games.

Thesis Supervisor: Chi-Sang Poon

Title: Research Scientist
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1. Introduction and Review

of Recent Literature

1.1. Hypothesis and Background

It has been observed that during orbital spaceflight the absence of gravitation-related sen-

sory inputs causes an incongruence between the expected and the actual sensory feedback

resulting from voluntary movements. This incongruence creates a corresponding sensory error

for certain central adaptive processes involved in the mapping of the external environment into

some "internal models", resulting in a reinterpretation or neglect of gravity-induced sensory

input signals (Paloski, 1998). Over time, new internal models develop, gradually compensating

for the loss of spatial reference. Eventually, the CNS no longer seeks gravitational sensory

inputs for use in estimating spatial orientation. Postural internal model adaptation in spaceflight

is very rapid but measurable (Collins et al., 1995; Grigorova and Kornilova, 1996; Lackner and

DiZio, 1996; Paloski, 1998; Reschke et al., 1984).

In addition to influencing postural adaptation, microgravity also introduces multiple ef-
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fects on motor control and visuomotor coordination of movement. Previous research on motor

adaptation in space has been limited mostly to experiments involving either target pointing or

simple trajectory tracking by the hand (Berger et al., 1997; Watt, 1997; Watt et al., 1986; Young

et al., 1986). In the present investigation, we performed the more complex classic "dart-

throwing" experiment for visuomotor adaptation (Thach et al., 1992) as a means to discern

significant sensorimotor adaptation in microgravity.

The question that is raised is: "What are the methods through which the Central Nervous

System (CNS) adapts to the presence of new dynamics, such as altered gravity?"

The study of adaptation of goal-directed movements is the main focus of this thesis. The

hypothesis is that during an adaptive learning process the neural connections behave in ways that

can be described by an "adaptive control" methodology. Part of this thesis includes two different

sets of experiments. First, in the Summer of 1996 and the Spring of 1997, a series of micrograv-

ity dart throwing experiments took place onboard the Russian space station Mir (MHP). Second,

in the Spring of 1999, a series of ground-based experiments took place at the Biomechanics lab

at MIT, where the subjects performed continuous trajectory tracking movements, while a planar

robotic manipulandum exerted external torques on the subjects' moving arms. The experimental

hypothesis for both experiments is that during the first few trials the subjects will perform poorly

trying to follow a prescribed trajectory, or trying to hit a target, due to the modified external

dynamics.

1.2. Purpose and Procedure

The external torques induced by the robotic manipulandum on the ground and also the

lack of gravity on the space station, introduce new arm dynamics. The absence of gravitational

forces acting on the subjects' arms and the induced mechanical torques during the tracking

movements could cause degraded performance. However, the subjects' performance is expected

to improve as they adjust to their new arm dynamics.

The data from the space station supplements the ground data, since only a limited number

of trials were performed, and three dimensional video footage (which is necessary for position,
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velocity, and acceleration calculations) was not available. According to the hypothesis, initially,

the throwing performance of the astronauts/cosmonauts is expected to be worse in microgravity

than on the ground, but that their performance will improve as they perform the task several

times. This hypothesis seems quite reasonable, since throughout our lives our CNS has acquired

a very good representation of the kinematic and dynamic behavior of our arms in the presence of

the external loading of gravity. The motor control learning of the CNS, just described, is a trial

and error process. For example, toddlers trying to learn how to stand up or walk are formulating

their motor control programs. Similarly, when astronauts are going from IG to microgravity or

to artificial G environments the actual musculoskeletal system dynamics change. The operating

point of a previously well behaved non-linear system changes. However, the controller (CNS)

sends to the plant (arm) an input (neural activation) that is appropriate only for the plant dynam-

ics in 1G. This input can not guarantee accurate tracking (the arm following the proper trajectory

for target hit) under the new conditions. Therefore, the CNS has to estimate the new internal

model in order to bring the new system dynamics to an optimal stable operating point.

This thesis is an attempt to model the way the human CNS achieves desired trajectory

tracking when performing an arm-motor task in altered gravity. The proposed model is com-

pared to several other human-arm control models in terms of error minimization, convergence

time, stability and robustness. Further, the proposed model is compared to experimental data.

As a first step toward a quantitative analysis of motor learning, I tried to test a functional

model of the adaptive motor control system. The proposed model is chosen because it is a

simple representation of the motor learning system that incorporates an internal model. Further,

the model includes the motor system, the mechanical environment, the internal model, and the

controller.

The motor system includes the musculoskeletal system for force and torque generation

and part of the primary motor cortex that drives it. Its dynamical behavior is dependent on

passive system dynamics, which is given by the some of inertial, Coriolis, centripetal, and

frictional forces.

The environment subsystem is the mechanical load to the motor system resulting from an

external force field. For goal-directed movements in the horizontal plane the force field is

negligible. In the experimental procedures, an artificial force field is generated by means of a
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robot arm to produce varying mechanical perturbations to the arm movement. The performance

of the motor learning system in adaptively countering the external perturbation can be studied

systematically by carefully choosing the types of force fields that are presented to the subjects'

arms.

The motor system and its mechanical environment are coupled together to form the system

dynamics that the neural controller has to learn to guide the human arm accurately along the

desired trajectory. A command to the motor system may result in different movement trajecto-

ries depending on the environment force field. Such perturbations in movement trajectories are

corrected through proprioceptive and tactile feedback, which convey information about the

position and speed of movement. However, the excessive time delays (40-60 ms; Evarts, 1981)

and the limited gains, which are inherent in such long sensory feedback loops, make it impossi-

ble to achieve completely accurate trajectory tracking under the environmental perturbations.

The model in this thesis predicts trajectories, in terms of joint positions, velocities and ac-

celerations. These are the same variables that the experimental setup recorded. The ground

experiment itself has been designed to put the proposed model to the test. Predictions of the

proposed model as well as of some competitive models are compared with the experimental

findings. For instance, trying to track a fast oscillatory trajectory in the presence of strong

external forces provides a more accurate and complete understanding of the control strategies

that the CNS employs than other experimental setups that include pointing tasks (Dizio and

Lackner, 1995; Shadmehr and Mussa-Ivaldi, 1994). Although both pointing tasks and trajectory

tracking tasks appear similar at first, they are quite different. Many models perform well and

their behavior looks similar for transitions from one steady state condition to another (pointing

tasks), while they behave very differently during cyclic inputs.

1.3. Thesis Road Map

The work in Chapter 2 includes basic concepts in dynamics and coordinate system trans-

formation and an introduction of a particular system of rules for choosing coordinate systems for

each link of a general robotic armature. Fundamental background work on the coordinate
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transformation within this set of coordinate systems is provided, and important conclusions are

presented. Finally, the coordinate frames are defined (according to the set rules) for all the links

of the robotic model of the arm. The dynamical analysis of this particular set of coordinates

frames is presented. The results of the dynamical analysis are necessary for the design of a

controller to control a multiple-link arm, which comes in Chapter 3.

The organization of the Chapter 3 includes an introduction and general literature review

on the areas of biological systems, intelligent controllers and neural adaptive control. An indepth

review of fundamental work (Slotine and Li, 1991) in the area of sliding mode control and

nonlinear adaptive control is presented. This work forms the basis of the proposed control

model, which is shown last. The rigorous proof of the robust stability of the proposed control

model on any robotic arm (and therefore the seven-link arm representing the human arm) is

presented, and simulation examples presented to show the performance of the proposed model.

Chapter 4 includes an experimental study on continuous trajectory tracking under exter-

nal dynamics, caused by a robotic manipulandum. Chapter 4 describes the comparison of

experimental results during continuous trajectory tracking with the model predictions. Finally,

Chapter 5 will concentrate more the throwing experiment on board Mir and draw conclusions on

the effect of gravity in the selections of a throwing strategy .

1.4. Review of Relevant Literature

There have been quite a few papers published in the area of arm motion modeling. Of spe-

cial interest are those papers that directly or indirectly deal with the adaptive nature of arm

movements in the presence of an external force field. The works summarized here are divided

into three distinct areas: 1) Experimental evidence 2) Physiology of the CNS, and 3) Adaptive

learning control of movement.

1.4.1. The Experimental Evidence

During the 41 -G space shuttle mission, two payload specialist astronauts took part in six

Canadian medical experiments designed to measure how the human nervous system adapts to
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weightlessness, and how this might contribute to space motion sickness (Watt et al., 1985; Watt

et al., 1986). Fight data was compared to pre-flight baseline data to examine adaptation to

microgravity and also to post-flight data to examined re-adaptation to 1G. Pronounced proprio-

ceptive illusions were experienced, especially, immediately post-flight. Also, the ability to judge

limb position was degraded, and estimates of the location of familiar targets were grossly dis-

torted in the absence of vision. Awareness of arm and target position was tested by putting the

subjects through an active pointing task. Both subjects were able to point quite accurately at the

different targets pre-flight after a minimal amount of training and practice. While, initially, both

subjects demonstrated very poor accuracy on-orbit, one subject adapted to the new microgravity

environment and improved his task performance during the course of the flight.

While Watt et al., clearly demonstrated the effect of the change in the gravitational envi-

ronment onto proprioception, the fact that proprioception closely affects motor control is shown

by Rothwell et al., 1982. More recently, Bock et al., 1992, investigated whether the accuracy of

aimed arm movements deteriorates in simulated altered gravity. The authors attribute the dis-

crepancies between limb position sense in simulated gravity to degraded proprioceptive informa-

tion about arm position. The results of the experiment indicated that the response variability was

larger in the reduced gravity simulation than in normal 1G conditions, and that the joint position

sense was systematically biased in simulated microgravity in the absence of visual feedback.

Finally, when visual feedback was provided between trials, systematic errors were not signifi-

cantly different in simulated microgravity from normal gravity, and the increase of variable error

was less pronounced.

Shadmehr and Mussa-Ivaldi, 1994, investigated how the CNS learns to control move-

ments in different dynamical conditions, and how this learned behavior is represented in the

CNS. In particular, they considered the task of making reaching movements in the presence of

externally imposed forces from a mechanical environment. This environment was a force field

produced by a robot manipulandum, and the subjects made reaching movements while holding

the end-effector of this manipulandum. Since the force field significantly changed the dynamics

of the task, subjects' initial movements in the force field were grossly distorted compared to their

movements in free space. However, with practice, hand trajectories in the force field converged

to a path very similar to that observed in free space. The motor adaptation also indicated that for
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reaching movements, there was a kinematic plan independent of dynamical conditions.

Reaching movements made in a rotating room generate Coriolis forces that are directly

proportional to the cross product of the room's angular velocity and the human's arm linear

velocity. Such Coriolis forces are inertial forces not involving mechanical contact with the arm.

Dizio and Lackner, 1995, measured the trajectories of arm movements made in darkness to a

visual target that was extinguished at the onset of each reach. Pre-rotation subjects pointed with

both the right and left arms in alternating sets of eight movements. During rotation at 10 rpm,

the subjects reached only with the right arm. Post-rotation, the subjects pointed with the left and

right arms, starting with the left, in alternating sets of eight movements. The initial reaching

movements during rotation of the right arm were highly deviated both in movement path and

endpoint relative to the pre-rotation reaches of the right arm. With additional movements,

subjects rapidly regained straight movement paths and accurate endpoints despite the absence of

visual or tactile feedback about reaching accuracy.

1.4.2. Physiology of the CNS

While there is a very extensive literature on the physiology of the CNS, this section

summarizes some of the more recent and relevant papers. Soechting and Flanders, 1992, made

insightful observations about internal representation of frames of reference, vectors, and coordi-

nate systems. In their study the authors were able to identify coordinate systems for three motor

tasks. In all three motor tasks one of the coordinate axes was defined by the gravitational verti-

cal. Another coordinate was defined by a sagittal horizontal axis. A neural representation in a

coordinate system generally defines a best direction along which activity is maximal. Neural

activity decreases by an amount proportional to the cosine of the angle for inputs or outputs

oriented along directions other than best directions. Vestibulospinal neurons appear to provide a

vector-code of rotation in an earth-fixed frame of reference, of either the head or the trunk. In

most instances, the vectors of each of the afferent inputs (semicircular canals, otoliths, and neck

afferents) are in approximate alignment.

Kalaska and Crammond, 1992, addressed two questions: 1) What are the planning steps

between the decision to make a reaching movement and its initiation? and 2) How are those steps
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implemented in the CNS? The authors described neurophysiological studies that reveal neuronal

correlates of several putative hierarchical planning stages for reaching movements, distributed

across three cortical areas. The different combinations of response properties in each area imply

that each cortical area has primary, but not exclusive, responsibility for certain representations or

transformations. Each of these representations may be involved to varying degrees in planning

several aspects of movement. Thus, the findings do not support an absolute segregation of

response properties within a strict serial hierarchy of areas but are more consistent with a heterar-

chy of nested interconnected cortical populations. In a heterarchy, there is no fixed chain of

command or direction of information flow; instead, the flow of information is flexible and

dependent upon the context of the event, allowing different movement attributes or cortical areas

to take priority under different behavioral circumstances.

Graziano et al., 1994, took the coding of three-dimensional space one step further. Their

experiments with primates revealed that in primates, the premotor cortex is involved in the

sensory guidance of movement, supporting the general principle that space is encoded in differ-

ent brain structures for different behavioral functions. This view of multiplicity of spatial

structures and coordinate systems contrasts with commonly held views that all of visual space is

encoded by one master coordinate system, probably centered on the point between the eyes and

located in the posterior parietal cortex.

During a serial reaction time test, subjects developed implicit knowledge of the test se-

quence that was reflected by diminishing response times (Pascual-Leone et al., 1994). Motor

cortical mapping with transcranial magnetic stimulation revealed that the cortical output maps to

the muscles involved in the task became progressively larger until explicit knowledge was

achieved, after which they returned to their baseline topography. The development of explicit

knowledge resulted in a continued improvement in response time because of a change in the

subject's strategy (anticipation instead of reaction), while there was a rapid return of the cortical

motor outputs to their baseline topography. This return of the maps suggests that as a motor

sequence is explicitly learned the contribution of the motor cortex is attenuated and other brain

structures assume more active roles in the execution of the task. The consistent coupling be-

tween changes in type of knowledge and cortical motor outputs strongly suggests that the latter

reflect a sustained cortical modulation associated with motor learning. The rapid time course of
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this modulation is most compatible with unmasking of previously existing connections, perhaps

as a result of decreased inhibition or increased synaptic efficacy in existing neural circuits. Such

flexible short-term modulation seems important in the acquisition of new skills and could lead to

structural changes in the intracortical and subcortical networks as the skill becomes learned and

automatic.

Functional imaging of the brain demonstrates that within 6 hours after completion of

practice, while performance remains unchanged, the brain engages new regions to perform the

task; there is a shift from prefrontal regions of the cortex to the premotor, posterior parietal, and

cerebellar cortex structures. This shift is specific to recall of an established motor skill and

suggests that with the passage of time, there is a change in the neural representation of the

internal model and that this change may underlie its increased functional stability (Shadmehr and

Holcomb, 1997).

More recently, investigators studied at the cellular level the role of the CNS onto motor

learning performance. Welsh et al., 1995, studied the dynamic organization of motor control

within the olivocerebellar system. They found that a burst of action potentials known as the

complex spike were recorded simultaneously from 26-29 purkinje cells with as many microelec-

trodes individually placed into a 1.7-2.8 mm2 area of the cerebellum. Crosscorrelation of the

population complex spike activity to the behavior revealed that olivocerebellar activity was

highly rhythmic and significantly time related to the movement (p < 0.05). The results show that

olivocerebellar control of movement derives from populations of olivary neurons operating as a

distributed system whose collective activity is rhythmic and temporally related to specific

parameters of movement. Although olivary neurons fire infrequently during sequences of

movement, they do so at highly defined moments, indicating that olivary control of movement is

not encoded by single neurons in the frequency domain, but rather in the temporal domain across

neuronal populations. In fact, the contribution of single olivary neurons to the population

activity is actually diminished during movement, because the increase in the size of active

population exceeds the degree to which single neurons increase their firing. The authors pro-

posed that the inferior olive is a mosaic of motor representation in which individual muscles are

represented by discrete neuronal ensembles embedded within a large electrically coupled net-

work.
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McCormick, 1995, reported that the inferior olive may be using a population code (i.e.,

the ensemble of activity in this structure may be the way in which it contributes to the coordina-

tion of movement). Ojakangas and Ebner, 1994, also studied the complex spike activity in

relationship to the changes in arm movement velocity during a motor learning experiment. Two

primate subjects had to move a hand-cursor from one point to another. The gain in the hand-

cursor was changed and the animals had to adjust to the new gain. In many of the purkinje cells

studied complex spike activity increased for a period of 200-300 ms starting just before move-

ment onset.

Summarizing the literature on the physiology of the CNS, there is clear evidence that the

CNS is greatly involved in the coordination of movement. The CNS, not only forms coordinate

systems and frames of reference during the execution of motor tasks, but also is actively involved

in the execution of movement (complex spike activity of the inferior olivary). More importantly,

the CNS is also involved in the adaptive learning process of a motor task by creating new neural

connection when new tasks are learned.

1.4.3. Control Modeling of the Human Arm

In recent years, there have been numerous attempts to develop an accurate control model

of the adaptive learning behavior of the CNS during the execution of arm movements. The next

sections give a summary of the competitive control models and present the caveats that are

inherent with each of the approaches.

Bizzi et al., 1992, provided a summary of the literature on the equilibrium-point hypothe-

sis, which is one of the most recent attempts to model the musculoskeletal system as a mass-

spring-damper mechanical system. A key feature of the equilibrium-point hypothesis is that

muscles have spring-like behavior in the sense that the force they generate is a function of their

length and neural activation level. The force-length relationship in individual muscle fibers was

studied by Gordon et al., 1966. Feldman suggested that the CNS may execute a movement by

generating signals that change the relative activation of agonist and antagonist muscles (Feldman

and Levin, 1995). A movement occurs as a result of changes in the equilibrium point of the

system. Higher centers of the brain guide joint movement by a gradual shift in equilibrium
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states, while maintaining proper joint stiffness (as predicted by the equilibrium-point hypothesis).

However, according to Gottlieb (Gottlieb, 1996), equilibrium-point control models do not

explain "how to control the equilibrium point to move different external loads, since this gets

into the inverse dynamics problem". Also, the results of a series of experiments by Gomi and

Kawato argue against the hypothesis that the brain sends as a motor command only an equilib-

rium point trajectory similar to the actual trajectory (Gomi and Kawato, 1996).

Kawato et al., 1987, proposed a hierarchical neural-network model for control and learn-

ing of voluntary movement. In their model the association cortex sends the desired motor

pattern, Xd, expressed in body coordinates, to the motor cortex where the joint torque, u, is

calculated. The musculoskeletal system interacts with the environment to realize some kind of

motor pattern, x, which, in general, does not coincide with xd. The actual motor pattern (x)

and its derivative (x ) (e.g., muscle length and its derivative) are measured by proprioceptors, and

they are sent back to the motor cortex. Theoretically the feedback loop could close using the

error signal xd - x. However, long time delays, as well as small gains limit controllable speeds

of motions. Consequently, one must first execute the movement very slowly because otherwise

the control system becomes unstable. Alternatively, the spinocerebellum predicts the output

motor pattern x*, using x, u and an internal learned model. The error xd - x* is transmitted

back to the motor cortex. This feedback loop has a much shorter time delay than the one in

which the actual error (xd - x ) is measured. In higher primates (especially humans) the cerebro-

cerebellum monitors both xd and u, but it does not receive any information about x. Kawato et

al. postulated that in the cerebrocerebellum, a neural network slowly develops the appropriate

inverse-dynamics model that can compute the motor command (i.e., joint torque, u*), directly

from xd. Figure 1 shows the hierarchical neural network model proposed by Kawato. In this

control approach the internal dynamics model and the internal inverse-dynamics model can be

realized by a parallel-distributed-processing neural network with heterosynaptic plasticity. The

basic organization of such a neural network is the same as the LMS (Least Mean Square) adap-

tive filter of Widrow et al., 1976, and the adaptive filter model of Fujita (Fujita, 1982b; Fujita,

1982a).
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Kawato, in a consecutive paper, presented a computational scheme for acquiring the in-

verse model through learning (Kawato and Gomi, 1992). In the feedback-error-learning ap-

proach, a summation of the feedback motor command and the feedforward command, generated

by the inverse model, is fed to the controlled object and the feedback controller transforms the

trajectory error into the motor command error (Figure 2). The inverse model is trained during

motor control using the feedback motor command as the error signal.

However, the feedback-error-learning approach achieves trajectory tracking by inverting

the forward dynamics model. When training is complete the inverse dynamics cancel the for-

ward model. This control method has two very serious disadvantages. First, if the forward

model has any non-minimum phase zeros, the inverse model will have poles in the right half

plane (RHP), making the inverse dynamics unstable. Second, the forward model behaves like a

low pass filter, making the inverse model a high pass filter, which may be prone to noise amplifi-

cation. Further, the proposed Kawato et al. model represents a purely empirical model, with no

rigorous proof of stability, convergence or robustness (except by numerical simulation on a case

by case basis). Therefore, there is no guarantee that the system will perform well under severe

control system conditions.

Gerdes and Happee, 1994, studied single joint goal-directed movements, and initially

visual feedback was omitted. A non-linear third-order lumped parameter muscle model was

adopted from Winters and Stark (Winters and Stark, 1985; Winters and Stark, 1988). The model

parameters were chosen to match anteflexion/retroflexion in the shoulder (Happee, 1992). Eight

states were defined: one for the arm position (0 (rad)), one for the arm velocity (# (rad/s)), and

three for each muscle's neural excitation, active state, and length of the contractile element.

Gerdes and Happee took a step in the right direction by using muscle physiological data in their

control model. However, the linear Kalman estimators work for Linear Time Invariant (LTI)

systems. Moreover, the modeling was only performed for a single-degree-of-freedom movement

of a single joint without any disturbances present.

Clearly, a great number of investigators have focused on the control strategies that the

CNS employs during the control of voluntary arm movements. However, the modeling attempts

have concentrated on simple step responses (i.e., going from an initial zero-velocity state to a

final zero-velocity state). Such models are hard to prove since any controller with a simple
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integrator can perform exact tracking for these final conditions. A more appropriate test for these

control models is their performance during continuous trajectory tracking such as the task used in

the second series of experiments described in detail in Chapter 4. The dynamical and control

model presented in this thesis does not include any muscle dynamics. However, a Hill-type

muscle model was simulated and is shown in Appendix A. Incorporation of the muscle model

into the control of the arm dynamics is beyond the scope of this thesis. However, the analysis on

that model is provided since incorporating the muscle dynamics would be a natural next step of

this work.
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2. Dynamical Modeling of the
Human Arm

This research is unique in the fact that the three-dimensional dynamics of the human arm

are highly nonlinear, time-varying and present quite a challenge when one attempts to control

them, especially under the feedback restrictions of biological control. Since performance of

specific tasks is achieved through the movement of the human arm, kinematics is an essential

tool in manipulator design and control. Fundamental work in the area of formulating the ma-

nipulator kinematics and dynamics has been done by several researchers in the past (Asada and

Slotine, 1986; Corke, 1996) and application of those results in this analysis is quite straightfor-

ward.

The work in this chapter is broken down into three major parts. The first part includes

basic concepts in dynamics and coordinate system transformation. The second part is the intro-

duction of a particular system of rules for choosing coordinate systems for each link of a general

robotic armature. Fundamental background work on the coordinate transformation within this

set of coordinate systems is provided, and important conclusions are presented. The fundamental

results that come out of the choice of coordinate frames are crucial for the control theory devel-

opment that is presented in Chapter 3. Finally, in the third part the coordinate frames are defined
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(according to the set rules) for all the links of the robotic model of the arm. The dynamical

analysis of this particular set of coordinates frames is presented. The results of the analysis are

necessary for the design of a controller to control a seven-link arm according to the description of

the proposed control system (Chapter 3).

2.1. Modeling Preliminaries

2.1.1. Modeling Assumptions

Most of the background on dynamical modeling that is shown in this chapter is work

developed by Asada and Slotine, 1986. Before attempting to develop a control method for

human arm movements, it is necessary to obtain an accurate forward dynamics model. This

model will not be used by itself in the calculation of the forward dynamics in the simulations of

Chapter 3. It will be used to derive the "linearized" dynamics of the system to derive the control

law of the proposed model (Chapter 3). For the sake of simplicity, the human arm is modeled as

a three-link robotic manipulator. Thus, the human arm dynamics is modeled as a collection of

three massive rigid segments (upper arm, forearm and hand) interconnected at three joints

(shoulder, elbow and wrist). Each segment has a longitudinal axis of geometric and mass

symmetry that passes through the joints and contains the center of gravity. For each segment it is

necessary to know, either by direct measurement or by estimation, the mass, the location the

center of mass, and the six independent components of the 9 element, symmetric, mass-center

inertia matrix. Expressed in terms of local system components these six independent inertia

matrix elements include the three moments of inertia and the three products of inertia. Finally,

the model of the human arm that was chosen has seven degrees of freedom. For reasons of

convenience each joint consists of two or three pin joints of zero length - one for each degree of

freedom.

2.1.2. Coordinate Transformations

The dynamical analysis of the robotic equivalent of the human arm model is based on the
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development by Asada and Slotine (1986). Let P be an arbitrary point in space, as shown in

Figure 2.1. The coordinates of point P with reference to the fixed frame O-xyz are:

x= y
\,.

The position of point P can also be represented with reference to the coordinate frame fixed to

the rigid body, O' - XbYbZb, by:

I/ \

X b LVj

The superscript b indicates that the vector is defined with reference to the body coordinate frame.

The position and orientation of the rigid body are represented by the 3 x 1 vector xO. It is easy to

see from Figure 2.1 that the point P can be reached through points O' A and B. This can be

represented by:

OP= O0' + O'A+ AB+BP or x = xO +u,, +v, +Wb, eq. 2.1

b
or x= x0 +Rx

where R =[n, t, b]. The vectors n, t, and b are in fixed coordinates. The equations above

provide the desired coordinate transformation from the body coordinates x to the fixed coordi-

nates x. By multiplying both sides to the previous equations by the transpose R T of matrix R

one can retrieve the inverse transformation as well.

2.1.3. Euler Angles

Asada and Slotine, 1986, continue by defining the Euler angles. Consider the three rota-

tions of frame 0 - xyz shown in Figure 2.2. First, the coordinate frame is rotated about the z

axis by an angle 0. Secondly, the new coordinate frame 0 - x'y'z is rotated about the x' axis by

an angle 0. Finally, the newest frame 0 - x'y"z" is then rotated about the z" axis by an angle y.

The resultant coordinate frame 0' - xbybZb is shown in Figure 2.2c. The three angles $, 9, and

V are referred to as Euler angles and they uniquely determine the orientation of the coordinate
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frame. However, there are an infinite number of Euler angles that correspond to each orientation.

The three coordinate transformations shown in Figure 2.2 happen in the following order:

x= R- (O)x

IIt

x = ,(p_x = RX,,,(O)x

cos(#) - sin(#) 0
R.)= ( sin(#) cos(#) 0

0 0 1-

1 0 0

R,,j0)= 0 cos(Q) -sin(9)

LO sin() cos(9) j

cos(v) - sin(v) 0

R, (/) = sin(v/) cos(V) 0

L 0 0 1-

Putting it all together:

x = R(e,9,y)x = R q. 2.2

In eq. 2.2 the first term of the right-hand side represents the translational transformation, while

the second term represents the rotational transformation.

Let, X = and Xb = , and the 4 x 4 matrix A = ~]
Thn z w 1 

Then, eq. 2.1 can be written as

X=AXb

Now, consider n consecutive transformations from frame n back to frame 0.

4 x 4 matrix associated with the transformation from frame i to frame i-i.

vector Xn in frame n is transformed to X in frame 0 by X 0 = AOA-. An" X"

secutive transformations can be described by a single term.

eq. 2.3

Let A' be the

Then a position

Thus, the con-

2.2. Kinematic Modeling of Manipulator Arms

As mentioned above, the human arm will be modeled as a robotic manipulator with rigid
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links to make the analysis manageable. A manipulator arm is basically a series of rigid bodies in

a kinematic structure. The human arm, like other robotic arms in the industry form an open

kinematic chain. Each link of the open kinematic chain can be numbered in series from 0 to n.

The base link, which is basically fixed to the ground, is numbered 0 for convenience. The most

distal link, on the other hand, is numbered n.

In order to represent the position and orientation of the end-effector, a coordinate frame

0, - xyz, was attached to the last link. The location of that coordinate frame is described

with reference to another frame 00 - x0yozo, fixed to the ground. The position and orientation

of frame 0, - xyz, relative to the previous frame O,_. -xii_1zj_1 is described by using the

4 x 4 matrix of the homogeneous transformation between these two frames. The end-effector

position and orientation is then obtained by consecutive homogeneous transformations from the

last frame back to the base frame.

2.2.1. The Denavit-Hartenberg Notation

The Denavit-Hartenberg (DH) notation (Corke, 1996; Asada and Slotine, 1986) is a sys-

tematic method of describing the kinematics of the human arm and more generally of any robotic

manipulator. The method is based on the 4 x 4 matrix representation of rigid body position and

orientation, which was described in the previous paragraphs. There are two differing DH meth-

odologies each of which allows some freedom in the actual coordinate frame attachment. We

chose what is called the "standard" form, which is the most widely used form in the literature

(Corke, 1996). Also, the robotics toolbox of Matlab (Mathworks Inc., Natick, MA), which we

use in the simulations for the calculations of the forward dynamics uses this standard notation.

Figure 2.3 shows a given pair of adjacent links and their associated joints. The line H10,

is the common normal to joint axes i and i+l. The relationship between the two links is de-

scribed by the relative position and orientation of the two coordinate frames attached to the two

links.

In the Denavit-Hartenberg notation the origin of the i* coordinate frame Oi is located at

the intersection of joint axis i+1 and the common normal between joint axes i and i+ 1. Note that
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the frame of link i is at joint i+ 1 rather than at joint i. The x, axis is directed along the extension

line of the common normal, while the z, axis is along the joint axis i+l. Finally, the y, is

chosen such that the resultant frame 0, - xiyiz forms a right-hand coordinate system.

The relative location of the two frames can be completely determined by the following

four parameters:

a, the length of the common normal.

d, the distance between the origin Oi., and the point Hi.

a the angle between the joint axis i and the z, axis in the right hand sense.

Oi the angle between the x,_, axis and the common normal HiOi measured about the zi_,
axis in the right hand sense.

Figure 2.4 gives the coordinate transformation from X' to X as

1 0 0 a,
S . .. 0 cos(ai - sin(ai) 0

X= A|n, X' where A"n, = 0X ~- ' 0 sin(a,) cos(a,) 0

[O 0 0 1j

[cos(Oi) -sin(9,) 0 a,

A!-'X' where An t =sin(o,) cos(9,) 0 0
- t [0 0 1 di

0 0 0 1

Combining the two transformations one can solve for the total transformation from Xi to .

The resultant transformation is

X = A|-' X'

where

cos(9,) - sin(Oi)cos(ai) sin(9,)sin(a,) a cos(O,)
-i[ 0 sin)cos(ai) -cos(oi)sin(ai) aisin(,)

n0 sin(a) cos(a,) di, eq. 2.4

0 0 0 1

For the n-th link the origin of the coordinate frame can be chosen at any convenient point

of the end-effector. The orientation of the last coordinate frame must be such that the x, axis

intercepts the last joint axis at a right angle, while the angle a, is arbitrary. For the base link the
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origin of the coordinate frame can be chosen at an arbitrary point on the joint axis 1, while the zo

axis must be parallel to the joint axis.

2.2.2. Infinitesimal Rotations

Infinitesimal rotations or time derivatives of orientations are substantially different from

finite angle rotations and orientations. The analysis from Asada and Slotine (1986), begins by

writing the 3 x 3 rotation matrix representing infinitesimal rotation do, about the x axis:

1 0 0 1 0 0

R,(dq5 )= 0 cos(d#b) -sin(d#,) ~ 0 1 -do, eq. 2.5

0 sin(dox) cos(d#x) _ 0 d#b I

The result of consecutive rotations about the x and y axes is given by:

1 0 0 1 0 d#, 1 0 d#1

R,(d#,)R,(do,)= 0 1 - d, 0 1 0 = 0 1 -do,
.0 do, I _ - d#, 0 1 d#, d#, I

Notice that the infinitesimal rotations are commutative. Adding a third rotation is trivial,

1 - d#, d#,
R,(dA,)R,(d#,)R.(d#z)= d# -1 -d#,. eq. 2.6

-_d#, d#, I1

Further, it is easy to see that when higher order terms are neglected, two consecutive infinitesi-

mal rotations yield:

1 (d#, +do,') -(d#, + d#)]

R -( d,+d#') 1 (d# +d#' )

(d#,+d#') -(d#,+d#') 1

= R(d#, +d#',do5, + d#5' ,d# , +d#' ) eq. 2.7

Therefore, infinitesimal rotations are also additive. Thus, infinitesimal rotations can be treated

like vectors, unlike finite rotations which are not commutative.
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2.2.3. The Manipulator Jacobian

For the n degree-of-freedom manipulator arm, we denote the infinitesimal end-effector

translation by a three-dimensional vector dx,, and the infinitesimal end-effector rotation by a

three-dimensional vector do e (Asada and Slotine, 1986). Both vectors are referenced to the base

coordinate frame 00 - x0 y oz o .

vector xe = x

xe = x('9

Remember, that for any joint angle configuration the position

y Z]T is a function of all joint angles.

9-- 07) y( 1 9.. 07) z(01
)]T

The infinitesimal change of x can be found by using partial derivatives and the chain rule of

differentiation.

£90,

1z( .- 9 )
£99

402

02

L

Now, let

[dx]
dp= de

By dividing both sides by dt the end-effector velocity and angular velocity can be written as a

linear function of joint velocities using the manipulator Jacobian (J).

p = Jd

where d= --. f dn]Tis the n x l joint velocity vector.

Let us partition the Jacobian matrix so that:

1I

J =A

VAl

AL2

IA2

Ln

1AJn

eq. 2.8

-x

dx,= dy=
dz

n)

&(0£9

gon

d6

d92

_d6 _

eq. 2.9
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Then,

Ve = JLI6 + + J 9 n eq. 2.10

Similarly, the angular velocity of the end-effector can be expressed in the following manner:

-e = Jidi+ --- + _J A d eq. 2.11

Since the model that will be used in this analysis includes only revolute joints (no pris-

matic joints), the composite of distal links rotates altogether at an angular velocity

)e = b b,2+ - +bn-In eq. 2.12

where bn-1 is the unit vector pointing along the direction of the joint axis i-1.

Also, since every angular velocity component contributes one term to the linear velocity vector,

the resultant linear velocity is

v, = _a x r O, + --- +o n xr r_,e =(b0 x rO)d + --- +(b,_ x r,_.1 )d, eq. 2.13

From the preceding discussion, it is clear that the i' column of the Jacobian is

F I lF[ i-i x i-l,e 1q 21
~i hi- IL l=L b Jeq. 2.14

As we will see in the next section this relationship is very important in the energy analysis of any

robotic system.

2.2.4. Lagrangian Dynamics of Manipulator Arms

Slotine and Li (1991), have utilized the dynamic developments of the Denavit-Hartenberg

notation and applied them in an energy conservation formulation to prove a property critical to

the control of any robotic system. For the i* link of the manipulator model of the human arm the

kinetic energy is

E mT , 1i eq. 2.15

where m is the mass of the link and I, is the 3 x 3 inertia tensor at the centroid expressed in the

base coordinates. Since energy is additive, the total kinetic energy is

N

EK =>EKi
i=1
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where N is the total number of links.

Using the results of eq. 2.14 and eq. 2.15, and remembering that in the present study all

joints are assumed to be revolute, and that we use the Denavit-Hartenberg notation,

1N
E i T ( TT)T0(+) 0 T TTi)T I K = -O HO eq. 2.16

K 2 i=1 -L ~L A±9 IJO A 2

where He=- 91"'" and

N

H= =(m.Ji')J M + J i)TJ) eq. 2.17

Notice that the elements of H ( H) are functions of the angular joint positions and that H is

symmetric (because it is the sum of symmetric matrices).

The formulation of Lagrange's equations of motion utilizes generalized forces. The gen-

eralized forces account for all forces and moments acting on the arm except for all conservative

forces (gravity). In the present study, assume that the only forces acting on the arm linkage

besides gravity are the forces from the joint actuators (muscle for the human arm) and denote the

generalized force vector QT = = =r - rN], where ri is the muscle torque exerted on the i

i* joint.

Finally, form classical mechanics it is known that

Work = AEK + AE,

N

A represents the change, and E, = m, g T r is the potential energy of the system. The vector

g is the 3 x 1 acceleration of gravity with respect to the base coordinate frame. Notice that the

gravitational potential energy is a function of the joint angular position vector alone, i.e.

E, = E,(q).

The system's Lagrangian is a measure of the power (energy rate) input to the arm ma-

nipulator:

dL dWork dEK dE o do I d( dT)H (00) dE(0)
dt dt dt d d ~ 2 dt dt

Solving Lagrange's equation,
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eq. 2.18
-~dt FO) do

which can be rewritten:

1:= H()+ ±I- T O +G() eq. 2.19

b(p,_b)= C(o,_b)o

The elements of matrix C are:

1. iN (dl dIH>
C-- +- 1 N 00Heq. 2.20

S2 2k= j. goi2

Note that

N Hjk

k=1 ki go,(h'-2C) =-E9~ ___=- $ 2).eq. 2.21

This means that k - 2C is skew-symmetric, which is a very important fact for the control

modeling of the arm linkage. The relationship H = 2C is derived using the Lagrangian for the

conservation of energy, therefore the equality is a manifestation of the concept of the conserva-

tion of energy on the robotic system. While such a conservation of energy is true for all robotic

system, the relationship between H and 2C can only be seen if the coordinate frames are chosen

in a certain manner (Denavit-Hartenberg notation).

2.3. A Link Model of the Human Arm

In the previous paragraphs we saw that the rules of the Denavit-Hartenberg notation and

the Lagrangian formulation provide closed-form dynamic equations for the arm linkage. The

choice of Denavit-Hartenberg coordinate frames for the dynamical modeling of the human arm

has been used in the past often because of the symmetrical properties of the resulting inertia

tensor matrix (Raikova, 1992). The arm model shown in Figure 2.5 has been used in the litera-

ture in the past to simplify the analysis of the dynamics (Martin et al., 1989). The spherical

joints of two- or three-degree-of-freedom joints at the shoulder, elbow and wrist have been



43

replaced by two or three one-degree-of-freedom links of zero length.

Despite the existence of the Denavit-Hartenberg rules for choosing the coordinate frames,

the process of doing so is complex and time consuming. Further, although many people have

defined these coordinate frames for their particular robotic configuration, most literature provides

little reference to it since defining the coordinate frames is only the set up of the more compli-

cated task of solving the forward dynamics. While the application of the Denavit-Hartenberg set

of rules for arm model is a tedious and complicated process, it was absolutely necessary for

proceeding with the controller design.

Figure 2.6 is an illustration of a man using his left arm to perform a three-dimensional

movement. The schematics of Figure 2.7 show the resulting coordinate systems on each link that

are consistent to the Denavit-Hartenberg notation. Notice that the coordinate systems put the

arm in a very unnatural position when the joint angles are 0*. The joint angles were adjusted

accordingly to bring the arm to perform a more "natural" movement such as the one shown in

Figure 2.7. Also, keep in mind that the first link represents a rotating room. The four parame-

ters, which are necessary in the Denavit-Hartenberg notation, are given in Table 2.1. The values

of the angles a and 0 in Table 2.1 are calculated in the following manner:

a, = (z,_1 -* z,) and 9,=z (x,_1 -> x,) (Corke, 1996). The notation for ai means: "a is

Link a (m) a (rad) d (m) 0 (rad)

1 0.30 = LI n/2 0.00 0
2 0.00 7r/2 0.00 0

3 0.00 -7r/2 0.00 0

4 0.00 7c/2 0.25 = L 4  0

5 0.00 -n/2 0.00 = L6 0

6 0.00 n/2 0.25 0

7 0.00 n/2 0.00 0

8 0.05 = L8  0 0.00 0

Table 2.1 The four Denavit-Hartenberg notation parameters for each link of the human
arm linkage. See Figure 2.7 for a graphical representation of these parameters.
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the angle around the xi axis from the axis zi_1 to the axis z ". Let us do one example by

applying this rule for link 3 (i = 3). Look at Figure 2.7 b and c. The angle between the axes Z2

(which is pointing into the page) and z3 (which is pointing vertically downwards) using the

right-hand rule is - - . The negative sign indicates that the right-hand rule points toward the
2

negative x 3 direction. The first link represents the distance between the center of the rotating

room and the center of the shoulder joint.

The next step is to derive to closed-form equations of dynamics for the armature that was

described above. First, using eq. 2.4 and the values of Table 2.1 the equations of the positions of

the centroids C,, .-. , C 7 can be easily written as functions of the transitional matrices A' 1~

Using the appropriate values for each link the necessary matrices are calculated.

cos(0)

A_ sin(0)
0

0

cos(3)

2_ sin(3)
- 0

0

cos(95)

A4_ sin(95)
5 0

0

cos(0 7)

6 sin(07)
A7 0

0

0 sin(01) LI cos(0)1
0 - cos(0) L sin(9,)
1 0 0

0 0 1

0 - sin( 3 ) 01
0 cos(3) 0

-1 0 0

0 0 1

0 -sin(0 5 ) 01
0 cos(95) 0

-1 0 0

0 0 1-

0 sin(07) 01
0 - cos(9 7 ) 0J
1 0 0

0 0 1

cos(92)

I sin(02 )

0

0

cos(4)

3 sin(4)
A 0

L0
0

cos(6)

I sin(06)
6 0

0

cos(08)

7 sin(g)
A> 0

0

0 sin(02 ) 01
0 - cos(2) 0
1 0 0

0 0 1

0 sin(4) 01
0 - cos(94) 0
1 0 L4
0 0 1j

0 sin(96 ) 01
0 -cos(6) 0
1 0 L6
0 0 1]

-sin(0 8 ) 0 L. cos(98)]
cos(O) 0 L, sin(O,)

0 1 0

0 0 1

Then the total transformation matrices from the th coordinate system to the fixed coordinate system

are given by



0 sin(91  L, cos(0)

0 -cos( 1 ) L sin(91)

0 0

cos(91 )

sin(91)

0

0

cos(o)cos(o2 ) sin(91 ) cos(9,)sin(92 )

sin( )cos(92 ) -cos(0 1) sin(01 )sin(02 )

sin(02) 0 -cos(0 2)

L cos(91)
L sin(91 )

0

0 0 0 1

- Pf~cd'a Y~.-~da "~c~r4a ~

cos( )sin(02) L, cos(91)
+sin(,)sin(03) +si n )(cos(03)
sn 1  .c.s(92  in(91 )cos( 2s) s........)sn( 3

smn(o )sin(02 L sin(0 )
- cos(0)sin(03) cos(9j)cos(0 3 )

sin( 2 )cos(93 ) + cos(92 ) sin( )sin()

0 0 01

cos(0 1 )cos(9 2 )cos( 3 )
cos(04 )
+ sin(9 )sin( 3 )cos(9 4)
-cos(Oi)sin(q 2 )sin(0 4)

sin ( cos()
A 0 Y

4

-cos( 1 )cos( 2 )
s;,('

cos(0 )cos(0 2)cos(9 3 )
sin(04 )

+ +sin(,)sin(93 )sin(94 )

-L cos( 1 )cos(02)
sin(03 )
+L4 sin( )cos(03)

...+ os(9 )sin(q2 )cos(q4 ) + .L1 cI ( 1
sin(9 cos( )os() - L i oj )o( 2

Sos(9 1 )i( 3 s)m()4s()sincos(os)sin()( )cos() os(9 )sin( 3 )sin(94 ) - L4 cos(01 )cos(93 )
sin( )sin(9 )sin(94) + sin(9 )sin( )cos(04 ) + L, sin(, )

+(cos()os () --sin(9 2 )sin(0 3 ) -co(9 2 cos( 4  L4 sin(02)sin(0 )
+ cos( 2 )sin(04 ) -cos(9 2 )cos(04) 2 3

0 0 01

Because of the fact that each transitional matrix element is a very lengthy expression, the rest of

the matrices are not shown here but they can be easily calculated using the Maple code given in

Appendix B. For notational convenience we can break down the transitional matrices in an

element-by-element form

45

0 1

1

0

JI.d~J3~~V
2

J (j, '~ -. /,.~ \

-os~(bq)nos(a )nos(a) I

............................

=A43AO
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AOK OK 12 OK 13 OK ]14

[AO 32 [OK 322 [AOK]23 [OK]2

AK
= [AOK 131 [AOK] 32 [AK 33[A] 3

0 0 0

The position vector of the center of gravity (c.o.g.) of the ith link with respect to the co-

ordinate system fixed to the ground is r* = A rK- Therefore,

x cos( 0 sin() 0.3cos(6 C (LI -L!cI)cos( 1 )

y* sin() 0 -Cos 0.3sin( 0 _ (0A-Lic)sin(Ol)

Cz 0 1 0 0 0 0

- 0 0 0 L

x 02 sin(01) + L, cos()

C2 A 4Lc2 _LC2 cos(,) + L, sin( )
z 2 2 0 0

L0

-C2 --C2

[x1 1 - L cos(O6)cos(2)sin(9 3) + Lc sin(6 )cos(03) + L, cos(9)

c 3  =0 j- L43 sin(,)cos(2)sin(93) - Lc cos( )cos(03) + L, sin(o)

0 L c3 -3 4csin(0 2 )sin(03 )

C3 C3

x 0 I A -- ]1 x1 0 A +l ]

0 A ~ *C *~[A4  I - * 0 I A 5 24 +l 4A 5C4 A0 4 -(1 [4 A I I - 0- [A + 15 A05

iF 1 1 1

[x I A2 [ 0 - 12 [ 7 07 4 -[ 27 [A 0 7 A5 ]

6 0 6 [A 06 2 4  6 06 22  - A 1 07]24  7

z0 0 4 6 [A06 32 i0 1= [AA7 ] 3 4

C6 C6 1 ] [A07 ]1[
YC6 6 [624 6022CIA 7
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[8 C8 I [A08]14 -Cl 8 [ 08 1

C8 =Ao 08 24 C8 08 121
z 0 8 0 [A -l Aeg )C8 'A 08 34 l 8 A 08] 31

L 1

TC8 e C8

The lengths of several c.o.g are 0 (or Lcl = L, for the case of the first link). Thus,

rr I r I 1L 4cos(01) = cos(91 ) 0 4 -li4 04 12

0~~~~~L sin(01) 0 sin(000 1442 _44A42
-ci~ 0 ' -C2 - 0 r C3 0 r _14

*= *'2~2 0 4 134- C4 [A 04 132

L L

[ 05] 4  [[A 06]114  C6 4A 06 12 1[A 07]14][A] 1 1
01[ 05]24  0 [A06]124 Cl6 1A06j22  0 -[ 07]124  0- [A 08]24

[A0  _ A~ -
1 6 A06 132 ' -C' -4 07,134 -8 A00-13 j [ 0 134 C1

Notice, that r0  remains stationary, since the center of gravity of the rotating room (link 1) is

located exacly on the rotational axis, and it concides with the origin of the fixed coordinate

system. To get the velocity of the c.o.g. of each link with respect to the fixed coordinate frame

simply differentiate the position vectors.

0~

ci = 0

.0_

For the rest of the velocity

lengthy.

t[A+04] 14 l4 A0 4112}

_14
-£O424 lC4[A04]22}

9,

- sin(00)0 [-Lsin(,) 1
C2 = cos(,) I Ec 3 = cos(,)

0 0

vectors the compact notation is used since the expressions are very

£9 A04 ]14 -C4 [04 } A 4 14 - C4 [A04 112 } 4A4 ]4 -C4 A04 112}

902 g03 04

4L C4[441221 } 04 ]24  -l 4[A0 4]22 1 }+ 04 L24  4 04 12
£9 g93 M94

4134 4 [A04 ] 3 2 } 9 04 134 -~C4 [42 } {A 04 14 -C4 P041221

902 03 6904

d2

-04 _
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£{A 05t14} gIA 05]24 }

'00, 002

{0 , 922
91A05W34 dIA051341

90, g22

OO1A 05] 14 } O1A05114} IA 05]14}

£903 g04 £991

£9{1Aoi24} £9{A05]24} £9{A0512
£993 £994 190

9{[A0534} { WAOS]34 IA05 }

03 £904 4095

EC5=

- C6 ~

,{[A 061 24 -~c 6[A6 2 2 } 9{ [A0 6] 24 -Lc 6[A0 6 22}

19{[A 06 ]34 -L 6[ A06 3 2} £[A0j6 34 - L 6[AO 32}

Lo g6

01
A]

gj 07 141t [ 07 11

0191 £9976 07 124 69[071241

9007_341 £9[A 07]34}

90,£997

M, g408 1
9 8

9jA081241 9[08 ]24

1 8

,6{[A 08]34} 48 34

£991 g98

From eq. 2.10 and eq. 2.11,

0 0 0 0 0 0 0

JLO = 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0_

Li sin(91)
j(= Licos(ol)

0

L, sin(,)

j3)= Licos(O)
0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0]

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0]

O{[AO ]14 - Lc6[AO06 12} '{[A0 6]14 - L6[A6] 12}

01

EC7

-

YC8 =

01
i

90, g06
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1 9{A 04]14 -l[A 04 12} A04]14 -l 4 A0 4 12  0 0 0 0

j(4 01£9[A 04]24 -1 lA 04L2} 4611A 0~2 _ 14 [A4 L}
j () 4 --- 042 412 0 0 0 0

90, 40£9{A 043 -l 4 A0 43  £9{A 04]2 -l4 A 4]}

26 24

j( 8 ) o A A08 124 } ________ 41_

£9{[A08]34} __________34

£99

Similarly, according to eq. 2.14, the angular velocity part of the Jacobian matrix can be

calculated. This is quite simple after the derivation of the transformations matrices, because of

the particular construction of the coordinate system that obey the Denavit-Hartenberg rules.

There are two important things to remember during this calculation: a) bi-, are the coordiantes of

a unit vector along the (i-1) joint in the 0th coordinate system, and b) The ith coordinate system

is fixed to the ith link. The calculation based on the quantities defined above is given by the

following matrix multiplication:

1 0 0 0 0-

JA 0 =i . 0 1 0 ,-- 0 eq. 2.22

1 0 0 1 0 1 Lgj58i

1 0 00

where, AO = 0 1 0 (directly from eq. 2.4.)
0 0 0 10 l

The reason that the transitional matrices can be used directly in finding the unit vector along the

i-1 joint is intuitively obvious from the definitition of the transitional matrix A0 and the fact that
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by construction the unit vector along the i-i joint has cordinates [0 0 1] in the coordinate

system atteched to that same joint. By simple inspection of the dynamics model of Figure 2.7,

0 0 0 0 0 0 0 0

JA = 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 sin(o,) 0 0 0 0 0 01
J(2) 0 -cos(0) 0 0 0 0 0 0

1 0 0 0 0 0 0 0

and so on. The calculation then, of the H matrix (the manipulator inertia tensor) immediately

follows from eq. 2.17. The inertia matix is a 8 x 8 matrix, whose explicit form is several pages

long and therefore omitted here. However, to partially test the approach, the H matrix of the

system that describes the dynamics of just a two link armature moving in the horizontal plane is

given next. The form of the matrix (H 2 . 2 ) resulted by just setting

01 = 02 = 04 = 06 = 07 = 08= 0. The resulting matrix has the same elements to similar matrices

derived in numerous other publications specifically for the planar case (Slotine and Li, 1991). Of

course, the matrix shown here is eight-dimensional because of the extra degrees of freedom

(which are being constrained). The constrains that were imposed are shown in Table 2.2.

H 1  0 H13  0 H15  0 0 0

0 H 0 H 0 1

H2 x
2 H eq. 2.23

0 H H 0 0
0 40 0 04 0 0.0.

0 0 0 0 0 0

where,

H33 = mn4 (L4 -- c + I4z +m 4 + Lc 6 - 2L4 LC6 cos(95)] I6z

= H = mn c6 - L4 Lc6 cos(53] I6z

H-rn=6 L 2 6 + I6,

Then, the contribution of the inertia tensor matrix to the torques of joints 3 and 5 are:
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[T31FH33 H35~

[T5  H5 3  H55 j

Further, for the same two-link, two-dimensional system, eq. 2.20 gives that:

C33 = mLL cos 5 5  C m6 L4LC6 cos( 5 )]( + 0

C x C -- - o-(- -1 -- - 5 - =0- -
C53 = .... 3  

C.. . . . . .

Link Mass Length c.o.g. Inertia
Number (Mi,) (L,) Location

(Lci)
1 0 0 0 Ix=Iy=Iz= 0

2 0 0 0 I=Iy-b=0

3 0 0 00

4m L4 Lc4 Jydz

5 0 0 0 Ix=I=Iz=O

6 M4 L4 LC4Ix ,yIz

7 0 0 0 ixb=I==O

8 0 0 0 b=Iy=6=O

Table 2.2 The constrained parameters that reduce the inertia matrix of the eight-
dimensional system to the corresponding matrix of just a planar two-link armature.

2.4. Summary of the human arm dynamic modeling

This chapter on the dynamics of the human arm derives the equations of dynamics for the

arm linkage using a particular rule for the choice of coordinate systems (Denavit-Hartenberg
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notation). Although, Raikova, 1992, has produced a similar model, complete with muscles,

details of the analysis and the resulting dynamical matrices were missing, which are important

for control. There are Matlab (Mathworks Inc., Natick, MA) toolboxes that calculate the forward

dynamics of a robotic system provided the user provides the parameters of Table 2.1. Those

parameters of evaluated using the Denavit-Hartenberg rules. Therefore, the results of dynamical

analysis of the arm were not used in solving the forward dynamics. More importantly, they are

necessary for the control of the arm as we will see in Chapter 3.

The choice of the coordinate frames for each link, as well as the equations of the dynam-

ics were shown detailed. The dynamical model for the human arm has seven degrees of freedom

at the arm joints. An eighth degree of freedom is included in the dynamical modeling to repre-

sent the dynamics induced on the arm when humans (or robotic arms) execute desired trajectory

tracking tasks in rotating environments, such as artificial gravity.

Through the use of the Denavit-Hartenberg rules, the equations of dynamics for the hu-

man arm linkage can be written in a compact form: H(9)9 + C(q, #)+ g(q)= z. H(9) is the

symmetric, positive definite inertia tensor, C(P,d) is the vector of centripetal and Coriolis

forces, and H - 2C is skew-symmetric at all times and joint angle positions and velocities.

Despite the existence of the Denavit-Hartenberg rules, the creation of the coordinate frames of

Figure 2.7 and the choice of the parameters of Table 2.1 were two of the most challenging

contributions to this thesis. The reason for such difficulty is the lack of any references in the

literature, since such a development is considered to be only a first step of the more complex

problem of solving the forward arm dynamics.
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zy
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x

Figure 2.1 Coordinate system transformations (Asada and Slotine, 1986). The coordinates
of point P are shown with reference to the fixed frame 0 - xyz . The position of point P can

also be represented with reference to the coordinate frame fixed to the rigid body,
0' -XbybZb.
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Figure 2.2 The three consecutive rotations used to define the Euler angles (Asada and
Slotine, 1986). First, the coordinate frame is rotated about the z axis by an angle #. Sec-
ondly, the new coordinate frame 0 - x'y'z is rotated about the x' axis by an angle 0.
Finally, the newest frame 0 - x'y'z" is then rotated about the z" axis by an angle y. The
three angles #, 9, and V/ are referred to as Euler angles and they uniquely determine the
orientation of the coordinate frame.

x
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Joint i

Joint i- IJoint i+1

Link i

zi.I
Yi-1

0i., xi.1

Haj
H, x

Figure 2.3 The Denavit-Hartenberg notation (Asada and Slotine, 1986). The fine Hi0i is
the common normal to joint axes i and 4+1. The relationship between the two links is
described by the relative position and orientation of the two coordinate frames attached to
the two links.
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zi 1

Yi-I

Oi

di a,
z'

, yi zi

Hi ai

Oi Xi

Figure 2.4 The relationship between adjacent coordinate frames in the Denavit-
Hartenberg notation (Asada and Slotine, 1986). The origin of the it coordinate frame O is
located at the intersection of joint axis i+1 and the common normal between joint axes i and
i+1. Note that the frame of link i is at joint i+1 rather than at joint i. The xi axis is directed
along the extension line of the common normal, while the zi axis is along the joint axis i+1.
Finally, the y, is chosen such that the resultant frame 0, - x, yi zi forms a right-hand coor-
dinate system.
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Figure 2.5 A dynamical model is developed for studying the motion and control of a
human arm. The figure shows the breakdown of the human arm into simple one-
dimensional joint links. (Martin et al., 1989)
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Figure 2.6 A computer generated representation of a man while applying motor control to

his left arm. (Top-Front-Side view) This is the posture for which the Denavit-Hartenberg
coordinate frames are defined.
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Figure 2.7 The coordinate systems on each link that are consistent to the Denavit-

Hartenberg notation. Notice that the coordinate systems put the arm in a very unnatural

position when the joint angles are 0'. The joint angles were adjusted accordingly to bring

the arm to perform a more "natural" movement. The first link represents a rotating room.

The values of the angles a and 0 are calculated in the following manner:

a =Z (zi_1 -+ zJ ) and 0 =Z (xi-, -+- xi 'ii
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3. System Modeling and
Control of the Human Arm

Feedback control is well understood for large classes of nonlinear systems with single

inputs or uncoupled states. However, general multi-input-multi-output (MIMO) nonlinear

systems feedback control and especially perfomance and robustness issues are still topics for

further research. Furthermore, since it is clear that the dynamical and control modeling of

robotic manipulators and human limbs are very similar in principle, this chapter reflects the

association by looking at both control problems in parallel and drawing conclussions.

The organization of this chapter includes an introduction and general literature review on

the areas of biological systems, intelligent controllers and neural adaptive control. An indepth

review of fundamental work (Slotine and Li, 1991) in the area of sliding mode control and

nonlinear adaptive control is presented. This work forms the basis of the proposed control

model, which is shown last. At first, for the sake of simplicity, the proposed model is presented

for the case of a planar two-link robotic arm. Elements of the proof follow for that case without

any rigor. Finally, the rigorous proof of the robust stability of the proposed control model on

any robotic arm (and therefore the seven-link arm representing the human arm) is presented.
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3.1. Introduction and Literature Review

The robotics industry has reached a plateau with the successful introduction of robots into

automotive manufacturing. There are many other areas where robotics usage is at its infancy.

Chief areas for future (and current) uses of robotic manipulators are in hazardous environments,

medical applications using multifingered hands, and microbotics. In space exploration, robotic

manipulators find use in a variety of applications. Currently, there are plans for building a flight

telerobotic servicer that has two cooperating robot arms for repairing satellites and other coordi-

nated activities on board a self-propelled platform. Completely autonomous robots can aid

tremendously the exploration of ocean floors and other unstructured environments for which it is

unsafe to rely on human remote control.

3.1.1. Biological Systems and Intelligent Controllers

Intelligent control, inspired by biological and artificial intelligence principles, has in-

creased the understanding of controlling complex processes without precise mathematical model

of the controlled process. The human Central Nervous System (CNS) demonstrates a great

ability to control human arm movement in multiple environments by recognizing which envi-

ronment is currently in existence and adjusting to it appropriately. In other words, the human

CNS performs in an "intelligent" manner. An important prerequisite for an intelligent controller

is the ability to adapt rapidly to any unknown but constant (or slowly changing) operating

environment. The adaptive capability of an intelligent robotic controller enables it to move the

arm to arbitrary targets without any knowledge of the arm's kinematics, while automatically

compensating for perturbations such as target movements, wheel slippage, or changes in the

arm's dynamics. An intelligent controller also adapts to long-term perturbations, enabling the

arm to compensate for statistically significant changes in the plant.

Through customized applications, such as autonomous vehicles, intelligent control has

demonstrated that it is a step in the right direction. However, intelligent control has yet to

provide a complete solution to the problem of integrated manufacturing systems via intelligent

reconfiguration of the robotic systems. Today, the state-of-the-art of intelligent robotic control is

used in simple remote robotic manipulation. Movie studios use animatronics to give life to
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inanimate robots and make them behave like living creatures. The python snake in the movie

"Anaconda" was a one-hundred-degree manipulator requiring 20 PentiumPro PCs to maneuver

smoothly. Yet, despite all the computer power available, today's robotic manipulators require

very complex feedback and immense computing power to complete simple manipulation in

unknown or unstructured environments.

Since the CNS outperforms artificial intelligent controllers, it would be appealing to try

to understand those mechanisms and implement them in the design of more efficient controllers.

The proposed project looks into the adaptive learning capacity of the CNS during human arm

manipulation when the environment becomes unpredictable.

3.1.2. Previous Approaches to Neural Adaptive Control

Recently, several intelligent control strategies for robotic manipulation have been pro-

posed. Some of these strategies have their roots in the area of computer science and artificial

intelligence, and were initially developed in solving games and puzzles, such as checkers. Many

heuristic search and dynamic programming algorithms are off-line procedures (i.e., cannot be

implemented in real time) for designing optimal control policies, and they also require an accu-

rate model of the system (Barto et al., 1995; Sutton, 1990). Further, although approaches such as

Learning-Real-Time A* (Korf, 1990) (a kind of receding horizon control algorithm) can be

implemented on-line, they are not adaptive in that they assume the existence of an accurate

model. Finally, adaptive real-time dynamic programming (Q-learning), a form of reinforcement

learning, requires an immense amount of computational power, especially as the number of states

increases ("curse of dimensionality"), and it becomes unusable in the case of systems with

unobservable states or noisy measurements (Barto et al., 1995). However, noisy state measure-

ments are inevitable in electromechanical systems such as robotic manipulators, especially when

they operate in unstructured and unknown environments.

Recent proposed schemes to use multiple models along with an adaptive control scheme

require guessing or explicit knowledge of the environment (Ciliz and Narendra, 1996; Narendra

and Balakrishnan, 1997; Narendra and Mukhopadhyay, 1997), which is not a realistic proposi-

tion. In addition, proposed schemes for the use of neural networks and back-propagation are
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extremely slow to adapt and very expensive computationally. Also, they require off-line train-

ing, and perform poorly outside the region for which they have been trained (Jordan et al., 1994;

Santiago and Werbos, 1994; Werbos and Xiaozhong, 1996). Wolpert et al., 1995), used a

Kalman filter on experimental data to demonstrate the existence of an internal model, but their

results assume a very simple linear model. Some models (Miller et al., 1987) even tried the use

neural networks to "learn" a look-up table (Cerebellar Model Arithmetic Computer, CMAC) of

the inverse dynamics. However, CMAC control approaches are slow and require very large

amounts of memory for good control performance; it is very difficult to evaluate system per-

formance or to prove system stability analytically (Miller et al., 1987). Besides, attempting to

control a dynamic system by inverting the plant dynamics and attempting to cancel those dy-

namics is not a sound control approach especially for non-minimum phase systems. The inverse

model of a dynamic system may posses certain high-pass filtering characteristics that are prone

to noise amplification. Finally, the Adaptive Resonance Theory (ART), as used in the AVITE

(Adaptive Vector Integration to the Endpoint) model (Gaudiano et al., 1997), functions as a

mechanism for feedforward control, and therefore, cannot provide on-line compensation for error

in performance and quick adjustments to changing conditions.

3.2. Control Methods for Systems with Parametric Uncertainties

The basis of the theoretical work for the Lyapunov stability of the proposed framework

was introduced by Slotine (Slotine and Li, 1991). The initial stability arguments were developed

for nonlinear control of robotic systems whose dynamics are completely known. Clearly, such

an approach might not be feasible in extreme environments were the nature of the nonlinearities

of the environment are unknown yet a certain level of trajectory tracking performance is

required. It is known that the CNS achieves high levels of accuracy when it controls a redundant

system such as the human arm during complex human movements. The CNS clearly does not

have explicit knowledge of the environmental nonlinearities, and its only sensory feedback is

through vision and proprioception.
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Despite the caveats of Slotine's control method for the control of biological systems, his

theoretical development forms the basis of the analysis presented towards the end of this chapter.

The proposed model is an attempt to present an alternative control method to the model reference

adaptive control for robotic system. The proposed alternative appropriate to describe human

motor control since it requires no knowledge of the nonlinear dynamics of the arm or the envi-

ronment.

3.2.1. Sliding Mode Control

Modeling inaccuracies can have strong adverse effects on the control of nonlinear

systems. A simple approach to robust control is the so-called sliding control methodology

(Slotine and Li, 1991). Intuitively, it is based on the notion that it is much easier to control 1s'

order systems. Accordingly a notational simplification is introduced, which allows ndh order

problems to be replaced by equivalent 1V order representations. Although in theory sliding

control can achieve high performance, this comes with very high control activity that may excite

unmodeled dynamics in the system. This can lead to a modified version of sliding control that

can compromize between very high performance and low control activity.

Since the problem of the control of a human arm, even for planar movements, has

multiple inputs (joint torques) and multiple output (joint angles), consider a nonlinear multi-input

system of the form

m

0") = fiCo) + I bv (O)rj i= 1,...,5 =1,...,Im eq. 3.1
j=1

where the vector r of components rz is the control input vector, and the state 9 is composed of

the angles 9, and their first (ni-1) derivatives. Such systems are called square systems since they

have as many control inputs r, as outputs 9,. For trajectory tracking the state 9 has to track a

desired time-varying trajectory qd in the presence of parametric uncertainties.

We define, B as the input matrix of components b., which is invertible over the whole

state-space. Further, assume that B be an invertible matrix that is continuously dependent on

parametric uncertainty such that B = B in the absence of parametric uncertainty. The functions
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f, (0) (generally nonlinear) are not exactly known, but the extent of the imprecisions on f, ()

are assumed to be upper bounded by a continuous function of 9. Similarly, only the signs of the

control gains b, (0) are known, but they are also upper bounded by a continuous function of 9.

At this point we just set up the system dynamics of controlling the multiple link amrature

using sliding mode control. The following paragraphs will analyze the system's stability and

performance trying to develop a control strategy that is both robust and can be implemented by

the human CNS during motor control.

3.2.2. Sliding mode state space

To analyze the arm system using sliding mode control, it is necessary to look at each state

(angle) individually before putting it all together as the state vector. This section is adopted

directly from Slotine and Li, 1991, and has been modified appropriately to accommodate for

MIMO systems. Let 9, = 9, - Od, be the tracking error in the state variable 9,, and let

0-i - =di -- O,

be the tracking error vector. Furthermore, define a time varying surface S, (t) in the state-space

91(n) by the scalar equation s, (0,t)= 0, where

s,(0,,t)= 1-+ ) eq. 3.2

and A, are strictly positive constants. To evaluate - + Ain use the binomial expansion
dt

equation.

Given the initial condition, qd,(O)= o,(O), the problem of tracking q, _, is equivalent

to that remaining on the surface S, (t) for all t > 0 . Indeed, s, 0 represents a linear differential

equation whose unique solution is 9. 0.

Furthermore, bounds on s, (i.e., Vt > 0, s, (tJ <4 ) can be directly translated into bounds

on the tracking error vector 9,, and therefore the scalar s, represent a true measure of tracking
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performance. By definition, the tracking error O, is obtained from s, through a sequence of first-

order lowpass filters. Let y, be the output of the first filter. We have

t

Y1 = e--(tT)Si (T)dT
0

From Ii(ti 4 we get

|y 0 Je (-T)dT = (-e-') ,
0

The same reasoning can be applied to the second filter and so on. Then,

Similarly, 9 ,(k) can be thought of as being obtained through a sequence of (n-j-1) such filters.

Therefore,

Assuming zero initial conditions for the error, we have

Vt ,js,(t 5 < Vt Oj1&)(t s (2AYs, j =1,...,n-1 eq. 3.3

where e = /1r .

The simplified first-order problem of keeping s, at zero can now be achieved by

choosing the control law ri such that outside of S, (t) the squared distance to the surface S, (t)

decreases along all system trajectories. Thus it constrains trajectories to point towards the

surface S,(t).

-I -2 sg 
eq. 3.4

2 dt

where q17 is a positive constant. In addition, once the system trajectories reach the surface they

remain on the surface, which means that the "sliding condition" makes the surface S,(t) an

invariant set.

Finally, satisfying eq. 3.4 guarantees that if the zero initial condition is not satisfied, the
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surface S, (t) will still be reached in a finite time smaller than |si (t = O/qj . Further, eq. 3.4

implies that once on the surface, the tracking error goes assymptotically to zero with a time

constant (n - l)/, (Slotine and Li, 1991).

The idea behind sliding mode control is to formulate well-behaved functions of the

tracking errors s,, and then select the feedback control law r, , such that s, remains a Lyapunov-

like function of the closed loop system in the presence of unmodeled dynamics and

environmental disturbances.

Now consider the i* differential equation of the MIMO system of eq. 3.1.

m

0"(n) = f (0)+ byv(0)r
j=1

The dynamics f; (possibly nonlinear or time-varying) is not exactly known, but estimated as f.

The estimation error of f1 is assumed to be bounded by some known function Fj = Fj , d).

f - fi < F

In order to achieve tracking, define the sliding surface si = 0

dt ) O '

Then,

= f(n)++. b'V-1 "(n)+(-+2"19

j=1

Notice that the best approximation ', of a continuous control law that would achieve Si= 0 (or

si = 0) is

vri = -i(0 di' -

If we use the approximate control instead of the ideal sliding mode control, then

Si = fi - fi
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However, the sign of the resulting i is not known. If f, = - (f) + "() - 2"'9 - k sgn~s,),

then the control law satisfies eq. 3.4.

d s = s s = - fi - k sgn(s ) i =(i, - f4i - ks| I -i~si
2 dt =

if k = F,+ .

Although sliding control provides great flexibity for robust stability and tracking in the

presence of unmodeled dynamics and parametric uncertainties, it has one major drawback for use

in the motor cotrol of human movements: The sliding mode control law is discontinuous

(because of the sign function in the control law), and highly unlikely to be implemented in a

biological system.

3.2.3. Continuous alternatives to sliding mode control

The resulting control law to satisfy the sliding condition results in a discontinuity across

the hyperplane si = 0 (the sign function in the control law). However, s, is not known to

infinite precision, neither is the switching of the control instantaneously. These conditions can

lead to chattering that can lead to excitation of high frequency unmodeled dynamics. One way to

avoid such undesirable behavior and at the same time make the control law continuous is to

define a thin boundary layer around the sliding surface S, (t) (Slotine and Li, 1991)

Bi (t) = I O , si (0i, t):! 0 1 0> 0

Outside B, (t), we choose the control law i, as before, which guarantees that the boundary layer

is attractive and therefore invariant (i.e., all trajectories starting inside B, (t) remain inside B, (t)

for all t 0 . We then interpolate T, inside B, (t) replacing the discontinuous term sgn(s,) by

s, /0 . This leads to tracking to within a guaranteed precision ., = 0/2V (instead of "perfect"

tracking), and more generally it guarantees that for all trajectories starting inside Bi (t) remain

inside the boundary layer.

Vt > 0, J#~i (t 5 (2A,)j e, j= I,-...n -1I
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3.2.4. Summary of Sliding Mode control for MIMO systems

In order to extend the results of the previous paragraphs to the entire MIMO system

described in section 3.2.1, we need to write the uncertainies on f in additive form and the

uncertainties on the input matrix B in mutiplicative form

f 5I F i= 1,... , M

B=I+A)fI D i=1,...,Fm =1,...,m

where I is the n x n identity matrix.

The components of the vector s can be rewritten for notational simplicity.

s. = I-+ 2 9, =9(n"~) -("-1)d n-1

dt ) "

This defines the vector 0(n1) of components 0(~-1) which can be computed directly from 0 and

Od

Extending the results from the earlier paragraphs the appropriate control law takes on the form

= ~" n-- k sgns))

In the same manner as in section 3.2.2, we can write

i= - + 4j(0~7 - f)- 4jkj sgn(s)-(i + ,4,)ki sgn(s1 )
j=1 ji

The sliding condition is verified if

n

(- Dii )ki : F + I DU 101 - - - Dukj +; , i =1,...,Im
j=1 j#i

and in particular if the vector k is chosen such that

n

(I - Di, jkj + D k; F + :D 10 - +y =,.,m eq. 3.5
fri + 77

j#i j=1

The above expression represents a set of m equations and m unknown switching gains ki. The

Frobenius-Perron theorem assures that there exists a unique solution k to this set of equations



70

(Slotine, 1991).

3.2.5. Model Reference Adaptive Control

While sliding control presents a viable option for control of nonlinear systems with un-

modeled dynamics and parametric uncertainties, it does not provide a means of "learning" the

model parameters as time passes. A system controlled by a sliding controller performs the same

way during the first or the millionth cycle of a repetitive task. It makes more sense to find a way

to estimate the parameters of the system while trying to achieve tracking.

Model Reference Adaptive Control (MRAC) is the method most engineering applications

use. In general a MRAC system contains four parts: a plant containing the unknown parameters,

a reference model for compactly specifying the desired output of the control system, a feedback

control law containing adjustable parameters, and an adaptation mechanism for updating the

adjustable parameters (see Figure 3.1).

The plant is assumed to have a known structure, although the parameters are unknown.

For linear plants this means that the number of poles and zeros is known, but their location is not.

For nonlinear plants this means that the form of the dynamics is known but some of the parame-

ters are not. In the case of the human motor control we will denote the plant to be the arm

dynamics.

A reference model is used to specify the ideal response of the adaptive control system to

the external command. Intuitively, it provides the ideal plant response, which the adaptation

mechanism seeks when adjusting the parameters. In engineering problems the choice of the

reference model has to satisfy two requirements. It should reflect the performance specifications

of the control task, such as rise time, settling time, overshoot, etc. And this ideal behavior should

be achievable for the adaptive control system. In the case of the human motor control we will

denote the reference model to be the external altered dynamics and the desired trajectory.

The controller is usually parameterized by a number of adjustable parameters (implying

that one may obtain a family of controllers by assigning various values to the adjustable pa-

rameters). The controller should have perfect tracking capacity in order to allow the possibility

of tracking convergence. That is, when the plant parameters are exactly known, the correspond-
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ing controller parameters should make the plant output identical to that of the reference model.

In the case of the human motor control we will denote the controller to be the subject's central

nervous system.

The adaptation mechanism is used to adjust the parameters in the control law. In MRAC

systems, the adaptation law searches for parameters such that the response of the plant under

adaptive control becomes the same as that of the reference model.

3.2.6. Single-Input-Single-Output MRAC for Linear Systems with Full-State Feedback

Slotine's summary of MRAC theory is presented here to help understand further the use

of the sliding variables in robotic control. First, consider the case when the full state is measur-

able. The n order linear system in companion form can be written,

aO(") + an_10("-) +---+ aO = r,

where the states 9, 9, ... , (" are all measurable. We assume that the coefficient vector

a = [an ... al ao]T is unknown, but that the sign of an is assumed to be known. The objective of

the control system is to make y closely track the response of a stable reference model,

aI n1)+ a_ 19"~1) +---+ a0O, = r(t)

with r(t) being a bounded reference signal. To that end, let,

Of") - fpl 1e("~1 - - - - p6oe = z(t)

with 81 ... fin be positive constants such that s" + g,_,sn- + --+ 80 is Hurwitz (i.e. all it roots

have negative real parts). This can be rewritten as

u=n n-1+0("-0+... 0=v (t)&(t)

where v(t)= [z(t) 0(n) ... Of and a(t)=[a &,, ... a, a ]. The vector v(t) repre-

sents quantities that are completely known, while a(t) denotes the estimated parameter vector.

Then, the tracking error satisfies the closed-loop dynamics

an [e(") 8l._e(n-) ... 8oe] = v(t)(t) = v(t)[aa(t) - a(t)]

To choose the parameter adaptation law, let us rewrite the closed-loop error dynamics in a state

space form,
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x = Ax +b[(1a vT

e =cx
where,

0 1 0 ... 0 0
0 0 1 ... 0 0

Ai= ..- b= j and c=[1 0 --- 0 0].

Lfo O * 1,2" fni I

The resulting control law ( u = vTa) is complete by defining the adaptation law

a=-Fvb Px,

where both Tand P are symmetric positive definite constant matrices.

While single-input-single-output MRAC provides system parameter estimation and

tracking at the same time, it is clearly very limiting to apply directly to the control of human arm

movements for several reasons. First, at least in principle, the unknown parameters need to be

constant and not time-varying. Second, the theory as shown above is true only for linear sys-

tems. Finally, the complex dynamics of a human arm cannot be decomposed into individual

components corresponding to separate joints because the dynamics for all degrees of freedom are

coupled with each other.

3.2.7. Adaptive control and Nonlinear Systems (The SISO case)

There exists very little theory for the adaptive control of nonlinear systems. However,
adaptive control theory has been successfully extended for a very special class of nonlinear

systems. This special class of nonlinear systems can be linearly parameterized, their full state is

measurable, and nonlinearities can be cancelled stably (i.e., without unstable hidden modes or

dynamics) by the control input if the parameters are known.

Slotine's analysis continues by considering an n" order nonlinear systems in the com-

panion form

0(n)+ af,(x, t)= br eq. 3.6
i=1
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0 ("~1) is the state vector, ft are known nonlinear functions of the statewhere x = [9

and time, and the parameters a and b are unknown constants. Assume that the state is meas-

ured and the sign of b is known. For notational convenience rewrite eq. 3.6 as

n
hO(") + cif (x,0 ='r

i=1

where h = 1/b and ci = a,/b .

Similarly to the development of the sliding mode control define a combined error

s = e(n1) + ,n- 2 e (n2) +...+ e= A( e
dt

where e is the output tracking error and

can be rewritten as

S = 0(n-1) _ ,("-1)

where

9(fl) _-O(P-1) -2e e(n-2) - 4 2e

d(n1) d(n-2)
= dt(n-+ +n-2 dt(n2) +.. + 20. Note that s

Choose the following control law:

n
A1. = hO6 " + cif (x, t) - ks

i=1

where k has the same sign as h, and

h = -y sgn(h)s(n)

Ci = -y sgn(hsft

The adaptive control law can be checked for stability using a Lyapunov function candi-

date. For this control law the Lyapunov function

V = h+s2 + 2
Ihi= +

Then,

A(d )dt
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= 2Ihls + !2 hh + 2 C {A(()-9n) gnh~i g~~1
n

n n
= 2|ss+nh~+n 2 - if -, =2 h(( 0(0 g~),"E- ,snhf

i1 x i=)'

= -2s sgn(h - h - f + +c,") - ho " )
elnn

=-2s sgn(h) - r + ^if + " -ks + ks =-2s2 sgn(h)k

=-2|kJs2 < 0

Therefore, the global tracking convergence can be easily shown.

Notice, that this approach provides parameter estimation, tracking and at the same time

has the robustness characteristics of the sliding mode control to unknown but bounded distur-

bances.

3.2.8. Multi-Input-Multi-Output (MIMO) MRAC

The need of a control method that handles MIMO systems is clear. Both the human and

the robot arm have more than one joint moving at the same time. The controller has to apply

control torques to each and every one of them at the same time. Further, the joint angles, veloci-

ties and accelerations are coupled together, and therefore, they could not be controlled individu-

ally using decoupled dynamics.

To extend the results from the MRAC-nonlinear-SISO systems, consider the system of a

robotic arm in a MIMO configuration (Figure 3.2). For the general MIMO system robust stabil-

ity cannot be shown. However, for systems that can be linearly parameterized robust stability

can be extended from the SISO nonlinear case. In Chapter 2 we derived the dynamics for the

general arm model.
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H (0)0 + CCO,% _ + g() )= I

Remember, H(O) is an n x n (7 x 7 for the case of the human arm model shown in Figure 3.2)

inertia matrix, which is symmetric and positive definite, C(,0 4 is an n-vector of centripetal

and Coriolis torques, and g(O) is an n-vector of gravitational torques. Define,

s=O±AO

or better yet,

where

d +d AO

Let the Lyapunov function candidate be

V(t)= ST Hs > 0 eq. 3.7

Then,

Y(t)= ST s+s (HN - Hr)
2-

=sS Hs+s I-C J-g-H )2-

= $ s s+SC (- C(s + -,)-g -- H N,2 -

Previously, we proved that H = 2C (skew-symmetry property; page 39). Therefore,

Y T1 -Hr,-Cdr,-g)

Similarly to the development in earlier sections

r= -k sgn(s)

where the vector k sgn(s) has components k, sgn(s,). Also,

f= HI , +0r + _

Then,
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n

Y(t)= s (0N, +CCO, - 0))- ki\sI

Given bounds on the modeling errors we see that choosing the components ki of the vector

k sgn(s) such that

allows the system to satisfy the sliding condition

nY'(t)2 - 7 Isi |5 0 .

Assuming a bounded desired trajectory, let us define a = a - a as the parameter estima-

tion error. In this expression a is a constant vector of unknown parameters describing the

manipulator's mass properties, and & its estimate. Then, instead of using the Lyapunov function

of eq. 3.7, consider

V(t)= - [ Hs+d 1 I0
2

F is a symmetric positive definite matrix. Using similar arguments as previously we get

t) =ST(jtr C ~ Ag+T Fi
Y -t= 'r - Hj,-Cd,.-g)+a" -'

At this point the choice of the Denavit-Hartenberg notation (introduced in Chapter 2) allows the

manipulator dynamics to have a very special property, namely, that given a proper definition of

the unknown parameter a vector describing the manipulator's mass properties, the terms H(0)

CGO, d), and g(O) depend linearly on a. Thus,

H(0)0, + C(, d, - g(O)= , G,.*

In a similar process, the control law is chosen as

Z =Ya&- KDS

and the adaptation law as

a= _-~yTs

Then,
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v -)= T KD 0

Using Barbalat's lemma we see that stability and tracking are guaranteed by the above controller.

3.3. The Proposed Control Model

The proposed approach to control robot manipulators is to design a dynamic control law

directly in the task space which allows on-line path modification based on sensory feedback data.

The suggested controller, unlike the sliding mode controller, does not require explicit knowledge

of the environment or its nonlinearities. Rather, it uses simple position and velocity feedback,

and it achieves satisfactory tracking performance (at steady state) as fast as the sliding mode

controller (measured by the time to reach steady-state performance). The general proof for the n-

link model will be given first and then a case study will be presented for the 2-link model.

Before we proceed with the proof of the robust stability of the proposed controller for the

n-link robotic model, it is necessary to introduce some definitions and theorems on robustness

and stability of any system.

3.3.1. Definitions and Background theory on Robustness

DEFINITION (ZAMES, 1966): A system with input x and output (Hx) is positive if

Vt >0, xT -(Hx) 0
DEFINITION (Wyatt et al., 1980; Wyatt et al., 1981): A system with input x and output (Hx) is

passive if

Jx_(H)dt 0
0

In the definitions above both the input x and output (Hx) are L2 (i.e., bounded energy). The

definition of passivity is somewhat less restrictive.

THEOREM 1 (ZAMES, 1966): If the open loop dynamics of a system can be factored into

two passive relations one of which is strongly positive and has finite gain, then the closed loop is

bounded.
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A passive element is one that over infinite time absorbs energy, but, in general, from one

instant to the next it may absorb or generate energy. Similarly, a positive element absorbs

(dissipates) energy at each instant of time even when time tends to infinity. Finally, when a

system is bounded it means that it generates finite amounts at all times, provided of course that

the input is bounded at all times. We shall now state the general problem, propose a solution,

and provide rigorous proof of the validity of the proposed solution.

3.3.2. Robust Stability of the Proposed Controller for the n-link Robotic Arm

Consider the n-link robotic arm. Appropriate choice of coordinate systems (Denavit-

Hartenberg rule) guarantees that this systems dynamics can be written in the form

H(0)0+ C(O, 9) =,r, where 0 is the state vector, H(O) is positive definite for all values of 9

and H - 2C = 0 (from the conservation of energy). The effect of gravity is ignored for conven-

ience, but since gravity is a conservative force the results will be true even when gravity is

present. A control law is sought that provides tracking for the robotic arm. The controller has to

provide robust stability while keeping the error bounded. Furthermore, the controller is con-

strained to only use positional and velocity feedback and lacks any explicit knowledge of the

nonlinear nature of the system dynamics.

We propose a variation (extension) to the MRAC control law for robotic systems. The

proposed compensator that has a control law r=Yb-KnO and an adaptation rule

a= a= -FY 0 can provide robust stability to this system. KD and ' are positive definite

matrices. The form of Y is such that it satisfies the condition HO = Ya, where H is a positive

definite constant matrix, and a has no dependence on the inputs or the states, and it only de-

pends on the mass properties of the robotic arm. s =9-r where Or = Od+ AO, and

=2-O d. 2 d is the vector of the desired values of the system states. 9r is a functional with

no physical interpretation, and it is defined solely to give the sliding variable the appearance of

an errorquantity(s = -r). The control law that results by replacing b with s is equivalent
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since 9 and s are directly related. The theorem and its proof are stated for the case of 9

because the quantity 9 has a physical meaning unlike the sliding variable s.

THEOREM

Consider the BIBO stable n-link robotic model whose dynamics can be written in the

form H(0)0 + C, )9 = r (using the Denavit-Hartenberg rules), where 9 is the joint position

vector, H(O) is positive definite for all values of 9, and H - 2C = 0. Then a compensator with

a control law -=Y& -KDO and an adaptation rule a =a = -FY 9 can provide robust

stability to this system. KD and F are any positive definite matrices. The form of Y is such

that it satisfies the condition H , Ya, where H is a positive definite constant matrix, and a

has no dependence on the inputs or the states, and it only depends on the mass properties of the

robotic arm. s = _ -9, where 9, = d + A9, and 9 = 0 -Q . d is the vector of the desired

values of the system states.

PROOF

Consider again the manipulator dynamics.

= H(Q)9 + Co, d (for the sake of convenience I will not carry the dependence

of H and C to the states any further)

Then,

0

Jf H + + TCO dt =

0

JK H + RTi dt = (H- 2C =0)

0
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r# HN+ H9+I9 TH9dt=
J 2~ ~ 2 2 )

0

. # J (He dt =

0
1 *T

-9 H9>0
2- ~

This implies that the mapping r + is passive. The control law is chosen to be

T = - KD 9, where KD is some positive definite matrix, and Y is such that it satisfies the

condition Her = Ya. Further, the adaptation rule is ^= -TY .

Figure 3.3a explains graphically the relationships between the control law, the adaptation

rule and the arm dynamics. The control input to the arm is the joint torque -r which results to the

arm angular states according to the arm dynamics (r = H9 + Ct)). Using the adaptation rule 0

is related to one of the components (Ya) of the control joint torque 'r. The second component

of the control torque (KDO ) is also related to 0 . The two components of the control input can

be lumped together into one block in the forward path leaving the arm dynamics as a separate

block in the feedback path. Figure 3.3b gives a representation of the compact block representa-

tion.

We would like to show that the forward path (between 9 and

From the adaptation rule

a = -FY 9 (F': positive definite matrix)

a -T

& ai=-0 Ya

I d ' - T Ya
2 dt ~ ~ ~~ -

KDO-+-Y^) is passive.

Thus,
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flT
0

IE T
0

d T -1 At=
Jt
0

a F~ a > 0,

0
KD is positive definite, and therefore, the forward loop is passive.

9 belongs to L 2 (because when we study passivity/positivity the input signals are as-

sumed to be L 2 ), and Y has elements that are functions of 9 and 9 d. Thus, as long as 9 d is

continuous and differentiable and L2 , then TY 9 is also in L2 (i.e., J9YTTYT is finite).

0

The parameter estimates (&) are always finite since they are the integrated output of the

stable system a= -FYT (i.e., a = fr Y

0

for which fl= J0YT < J0 T ri

0 0

= A e 91; A < oo). Thus, the integral in eq. 3.8 is not only positive but also finite (because when

we study passivity/positivity the input signals are assumed to be L2 ). This implies that the

integral f(O Y&aJdt is finite when the
0

integrand is negative (or positive).

In mathematical notation,

when Ya <0-0o< J -Y )dt = K <0

0

There are two cases for this to happen.

- Ya <0 (i.e. min(

81

KD dt-

2 eq. 3.8

-(K 0 +

- oo < K < mi o -a) is finite)i.
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It is clear that when KD is chosen to be large enough then KD > 0 Ya for all cases when

Y& is negative. Therefore, the forward loop is strictly positive. The inequality above means that

the energy generated in the forward loop at each instant is finite at all times, and this is a fact

regardless of the value of KD.

ii. minO y aY = 00 (i.e. min{ .Y4 is an infinite impulse; in fact it is equal to

*:_T _

a finite number (&) times an infinite impulse squared (9 -Y))

,-T *z :T-
It is clear that when KD is chosen to be large enough then 9 KD > 9 Ya for all

cases when Ya is negative. Therefore, the forward loop is strictly positive.

The passivity of the feedback block was shown at the beginning of the proof. Theorem 1

implies that a compensator with a control law r = _a - KD and an adaptation rule

a = a = -TY 9 can robustly control the complete nonlinear system.

The analysis of the stability, robustness and performance of such system is based on the

basic assumption that the desired trajectory is "well behaved" (i.e. it does not have discontinuous

velocity profile). In the proposed control method, it is necessary that the desired trajectory !2d (

be known. However, some or all of the parameters of the system dynamics may be unknown.

The adaptive control-design problem is to derive a control law for the actuator torques, and an

estimation law for the unknown parameters, such that the manipulator output 0(t) closely tracks

the desired states.

From the proof it appears that the stability of the closed-loop system is for large values

of KD. This is a result of the very conservative constraints of Theorem 1. In reality, passivity of

the forward and the feedback loops along with the fact that the generated energy of the forward

loop is finite at all times is enough to show boundedness of the closed loop.

Clearly, the control law and the adaptation rule are not unique since the choices for H,

Y, KD and F are not unique either. The proposed control model has certain advantages over
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the classical sliding mode control for robotic systems. The most important of the advantages is

the fact that the controller only needs linear combinations of position and velocity feedback to

robustly control the system. Classical sliding mode requires exact knowledge of the form of the

nonlinearities. On the downside however, the proposed model reaches bounded, non-zero steady

state error, while sliding mode guarantees zero error asymptotically.

3.3.3. The proposed control model for the two-link robotic arm paradigm

I will demonstrate the principle arguments of the stability and robustness by going

through the example of the two-link model.

Consider the same two-link manipulator model, whose dynamics are

T_ H1I H 12 1 [ 1  -hO 2 - h( 1 + 2 1

12 _H21 H 2 2 i[92 L h 1  0 j[0 2 j

M2g(L42 COS(01 +02) + L1 cos(01)) + mjgLcj cos(01)~
+ m2 gL 2 cos(0 2 ) _ eq. 3.9

P
where

H11 = a, +2a 3 cos(0 2 ) H12 = H2 1 = a2 + a 3 cos(0 2)

H22 = a2  h = a 3 sin(02 )

with

al = I + MILL + I2 + m2 L + m2LI a2 = '2 + M2Lz a3 = m 2L 2 L1

a 4 = m2gL 2  a, = m2gL, a6 = mIgLCI

For this system it is easy to show that
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(2N, + 2 )cos(2 ) - (2A12 + d )sin(02 )

9, cos(02 )+ d2 sin(02)

cos(0 1 +02)

cos(0 1 +02)

The resulting controller matrices are:

1, 2r (A2ir + 2r )cos(0 2 ) - N1r2 + 2r2 + d2r1 )sin(02) cos(91 + 02) cos(02) cos(92

1,.+ 02r 1 cos(9 2 )+ 1, sin(02) cos( + 92) 0 0

and

[a a 2 a 3 a 4 a5  a6IT

For the nonlinear system dynamics of the two-link model, the sliding-mode control law

guarantees robust stability.

Notice that the dynamics of the two-link system (P) can be rewritten as the sum of two

separate systems in the following form

P =P +5P =

T2 _T2 L45r 2

a, +2a3 a2 +a3 01 2 1 01~ ~- 2 -- 1N + d2 Y
.. + a3 (cos(02 J1)[ + as in(02) eq. 3.10

a21 +a a2 21 0- A2 01 0 0 2-,

P &P

Figure 3.4 shows this arrangement in block diagram form. In this new control arrange-

ment we would like for the "linearized" controller (with output r) to be able to robustly control

the nonlinear system P. The dynamics of the nonlinear system P, which is also given by eq.

T 11

L2 _0

2

N1+ j2

cos(91)]

0
cos(01)

0

a1

a2

a3

a
4

a5

a6 _
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3.9, can be rewritten in terms of the dynamics of eq. 3.10. Figure 3.4 shows this rearrangement.

Figure 3.5 shows the dynamics of the controller and the nonlinear system. Now, the controller is

controlling the "linearized" dynamics, while the nonlinear terms are lumped as additive distur-

bances.

The proposed controller structure uses only a linearized version of the nonlinear matrix

Y . Let the linearized version of Y be Y .

Y=
.C C + C 1 1 1 1]0 ~ ~ 1 1l 0 2 l

al +2a 3 a 2 + a  nTo get Y, set 01=0 and 2 = 0, which results in H = a , and
. a2+ a3a 2 _I

C =[0 (exactly like P ). Notice that the decomposition of P into P and bP is not unique.
0 0

In fact, while 02 has to be zero for the controller to consist of linear terms, there are infinite

number of such decompositions for depending on the value of 01.

Classical sliding-mode theory the controller with a control law z = a - KD and an ad-

aptation rule d = a = -- Y provides robust control to the following system dynamics:

a, +2a3  a 2 +a3  01] a 4 +a, +a6 ~
+ eq. 3.11

a2 + a3  a2  - 2 a4  _T2

The reduced linearized system fits the generalized form for robotic system dynamics

(HO+ CO+ g = r , with -- ()2C= 0 and H9r + CUr + g = Ya), which is guaranteed to
dt

be robust through sliding mode theory.

In order to compare the performance of the proposed model to the classical sliding mode

control for robotic systems numerical simulations were run for the same two-link system using

the same controller gains (KD and F). Figure 3.6 shows the results of the sliding mode con-

troller. The following control gains were used:
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0.6 0 0 0 0 0

0 0.04 0 0 0 0

[70 0 ] [20 0 ~dJ1- 0 0 0.03 0 0 0

0~ 70' LO 20 1 a 0 0 0 300 0 0

0 0 0 0 40 0

0 0 0 0 0 225

The performance of the proposed controller in this two-link arm paradigm is shown in

Figure 3.7. The gains used in this case are exactly the same as those used classical sliding mode

controller. Clearly, for the same gains the lack of the knowledge of the nonlinearities translates

in lost of asymptotic tracking. However, the error is always bounded to within a boundary layer.

Further, the proposed control law allows reduction of this boundary layer to whatever size is

desirable by increasing accordingly the feedback gain KD. Figure 3.8 demonstrates exactly that.

By increasing KD by a factor of 100 the boundary layer has been driven to very close to zero.

3.3.4. Example: Seven-Input-Seven-Output robotic arm system

What follows is an example of the proposed nonlinear control method to demonstrate

numerically the stability of the proposed model for a system with more than two links. The

system is a seven-link robotic arm tracking a movement in the three dimensional space during

two distinct condition. In the first situation there are no external dynamics influencing the arm,

while in the second the environment of the system is also in motion (rotation) exerting Coriolis

effects on the dynamics of the arm. The joint angles are numbered to correspond to Figure 3.2.

Figures 3.10 and 3.11 are direct applications of the proposed control model to a seven-

link manipulator arm similar to the seven-link model of the human arm developed in Chapter 2.

For the simulation the following control gains were used:

1 0 --- 0~ ~1 0 - 1 0 --- 0~

0 1 ... 0 0 1 0 0 1 0
Kd =105  ,A=20 ,and F'=104

0 0 --- 1 0 0 --- 1 0 0 - 1
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Kd and A are 7x7 while F is 64x64.

Clearly, the proposed model manages to control the multiple-link robotic system while

keeping the tracking error bounded even in the presence of external disturbances (i.e. Coriolis

and centripetal forces). Further, the proposed controller does not require explicit knowledge of

the system's nonlinearities. Rather, it uses only position and velocity feedback to achieve

trajectory tracking.

3.4. Summary of the control modeling of the human arm

This chapter described the theoretical contribution of this thesis. A new control method

was proposed for the control of robotic arms. The control law and the adaptation rule are based

on sliding mode control of robotic systems. However, the preexisting control methods require

complete knowledge of the nonlinear robotic dynamics and very complex feedback. The pro-

posed scheme was motivated by the fact that the CNS achieves good tracking performance, while

it remains robust in the presence of external unknown dynamics. The CNS achieves satisfactory

performance using just position and velocity feedback, and without any explicit knowledge of the

nonlinear nature of the dynamics. The robust stability of the proposed model was proven rigor-

ously and it was demonstrated numerically through Matlab (Mathworks Inc., Natick, MA)

simulations.
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reference Ym
model

Output
Input (r) - error (e)

contr er plant +

a adaptation
law

Figure 3.1 The block diagram gives a description of a Model Reference Adaptive Control
(MRAC) method for compensation.
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Figure 3.2 Breakdown of a human or robotic model arm into simple one-dimensional joint
links.
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Arm Dynamics 0

_ t-=HO+CO

KD

a =--P7Y 0

Od0 .- A

d _ T+ KDO

Ann Dynamics

T=HG+CO

Figure 3.3 Passivity interpretation of the adaptive robot controller.
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....... 6
Control p~---o.

...... Control :p P -

Figure 3.4 The proposed adaptive scheme for trajectory tracking control of a manipulator
in an unknown or unstructured environment. The nonlinearities can be modeled as an
additive block (represented by 6P ) on a linearized system model.
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6

c5P

........... Control P

Figure 3.5 The proposed adaptive scheme for trajectory tracking control of a manipulator
in an unknown or unstructured environment. The nonlinearities can be modeled as an
additive disturbances (represented by 6P) on a linearized system model.
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Figure 3.6 Graph of position errors versus time for the trajectory-tracking simulation of
the planar dynamics of the seven-degree-of-freedom arm. Since the movement is planar
only the reduced (two-dimensional) dynamics were used. The desired trajectories for the

two joint angles were: Desired Angle 1 = (1- cos(2;n)) and Desired Angle 2 =

2(1-cos(2)) 180
A1

CM

a)
CD

C

I

2

3

4

5 L
0

2

CM
0

R0)
c

22C

.2 3

4

5

6

I



94

a)

0O

0

CL

5

0.

5

0

5

0

-15,U
0

20-

15-

6)0)

a0)

0)

00-10
.r

0-15
.

-20

-25 -
0

5

5

10

10

15

15

20

20

25 30

25 30

Time (s)

Figure 3.7 Graph of the position tracking errors versus time for the proposed adaptive
scheme for control of a manipulator. The arm is executing a planar two-dimensional
movement. The desired trajectories in degrees for the two joint angles were: Desired Angle

180 (=1 0 (- cos (;u))- and Desired Angle 2 = 2 (1 - cos (2st))1

I I I I
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Figure 3.8 Graph of the position tracking errors versus time for the proposed adaptive
scheme for control of a manipulator. The arm is executing a planar two-dimensional
movement. In this simulation, the proportional and adaptation gains (KD and I ) are 200

times larger than that in Figure 3.7. The desired trajectories for the two joint angles were:

Desired Angle 1 = (1- cos(27a)) and Desired Angle 2 = 2(1- cos(2,)) .
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Figure 3.9 Position errors versus time of the proposed adaptive scheme for trajectory
tracking control. The seven-link manipulator is executing a three-dimensional movement.
There are no external influences except from gravity.
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Figure 3.10 Position errors versus time of the proposed adaptive scheme for trajectory
tracking control. The seven-link manipulator is executing a three-dimensional movement.
The environment is also assumed to be in motion (rotation), and thus, the are external
forces (Coriolis) in addition to gravity.
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4. Comparisons between
Experimental and

Simulation Results

The experimental result section is the last part of the analysis presented in this thesis. In

this and the following chapter the experimental results are presented, they are compared with

simulation results or theoretical predictions, and conclusions are drawn. It was mentioned in the

introduction that the experimental part is twofold. The first part includes a throwing task ex-

periment on board the Russian space station Mir (Mip), while the second a continuous trajectory

tracking task under an external disturbance, caused by a robotic manipulandum. This chapter

will describe the comparison of experimental results during continuous trajectory tracking with

the model predictions, while the following chapter will concentrate more the throwing experi-

ment on board Mir.

The continuous tracking experiments are a unique contribution to the understanding of

human motor control. The present study looks into the behavior of the motor control system in

the closed loop. Most previous work has concentrated in looking at the motor control system

behavior as in an open loop by looking simply tasks that imitate reaching movements (Bizzi et

al., 1992; Bizzi et al., 1991; Dizio and Lackner, 1995; Shadmehr and Mussa-Ivaldi, 1994). This

types of experiments, while valuable in showing certain adaptation trends, they were only



99

looking at a limiting description of the problem. The limitations of those experiments was the

fact that the input to the motor controller was a step, and that the general duration of each task

was very short. Clearly such an approach is limited to the amount of insight it can provide, and

this was one of the main drivers for the design of this series of experiments.

The trajectory tracking experiments are unique for another reason. Among competitive

closed loop models of the motor system some do not compare their predictions to experimental

data (Kawato and Gomi, 1992), while other studies are limited to looking only into the undis-

turbed behavior of the tracking response (Hanneton et al., 1997) making impossible to recognize

differences between models.

4.1. Reaching Experiment in a Rotating Room

Before looking at the continuous tracking experiments it is important to see how does the

proposed adaptive method fit with the experimental results produced by the reaching movements

under the influence of an external force field. Coriolis forces generated by movements in a

rotating environment can serve as a way of studying the influence of transient perturbations on

limb movement control without providing mechanical contact with the limb. Coriolis forces are

proportional to limb velocity (Coriolis force Fcor = -2m(at x v), where m is the mass of the arm

(or any other object), a is the angular velocity vector of the rotating environment in radians, and

v is the linear velocity vector of the arm). This means that there is not a Coriolis force acting at

the very beginning or at the very end of a limb movement, but during motion a Coriolis force

orthogonal and proportional to v is generated. Such forces are inertial ones that act without

physical contact. Local contact, if present, necessarily activates a variety of somatosensory and

mechanoreceptors in the limb that potentially provide information about the nature of the pertur-

bation. The use of Coriolis forces to perturb limb movements avoids this and permits the study

of how natural, unencumbered movements respond to transient perturbations of trajectory.

Recently, investigators demonstrated that, when subjects, who are in a fully enclosed room

rotating at 10 rpm, reach out to touch 9 targets, the subjects show substantial movement curva-

ture and miss the desired target position by a large amount (Dizio and Lackner, 1995). The
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deviations were generated in the direction of the Coriolis force during the reaching movements.

Within -10 reaches, subjects adapt almost completely and move in straight paths to the target

location (Lackner and Dizio, 1994). Adaptation occurs even when subjects were denied both

sight of their movements and cutaneous texture cues about the target (a light-emitting diode

embedded from below in a smooth Plexiglas sheet). When rotation ceases, subjects again make

reaching errors with the adapted arm. Endpoints and movement paths are initially deviated in the

direction opposite the Coriolis forces that had been present during rotation, and then re-

adaptation restores a straight accurate reach to the target. Figure 4.1 was adopted from the paper

published by Dizio and Lackner, 1995 and it illustrates the initial effects Coriolis forces have on

movement endpoints and trajectories as well as the pattern of adaptation and aftereffects.

The end of chapter 3 shows that the proposed control model has no difficulty controlling

Coriolis forces, even during three dimensional movements. It would be useful further to see in a

qualitative way how the performance of the proposed system compares with experimental data

also under the influence of Coriolis forces.

4.1.1. Methods and Results (Adopted from Dizio and Lackner, 1995)

The experiment was divided into pre-rotation, perrotation, and post-rotation components.

The pre-rotation period was used to measure baseline pointing accuracy for the two arms. It

involved 24 reaching movements to the target with each arm in alternate sets of 8 movements

starting with the right arm. The perrotation period involved 80 reaching movements, in sets of 8,

using only the right arm. The post-rotation period involved 24 movements of each arm in

alternating sets of 8 movements beginning with the left arm. Eight subjects followed the se-

quence just described. On completion of the pre-rotation reaches, the rotating room was acceler-

ated to a constant velocity of 600/s (1/6 rev/s) counterclockwise. Two minutes were allowed to

elapse at constant velocity before the subject began reaching movements so that the horizontal

semicircular canals would be back at their resting discharge levels. Because the room was

rotating counterclockwise, the Coriolis forces generated during reaching movements were

rightward with respect to the subject.

Subjects made nearly straight reaches toward the target position with both the right and
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the left arms. Right-handed reaches were convex to the left and left-handed ones to the right.

Neither movement distance nor peak velocity changed significantly throughout the experiment.

On their first perrotation reach, every subject showed an increase of movement curvature,

and a deviation of movement endpoint, in the direction of the Coriolis force acting during the

movement. These deviations from the pre-rotation baseline values of the right arm were highly

significant. With subsequent reaches subjects rapidly adapted such that their reaches straight-

ened out and came closer to the target. The curvature of the last set of eight movements during

rotation did not differ from the pre-rotation baseline curvature values. The endpoints of the last

eight perrotary movements were significantly less deviated than the endpoint of the initial one

but remained significantly to the right of the pre-rotation baseline. This pattern indicates that the

right arm had achieved complete adaptation to curvature induced by Coriolis forces and -70%

adaptation to induced endpoint errors. Figure 4.1 shows a graphical representation of the setup

as well as the subject behavior during the execution of the pointing task inside the rotating room.

4.1.2. Adaptive Control Simulations

The experimental data obtained by Dizio were compared with the proposed control

model, which was discussed extensively in the last chapter. Figure 4.2 shows the experimental

data from the rotating facility, and Figure 4.3 demonstrates the simulation results. There are a

number of differences between the simulations and the experimental data. First and foremost,

the experimental protocol called for a pointing task. While the subjects had to extend their arm

to reach the target, only the initial and final positions of the hand were important. The points in

between were important but not in the sense of trajectory tracking. On the contrary, the simula-

tion of the proposed control model is based on continuous trajectory tracking, which means that a

desired trajectory was assumed throughout the duration of the movement. Second, the simula-

tion model did not included any muscle modeling information, neither did it include any time

delays or friction losses. Finally, unlike the human subjects the simulation has to be continuous

in time (because of programming restrictions). In the simulation the movement is continuous

and smooth. It is clear from the experimental results (Figure 4.2) that human subjects move their

arms slower at the beginning of the movement and finish quite abruptly. The reason for such
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behavior is quite likely the time delay between the onset of the visual queue and the initiation of

the reaching movement. On the contrary, the simulation includes no time delays and, therefore,

the velocity profile of the simulated movement is symmetric at the beginning and at the end of

the task.

Finally, while during the pointing task the final state is fixed, in the simulation, the "fi-

nal"/desired state changes continuously.

4.1.3. Problem Formulation and Control Modeling and Result Discussion

The control model is defined in joint angles and therefore the desired trajectory had to be

converted from a straight line on the horizontal plane into joint angles. To guarantee the desired

trajectory path is smooth, the desired velocity profile along the straight path was chosen to be a

sinusoid. The time (t) profile of the distance y was a sinusoid with an amplitude of 5cm. The

velocity profile is "smooth" (i.e. continuously differentiable), and for the sake of simplicity the

upper arm and the forearm are considered to be of the same length L. The desired trajectory

kinematics was defined via the joint angles to be:

for the shoulder angle (in degrees):

01 = 15.562 -10.815cos(2t), 91 = 21.63sin(2t), and 91 = 43.26 cos(2t)

and for the elbow (in degrees):

02= 93.25 - 13.93cos(2t), #2 = 27.86sin(2t), and 2 = 55.72 cos(2t)

The adaptive controller developed in Chapter 3 can be adjusted appropriately to match

the behavior of the subjects. The simulation results depend significantly on the gains of the

control model of the motor system. The adaptation gain F of the controller affects directly the

number of trials the subjects need to do before their curvature in the Coriolis environment drops

to the pre-rotational levels. Correspondingly, the error feedback gain of the controller KD

influences the size (both initial and final) of the trajectory curvature. Large values in F imply

fast adaptation, while large values in KD indicate small curvature in the trajectory. The simula-

tion Matlab (Mathworks Inc., Natick, MA) code which was used to produce the results of Figure

4.3a is given in Appendix D. The simulation time was 200 seconds, and the gains were:
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0.03 0 0 0 0

0 0.05 0 0 0

K = 01 0 .= 0 20], and '= 0 0 0.01 0 0.

-L 0. [ 0  a200 0 0 0.03 0

0 0 0 0 0.1

It is important to remember that these gains are not special or unique. They are only chosen for

the sake of the demonstration.

Because the desired trajectory was not a straight line to start with the adapted model did

not approach a straight line but rather a line close to the desired trajectory. If the desired trajec-

tory had had a slight curvature in the direction opposing to the Coriolis force, the final trajectory

would have approached a straight line much more closely. For the simulation in Figure 4.3b the

desired trajectory had a curvature in the direction opposing to the Coriolis force. Further,

differences in the exact details of the actual and simulated paths are most likely due to the

oversimplification of the full-arm model by just a dynamics model (of unknown physical pa-

rameters) as well as the fact that the desired velocity profile is completely unknown.

Summarizing, it is important to mention that the proposed model controls Coriolis distur-

bances effectively, and its performance agrees qualitatively with the experimental data. This

means that the proposed controller manages to reduce the curvature of the actual path as the

number of repetitions increases. It is also important to emphasize that matching the behavior of

the model to the experimental data does not reject other competitive models. For instance a PID

controller that has somehow the ability to adjust its gain could potentially increase its gain

incrementally to high enough values so that the tracking error would be too small. Another

instance were a PID with an adaptive mechanism might work is if the system could somehow

incrementally adjust its desired (reference) trajectory. If the desired path is the mirror image of

the actual path when the reference input is the straight line, then the final trajectory will match

the straight line more closely (see Figure 4.3c). This is also very similar to one way to make the

proposed model predictions match the experimental data, and it is a behavior that it is quite

possible during the execution of a reaching task. Even in these two special situations that a PID

variant can explain the observed data, the existence of an adaptation scheme is imperative. A
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constant gain PID controller could have never shown incremental improvement observed during

the experiments.

4.2. Continuous Trajectory Tracking

As a first step towards a quantitative analysis of motor learning, I tried to test a functional

model of the adaptive motor control system. The proposed model is chosen because it is a

simple representation of the motor learning system that incorporates an internal model, it con-

forms with the adaptive control ideas that were presented in the previous chapter. Further, the

model includes the motor system, the mechanical environment, the internal model, and the

controller.

The motor system includes the musculoskeletal system for force and torque generation

and part of the primary motor cortex that drives it. Its dynamical behavior is dependent on

passive system dynamics, which is given by the some of inertial, Coriolis, centripetal, and

frictional forces.

The environment subsystem is the mechanical load to the motor system resulting from an

external force field. For goal-directed movements in the horizontal plane the force field is

negligible. In the experimental procedures, an artificial force field is generated by means of a

robot arm to produce varying mechanical perturbations to the arm movement. The performance

of the motor learning system in adaptively countering the external perturbation can be studied

systematically by carefully choosing the types of force fields that are presented to the subjects'

arms.

The motor system and its mechanical environment are coupled together to form the sys-

tem dynamics that the neural controller has to learn to guide the human arm accurately along the

desired trajectory. A command to the motor system may result in different movement trajecto-

ries depending on the environment force field. Such perturbations in movement trajectories are

corrected through proprioceptive and tactile feedback, which convey information about the

position and speed of movement. However, the excessive time delays (40-60 ms; Evarts, 1981)

and the limited gains, which are inherent in such long sensory feedback loops, make it impossi-

ble to achieve completely accurate trajectory tracking under the environmental perturbations.
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The internal model is a neural replicate of the inverse dynamics of the motor system and

its environment. At any instant of time, the internal model represents the cumulative experience

of the motor learning system in predicting the input-output relationship of the motor-

environment complex. This experience is acquired by gradual adaptation to changes in the

environment.

Such adaptation requires the existence of neural integrators capable of accumulating and

memorizing inputs. In the past, the visuomotor system has been associated with such neural

integrators (Robinson, 1989; Shen, 1989).

To learn the input-output relationship, the internal model must receive as an input an ef-

ference copy of the motor command, and its output (reference trajectory) must be compared with

the actual trajectory. The error signal, which is the difference between the reference and the

actual movement trajectory, is then used to update the internal (reference) model until the error

vanishes, and the internal model closely replicates the motor-environment complex.

In visually guided movements, the error signal is derived at least in part from visual feed-

back (Jeannerod, 1990). Accordingly, we assume that the error signal in our model is mediated

by visual feedback (or other secondary sensory feedback) expressed in body coordinates.

The adaptation of the internal model with respect to the motor-environment complex is

analogous to MIMO MRAC and sliding mode control. Here, the motor and environment blocks

represent the actual and desired trajectories. The controller of the system is a neural controller.

It produces the motor command that drives the motor system. The controller includes the

internal model of the inverse dynamics, and it must be adaptively adjusted so that its predicted

output accurately tracks the desired input. Note that the internal model is actually part of the

controller, which is continuously updated. The motor command is augmented if the predicted

movement differs from the desired trajectory. The underlying transformation is equivalent to an

inversion of the arm kinematics (Kawato et al., 1987).

4.2.1. Experimental setup

For this experimental study a setup similar to the one shown in Figure 4.4 has been used.

The special robotic manipulator has been used extensively in other studies (Shadmehr and
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Mussa-Ivaldi, 1994). The manipulator has two torque motors that induce various dynamic force

fields on the subjects arm during execution of tracking tasks. The manipulator is planar with two

degrees of freedom, it weighs little, and its joints are have very little friction. It also includes a

six-axis force-torque transducer (Lord F/T sensor) mounted on its end-effector (the handle).

Two low-inertia, DC torque motors (PMI Corp., model JR16M4CH), mounted on the base of the

robot, are connected independently to each joint via a parallelogram configuration. Position and

velocity measurements are made using two optical encoders (Teledyne Gurley) and two ta-

chometers (PMI). The optical encoders and the tachometers are mounted on the axes of the

mechanical joints. The apparatus includes a video display monitor mounted directly above the

base of the robot, approximately at the eye level of the subjects. The monitor is used to display

the position of the robot's handle as well as the target for the tracking movement.

Subjects were seated on a chair bolted onto an adjustable positioning mechanism and

were instructed to grip the handle of manipulandum with their strong arm. Their shoulders were

restrained by a harness belt, and their right upper arms were supported in the horizontal plane by

a vertical suspension system.

The experimental subjects were six young adult men and women (age range: 20-25) with

no known neurological or physiological deficits. To minimize the influence of prior learning on

motor performance different subjects were used in each group, and the order of experimental

sessions for each subject was randomized. Preliminary studies have shown that learned motor

behavior under a given force field may be abolished by immediate exposure to another force

field. In addition, that long-term memory of a newly learned motor behavior is formed only if it

is not interrupted by other learning pattern for an extended period of time (Shadmehr and Hol-

comb, 1997). Accordingly, all experimental subjects completed all experimental sessions on the

same day.

4.2.2. Motivation and design of the experiment

The design of the experimental protocols was motivated by predictions of the sliding-

mode control theory and classical control theory. The experimental protocol was designed as to

give evidence for or against the proposed control model. The experimental results were to be
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compared with the predictions of the proposed control model and of those of a PID controller

suggested by other investigators (Darlot et al., 1996). Often, the main reason investigators are

eager to embrace PID control is the fact that it can explain experimental data from reaching tasks.

However, this is not surprising at all, since reaching movements are like step inputs to a type

zero plant (external forces) and a type one compensator (PID). A PID (and any other compen-

sator of type one) can take the steady-state error to a step input to zero. There is biological base

for the integrator structure of a PID controller since neural integrators have been found in several

instances in the brain (Arnold and Robinson, 1997; Chi-Sang Poon et al., 1999; Shen, 1989).

Finally, although a PID controller requires acceleration signals, which has not been verify

biologically (through proprioception), it has been theorized that such feedback might be available

through vision (Kawato et al., 1987).

A more challenging task would be to achieve good tracking-error performance in the

presence of a sinusoidal input. For sinusoidal inputs the steady-state error of a PID controller is

not zero, but rather it remains bounded. An important purpose of the experimental protocol is to

validate one of the two hypotheses. i. Human motor control of movement during continuous

trajectory tracking uses a control strategy similar to the proposed method, and ii. Human motor

control utilizes a control scheme similar to a PID controller (constant gain PID). Accordingly,

the following experimental protocols were used to test specific hypotheses concerning the

structure and function of the motor learning system.

Most physical tasks we encounter in everyday life involve moving of objects that are dy-

namically stable. Examples include human locomotion (moving our own body), pushing a

stroller, swinging a racquet, etc. Once set in motion, these objects will usually come to a stop

after a while if not further moved. We have been exposed to these kinds of stable objects most of

our lives and have learned how to handle them skillfully. Indeed, we ordinarily expect that all

physical objects are stable.

The stability margin of a dynamical system is measured by its time constant (or the larg-

est time constant if there are more than one). A system is highly stable if it has a small time

constant, and is less stable otherwise. One can readily learn to manipulate a highly stable object

easily, but it may take much longer to adapt to a novel, less stable object. For example, a naive

subject who has no problem walking around on solid ground may need some training in order to
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roller-skate. Quite possibly it would take even longer for him/her to learn how to ice-skate. In

each instance, the time constant of the moving object is increased with the reduction of friction to

movement (i.e. the time constant is proportional to the inertia-friction ratio). This observation

leads to the following hypothesis on motor learning: "The time needed to learn a novel motor

task is proportional to the intrinsic time constant of the task".

The observation above leads to an even more interesting question: "what would happen if

the task not only is less stable, but actually becomes unstable?" That is to say, that the time

constant is not only large, but also becomes negative. (Imagine what it is like when a skater

begins to skid on the rink and lose balance, not only is there absolutely no friction to stop the

skidding, but there is an active force to pull him/her down further).

However, the human brain seems to be able to do quite well even. For example, consider

the motor skill of balancing an inverted pendulum. The system is intrinsically unstable because

of unstable equilibrium, but a circus performer can still master the skill after some intense

practice. Therefore, our second hypothesis is: "It takes even longer to learn an unstable motor

task than a stable one, though it is still possible to train the system to the new dynamics".

Finally, although the hypotheses mentioned above are true for both control schemes (pro-

posed model and constant-gain PID), the detailed examination of the experimental data will

indicate which of the two control models more accurately describes the behavior of the human

CNS. The distinctions in performance between the two competitive control schemes are de-

scribed in more detailed in parallel with the protocol.

4.2.3. Experimental protocol

Subjects were asked to move the manipulandum on a horizontal x-y plane, as described in

section 4.2.1. For simplicity and without loss of generality, the force fields in the x and y direc-

tions are assumed to be decoupled and are given by:

fX = -aix - a2i

f, =-b 1y -b 2 .

In the equations above a, and b, are the translational coefficients and a2 and b2 are frictional

coefficients. Further, the assumption of decoupled dynamics is not a restriction because a mixed
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force field can always be decoupled by a suitable choice of coordinate systems.

The subjects had to track a known circular trajectory of radius R with a constant angular

velocity o. A disturbance force was imposed by the manipulandum during the tracking. The

disturbance had distinct characteristics in the x and y directions (see Table 4.1). Each session

had a distinct force field and it lasted 2.5 minutes (150 sec) for the stable force fields and 5

minutes (300 sec) for the unstable force fields. The lengths of the sessions were chosen to be

several times longer than the time constants of the slowest dynamics. This would allow the error

dynamics to reach an asymptotic behavior. The sampling speed was 10 Hz. which is much

higher than twice the maximum frequency that the humans can generate (0.3 Hz) (Hanneton et

al., 1997). Finally, the time constants and the gains of the disturbance dynamics were chosen

such that Fmx 30 N at all times. The 30N limit was imposed by the mechanical capabilities of

the motors of the manipulandum.

X = R cos(t) => V = -wR sin(ot => FD = a1 cos(ot - K sin(ot), where K = _ Then,
al

FD _ alR cos(pt + arctan(K)), and Fm, = aR
cos(arctan(K)) max2cos ctan('Ca2

ai

The higher the ratio a2 /al (time constant) and the higher the angular velocity o, the higher Fmax

will be.

When the external force of the manipulator act on the arm the arm dynamics become in-

significant. This is an accurate assumption since the end point of the manipulandum is moving at

a very small constant angular trajectory and its mass and inertia are also very small. Therefore,

the time constants of the external disturbances become the time constants of the system

(r, = a2/a, and r, = b2/b, ). The arm and disturbance block of Figure 4.5 can then be trans-

formed into the linear blocks of Figure 4.6. Notice that there is an inversion as well as a sign

change to the transfer function when replacing the arm disturbance combo with the linear block

of the disturbances. The inversion is due to the fact that, after the replacement of the dynamic

blocks, the new block has to reflect the transfer functions from F to x and y, which are the

inverses of the transfer functions from x and y to F . The sign change reflects Newton's 3 rd
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law, or in other words, the fact that we are trying to capture the effect of the forces of the arm on

the manipulandum, which are the exact opposite of the manipulandum forces on the arm.

Newton's law holds since, as mentioned earlier, the system has very small velocities, and even

smaller accelerations, and it is, therefore, for all practical purposes inertial.

Subjects performed visually guided tracking movements in nine experimental sessions

with varying time constants and gains as shown in Table 4.1. The tasks were performed in two

uninterrupted larger sessions of about 20 minutes each. Each larger session consisted of several

sessions that had distinct external force fields. The changes in the external dynamics were done

while tracking and without any interruption of the task. The time constants were altered by

changing the translational and/or frictional coefficients.

In each experimental session, the subjects were trained to adapt to the force field by con-

tinuously moving the manipulandum to track a rotating visual target projected on the computer

screen. The tracking error was continuously recorded and stored in the computer.
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Table 4.1 Characteristic time constants of the external force field induced by the manipu-
landum.

Force Field: Force Field:

Stable, +ve gain, Static Stable, +ve gain, Dynamic

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

f =1ON f,=ON f,=20N fX=-27i-81x fx=-54i-162x fx=-54i-162x

co = rad/s co = l rad/s w = l rad/s Ir =1/3 s 'r =1/3 s rX =1/3 s

co=lrad/s c=lrad/s co=0.7rad/s

f,=ON f,=1ON f,=ON f,=-1Oi-30x f,=-7.5i-7.5x f,=-7.5i-7.5x

c=lrad/s co=lrad/s w=lrad/s Ir, =1/3s TY=Is T,=Is

o = l rad/s o = l rad/s o = 0.7 rad/s

Force Field:
Force Field : Unstable, +ve gain, Stable, -ve gain,

Dynamic Dynamic

Session 7 Session 8 Session 9

=-27k +81x f =-54i+162x fx=27i+81x

TX = - 1/3 s Jr =-1/3s TX =1/3 s
o=lrad/s c=lrad/s co=lrad/s

f, = -10- + 30x f, = -7.5i+7.5x f, =10i + 30x

T,= -1/3 s T = -Is TY =1/3 s

co =l rad/s co= l rad/s co = l rad/s



112

4.2.4. Data Analysis

In each experimental session, the subjects were trained to adapt to the force field by con-

tinuously moving the manipulandum to track a rotating visual target projected on the computer

screen. The actual trajectory was continuously recorded and was stored on the computer. The

time needed by the subjects to learn to track the target to within a given tolerance level was noted

during a test run. The lengths of the rest of the experimental sessions were based on the results

of the test run.

The decoupling of the x and y force vectors makes it convenient to study the effects of

changing system time constants on learning speed. Let ex (t) and e, (t) be the tracking errors in

the x and y directions at any time t, and 1ex (t)I and ey (t) be the corresponding magnitudes

2ff rf zd 1 Y f2O.101.2'h
averaged over the n' revolution (where I1fD = , ffdt ~ O2 =fi2

is the mean of f 2 during the nth revolution of the circular movement). With 'r = r,, the sub-

jects should be able to track equally well in the x and y directions so that one would expect that

the statistics of ex(t) and e,(t) would be the same for all t. With -r # ,ry, there would be a

divergence in the learning speed in the x and y directions.

If I1ex (t)JI and ey (t)1 at steady state remain the same for dynamics with the same time

constants but different disturbance gains, it will indicate that the motor system uses an adaptive

mechanism much like the proposed method instead of a PID control scheme. To understand this,

consider that the desired trajectory in one of the directions (say x) is A sin(t). Then the output of

the PID controlled system that is tracking the trajectory very closely would be A sin(t + 1) for a

control gain K, . Let us also assume that the ratio of gains in the disturbance is a, /a 2 = 3

(picked from the experimental protocols).

PID controller + System: K (s + zI Xs + z 2 ) 1/a 2
s (s + a/a 2 )

Then,
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Closed loop transfer function: G,1 (s) =
(s + z,Xs + z2)

a 2

s(s + a,/a 2 )+ K (s + ziXs + z2 )
a 2

The magnitude of the closed loop transfer function at the tracking frequency of co = 1 rad/s is:

IIGc (s I= + K, + Z22
Ga2 K s ,|K 2

a 2  3+ (zi + z2)+K 2  K _
a 2  a 2  a 2

If the amplitude of the actual trajectory is the same as the desired (i.e. good tracking perform-

ance) then, HGc1 (s)I~ 1. Assuming a constant gain PID controller JGCl (s)j is a function of the

controller's zeros (z, and z2 ) and the gain . Figure 4.9 shows the dependence of JlGcjs)l
a2

with respect to the PID controller's open-loop zeros. The plot shows the dependence for three

distinct open-loop gains (1 ). It is true that every triplet (IIGO, z,, Z2 ) is one-to-one with a
a2

gain . However, for high gains, which are needed to bring |JGc1 (s)~ I, the surfaces of
a 2

Figure 4-9 come very close together even if the gains are increased by five times. This means

that trying to distinguish whether the motor controller is a constant-gain PID controller based on

the changes of the closed loop gain as a function of the changes to the open loop gain would be

very difficult especially if the data are noisy.

4.2.5. Results and Discussion

The presentation of the raw experimental data is given Figure 4.10. In this figure are

shown the plotted error data (mean squared errors per circular trajectory) for six subjects in all

nine protocols. Notice that the data are extremely noisy and they have quite large variances,

which makes impossible to locate these point on a figure like the one shown in Figure 4.9.

What follows is a pooling of the data from all subjects. Figure 4.11 shows the mean and

standard error lines for all x and y data shown in Figure 4.10. Notice that the pooled data from
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protocols one through eight behave in a similar manner. Therefore the data of Figure 4.11 were

further pooled to combine all eight protocols (separately for the x and y errors). The results are

shown in Figure 4.12 (mean and standard error lines). Finally, the data of Figure 4.12 were

pooled together and the result is shown in Figure 4.13 (mean and standard deviation lines).

To prove the hypothesis that the proposed control model gives a better description of the

motor control system than a PID controller would, it is enough to look at the data from protocol 9

(stable dynamics with a negative gain). As discussed earlier, no constant-gain PID controller that

is able to control the dynamics of protocols 1-8 (positive gain controller) would have been able to

stabilize negative gain dynamics. However, the data show clearly that subjects are able to

control the dynamics and keep the error to within a finite range (boundary layer). What is even

more convincing is the fact that one can see the effect of the adaptation in the gradual reduction

of the tracking error. Because the adaptation and feedback gains vary from subject to subject,

Figure 4.14 shows the size of the x-error separately for all subjects. A constant-gain PID could

not possibly explain the adaptive correction in the tracking error. The same figure also includes

1
estimates of the adaptation time constant, which are estimated to be - the time it takes to reach a

4

steady state tracking error performance.

Simulations of the behavior of the proposed model and the PID controller during a nega-

tive-gain disturbance are shown in Figures 4.15 and 4.16. Again we see that the proposed

controller achieves bounded asymptotic error while improving its performance over time (re-

ducing the error).

In general, protocols 1-8 were easier for the subjects. This was true especially for the

stable force fields (protocols 1-6). In those cases the subjects reached steady-state performance

levels almost immediately after the initiation of the force field. If there were any further adapta-

tion it was so small that was lost in the noise. The unstable dynamics (protocols 7 and 8) are

definitely controllable. They are also the only other set that a small adaptation can be seen, since

subjects need a little more time to learn the force field dynamics.

Closing, it is important to remember that the fact that the disturbances are linear makes it

easier to predict the behavior of this system under various control strategies. This is of particular

interest for comparing the proposed control method with a PID controller. This is especially true
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for the very last session in the protocol, which addresses the capability of the human CNS to

control (and learn) a stable, negative-gain force field, after it has successfully controlled stable

and unstable, positive-gain force fields. If the CNS is successful in this task, it rules out com-

pletely the constant-gain-PID hypothesis, since a PID controller could not have stabilized a

negative-gain system. Figure 4.7 shows the root locus of a generic unstable system controlled by

a PID controller indicating that PID controllers can stabilize unstable (positive-gain) systems.

However, in Figure 4.8 is shown that while positive-gain, stable systems are stable at any gain of

the PID controller, negative-gain, stable (and unstable) plants are impossible to stabilize at any

gain. It is true that a simple logical operator could have switched the sign of the gain of the PID

controller, however, such a change represents a form of adaptation that would involve recogniz-

ing the sign of the disturbance at each instance.

The experiments showed that it takes very short time to learn both stable and unstable

positive-gain motor tasks. The negative gain disturbances, though admittedly the most difficult

to control, are still controllable. What comes as the greatest surprise in this study of continuous

control of movement is that human subjects, astronauts and on the ground alike, adapt to the new

dynamics within a matter of minutes.

While adaptation to new external dynamics is fast, there also seems to be happening si-

multaneously with an "adaptation" to the execution of the motor task. The following chapter

will look into the effect of neuro-adaptive optimization during the throwing task. After seeing

the fast adaptation rates during trajectory tracking, it comes to no surprise anymore that the

results of the throwing task showed no detectable adaptation. Nevertheless, the next chapter

explores ways of how an optimization model can lead to an "adaptation". Not by changing gains

but rather by adopting a totally different throwing strategy.
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Figure 4.1 A graphical representation of the pointing task in the rotational room (Top
View). The desired trajectory is assumed to be a straight line, which is continuously
tracked. The dash-line representation of the arm corresponds to the starting position of the
subject's arm, while the continuous line describes the final state. The Coriolis forces are in
effect throughout the movement.
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Figure 4.2 Experimental data indicating the adaptation of subjects to Coriolis forces
(Adopted from Dizio and Lackner, 1995). Notice that when fully adapted all subjects move
on a straight line. This is an indication that their desired (maybe even optimal) trajectory
is a straight line trajectory. In addition, the important feature of the first reach during
rotation is the size of the curvature (i.e., deviation from the straight line path connecting
the initial and final points). This curvature slowly disappears as the subjects adapt to the
Coriolis environment.
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Figure 4.3 Plot of the results of the simulations of a two-link armature moving in the
horizontal plane, while the environment is rotating (i.e., Coriolis forces are present). The
proposed model shows adaptation and improvement in the performance over time. Notice
the reduction in the curvature of the actual path between the initial and the final trials.
Frame B shows the proposed controller performing when the desired trajectory opposes the
Coriolis forces. The performance of the P1D controller for the same desired trajectory as in
frame B is shown in frame C.
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Figure 4.4 A graphical representation of the continuous trajectory tracking experiment
using the robotic manipulandum. The subject is sitting in front of a computer monitor
holding the manipulandum. The desired trajectory appears as a moving cursor on the
monitor. The cursor that indicates the desired trajectory is tracing a circle of constant
radius and is moving at a constant angular velocity. The location of the manipulandum
also appears on the monitor as a cursor of different color.
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consists of two parts: the proportional feedback part and the adaptive part (as described in
Chapter 3).
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Figure 4.6 Two equivalent block representations. Under the influence of a strong external
force field the combined dynamics of the arm and the disturbance can be solely described
by the dynamics of the disturbance.
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Figure 4.9 Plot demonstrating the dependence of the closed-loop gain of the motor system
as a function of the PID controller's open-loop zeros. The surfaces correspond to distinct
open-loop gains.
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Figure 4.10 The plots include the integrated values of X and Y tracking error per cycle of
the desired trajectory versus time. The data is from 6 subjects. Protocols 1 through 3 are
shown here. The rest of the data is shown in Appendix D.
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Figure 4.12 The plots include the integrated values of X and Y tracking error per cycle of
the desired trajectory versus time (mean ± S.E.). The data is from 6 subjects and protocols
1-8.
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protocols 1-8.
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Figure 4.15 The two-link arm model performance is shown here. The desired trajectory,
the actual trajectory, the square of the error, and the mean square of the error (per cycle)
are plotted versus time. The two plots represent the two joint angles (shoulder-i and
elbow-2). The proposed control method was used to control the negative gain dynamics
(similar to protocol 9). Clearly the system is stable. The asymptotic error reaches a non-
zero steady-state level.
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Figure 4.16 The two-link arm model performance is shown here. The desired trajectory,
the actual trajectory are plotted versus time. A PID controller was used to control the
negative gain dynamics (similar to protocol 9). Clearly the system is unstable.
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5. An adaptation study on the

performance of subjects
during throwing

In this chapter I will describe the throwing experiment study, which was performed on-

board the space station Mir. Although this study came before the continuous tracking experi-

ment, its results can be understood better when looked after the results of Chapter 4. There is no

direct tie of this study with the proposed control model. In fact, as we will see in the first part of

the chapter there seems to be hardly any connection with adaptation altogether. However, its

results suggest a different kind of adaptation. Not so much in the performance level, but rather in

the throwing "strategy" that subjects employ when exposed to different gravity conditions. The

details of this study are presented in the second part of this chapter.

5.1. Throwing Task Experiment in microgravity and 1G

Several cosmonauts and astronauts have participated in a dart throwing task onboard the

Russian space station Mir. The astronauts had been exposed to the microgravity environment for
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at least two weeks before they performed the prescribed throwing task. The goal of this experi-

ment was to determine whether after some exposure to microgravity the astronauts have adapted

their throwing strategy to the new gravitational dynamics, even though they have not explicitly

performed the prescribed throwing task.

5.1.1. Experimental setup

The throwing task took place in two separate locations. Ground throwing sets were per-

formed in the Man Vehicle Laboratory at MIT for the purpose of setting a comparison level of

performance. In addition, cosmonauts and astronauts onboard the space station Mir, performed a

series of similar throwing tasks to study the human adaptation in microgravity.

Seven astronauts and cosmonauts took part in this experiment. The subjects threw a ball

(approximately 2.5 cm in diameter) to a target at approximately 1.5m away. Accuracy in both

the x and the y directions was equally important. First, the subjects closed their eyes, and they

kept them closed. Then, using the right arm, they threw the ball towards the target. They

opened their eyes to see how they performed. Another member of the crew recorded the x- and

y- errors. Each subject repeated the throw 5 times using his/her right arm and with eyes closed,

and 5 more times using his/her left arm but now with eyes open. Each subject repeated the

process using his/her left arm. The left-arm throws were performed immediately after the right-

arm throws had been completed.

In addition to the seven astronauts, eight subjects performed a similar protocol on the

ground for comparison purposes. The ground subjects' performance was measured to establish a

baseline indicating full adaptation to system dynamics. This baseline was meant to be compared

to the performance of the Mir crew. The ground protocol was slightly different. The number of

throws was the same as well as the number arm/eye combinations. However, due to time con-

straints onboard the Mir station, the order of execution of the throwing sets was modified from

that which was used on the ground. In space, the subjects were limited in the location in which

they could have the camera for video-recording the task. Therefore, for the sake of saving time,

they chose to finish all the throws with the right arm before they turn 1800 to repeat the throws
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using their left arms. In addition, on the ground the distance from the foot of the subject to the

target was exactly 2m, while it was slightly less on the station because of space limitations.

Consider using 'R' and 'L' for right- and left-arm throws correspondingly, and 'C' and

'0' for denoting the eyes-closed and eyes-open conditions. The ground tests were run in the

following order: R/C, L/C, R/O, L/O.

5.1.2. Data Error Analysis

The x- and y- error data were analyzed thoroughly in an attempt to find any trends that

would indicate degradation of the targeting ability of the Mir crew during their first sets of

throws as compared to the ground subjects. Assuming that both groups of subjects had the same

level of targeting ability, one might expect that the subjects exposed to the new dynamics of

zero-gravity would perform significantly worse than the ground subjects, especially in the

absence of any visual feedback (Watt et al., 1985; Watt et al., 1986). However, the Mir crew had

been onboard the space station for a minimum of two weeks before they performed the throwing

task. In fact, some cosmonauts had been onboard for over three months prior to completing the

task. Figures 4.4 and 4.5 show the x- and y- error data from several throwing sessions. Notice

that the size of the errors does not always decrease as the trial number increases. In fact, when

comparing sessions from different days, the performance does not improve by any detectable

amount at later days either. Further comparison with the performance of the fully adapted

ground subjects indicates that the performance of the space subjects is not in any way worse than

the ground subject, indicating further that the adaptation to microgravity was complete by the

time the experiment took place.

Looking at isolated sessions in Figure 5.2 it might be tempting to say that some adapta-

tion occurs in the space data. However, such trends are not consistent across all arm/eye condi-

tions. Besides, similar trends appear in the ground data for completely different arm/eye condi-

tions. Further, it is clear that any apparent change in the mean value of the error across eye/hand

conditions is very small when compared to the variance of the error during the same throws.

To assure that no evidence of adaptation was missed data was pooled together across

subjects. Figures 5.3 and 5.4 have the data from all subjects pooled together (mean ± standard



137

error (SE)) for various eye/arm conditions. Notice that although the mean values seem to indi-

cate an improvement in the performance as the trial number increases, the variances are large

enough to make any such trend to be statistically insignificant. The same was true when the data

from all subjects and all eye/arm conditions were pooled together (Figure 5.5). The data from

several sessions was pooled together and the error of the k+1 throw was plotted versus the error

of the k throw. This plot is shown in Figure 5.6. In the event that there was a proportional

improvement in the error, the data would have been arranged in form that looks like an ellipse

whose major axis has negative slope greater than -1. Instead, the data is arranged in a circular

pattern indicating no adaptation (geometric reduction).

Summarizing the data analysis of the throwing task, it is quite clear that the subjects were

already adapted to the new gravitational conditions by the time the experiment took place. No

further adaptation was detected on either the short (5 trials) or the long (several days apart) time

scales. These results are in agreement with the results in the continuous tracking experiment that

indicated that subjects adapt to the new system dynamics shortly after they are exposed to it (less

than 5 minutes).

5.2. Neuro-adaptive Optimization of Visuomotor Performance

It is well-known that humans are capable of adapting their visuomotor behavior to distor-

tions in the visual field (Dizio and Lackner, 1995; Martin et al., 1996; Thach et al., 1992) as well

as in the force field (Dizio and Lackner, 1995; Shadmehr and Mussa-Ivaldi, 1994). Similarly,

subjects learn to adjust the production of vowel sounds to compensate for feedback alterations in

the auditory sensory signal (Houde and Jordan, 1998). The induction of certain 'internal models'

by sensory feedbacks in the brain appears to play a central role in such motor adaptations to

changes in the environment (Ito, 1984; Jordan et al., 1994; Kawato et al., 1988; Miall and

Wolpert, 1996; Wolpert et al., 1995). However, learning an internal model alone does not

guarantee optimal motor performance because there are infinite degrees of freedom for the

execution of any motor task (Bizzi et al., 1991). In the classic dart-throwing experiment (Thach

et al., 1992), for instance, it is likely that subjects learn a throwing strategy that minimizes not
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only the mean targeting error, but also the variability of the error under the influence of gravity.

To test this hypothesis, we repeated the experiment onboard the Russian space station Mir. It

was found that exposing the subjects to microgravity triggered sensorimotor adaptations that not

only compensated for the loss of gravitation, but also tended to minimize the variability of the

targeting error in the weightless environment. These findings provide strong evidence of an

optimization strategy in visuomotor adaptation that conforms to Bayesian probabilistic decision.

5.2.1. Optimization model development and comparison with experimental Data

In a dart-throwing experiment, subjects learn (by trial and error) to compensate for visual

distortions introduced by the use of prism glasses (Martin et al., 1996, Thach et al., 1992). The

learning is thought to reflect the adaptations of some deterministic internal model of the visuo-

motor environment, and is assumed to be complete when the magnitude of the targeting error is

reduced to within a small range around zero.

However, throwing is a random process governed by multiple degrees of freedom with

infinite possibilities of execution. Figure 5.10A illustrates the infinite possible combinations of

release velocities and angles to hit a target in the presence of gravity. In fact, Figure 5.1OA

shows only half of such combinations. Other release combinations are possible if the angle of

release is increased from the critical angle (corresponding to a throw at minimum velocity) to a

near vertical direction (at infinite release velocity). However, these steeper projectiles are

seldom employed by human subjects-perhaps because it is more difficult to aim and hit the

target with a high precision this way. From this observation, it may be surmised that a throwing

strategy is probably chosen by the brain (through an internal model) not only to hit the target (an

ill-posed problem by itself), but also to do so with a high degree of certainty in the face of

random variability in the execution of a throw.

In microgravity, the throwing task is more straightforward since the only trajectory that

allows for a hit is a straight line (Figure 5.10B). Despite this, the problem is still ill-posed since

the release velocity required for a hit is not unique. In this circumstance, subjects might choose

to throw slowly (and hence, more steadily) if they wish to hit the target with a high precision.

The predicted differences in throwing strategy with and without the influence of gravity (at 1 G
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and pG, respectively) provide a means of testing the hypothesis that the internal model adapta-

tion acts to minimize the Bayesian mean-square error (i.e., sum of squares of the mean and

standard deviation of the targeting error (Rentschler et al., 1994) instead of the mean error alone.

Eight ground subjects took part in this experiment. The subjects threw a small ball

(weighing -20 grams and measuring -3.75 cm in diameter) to a target at waist level -1.5 m

away. The throws were recorded by a camera positioned perpendicular to the plane of the throw.

For purpose of comparison, seven astronauts and cosmonauts performed a similar protocol

onboard the Russian space station Mir under weightless conditions. During the experiment the

space subjects were anchored by a foot restraint. Errors in the vertical and horizontal directions

(relative to the subject) in five consecutive trials were analyzed thoroughly in an attempt to find

any trends that would indicate degradation and/or adaptation of the targeting ability of the Mir

crew as compared to the ground subjects.

Because the Mir crew had been onboard the space station for several (2-12) weeks prior

to the experiment, some motor adaptation to the microgravity environment might be expected in

the baseline. Indeed, the mean errors committed by the space subjects were relatively small and

not significantly different from those of the ground subjects both in the y-direction (Figure

5.1 IA) and x-direction (Figure 5.1 IB), suggesting that gravity had little influence on their

targeting ability. Furthermore, the high accuracy attained throughout all experimental trials

(Figures 5.2A and 5.2B) indicates that the space subjects were already fully adapted to the

microgravity environment by the time the experiment took place. However, the video data in

Figure 5.11 C show that in order to achieve the high targeting accuracy the subjects in space

threw the ball significantly more slowly than the ground subjects did. Thus, precision targeting

performance was maintained by the subjects in microgravity by suitable adjustments in release

angle as well as release velocity.

We propose a mathematical model (see METHODS) to describe the sensorimotor adap-

tations underlying the changes in release velocity and release angle that allow for high targeting

accuracy in 1 G and microgravity. Our hypothesis is that subjects try to optimize their throwing

performance on ground and in space by minimizing the corresponding Bayesian mean-square

targeting error (Rentschler et al., 1994).

There are two sources of error that could affect targeting accuracy on ground. First,
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gravity imposes a constant bias in the throw. Second, random errors in the aiming and execution

of a throw may cause random variability in the resultant projectile. To correct for gravitational

bias subjects must learn an internal model of the gravito-geometric constraint on the projectile

(Eq. 5.1). However, the solution of such a deterministic internal model is non-unique (Figure

5.1OA). We postulate that subjects may apply this freedom of the internal model to minimize the

random variability of the projectile (Eq. 5.3). Indeed, the projectile is least susceptible to aiming

and execution errors if subjects throw directly at the target pointblank. However, such a straight-

line projectile can be achieved on ground only with a very high (near infinite) release velocity

(Figure 5.1OA). Throwing at a high speed may incur large variability in the release angle (aim-

ing error) and release velocity (execution error) due to the physical limitations of the visuomotor

system (Eq. 5.4). Thus, a high-speed throw increases the aiming and execution errors but

decreases the susceptibility of the projectile to these errors, and vice versa. An optimal throw is

one that minimizes the variance of the targeting error 2 (1y,) resulting from these two factors

(Eqs. 5.5, 5.6).

In particular, analysis of the error sensitivities (Fig. 5.3) shows that 0.2 (Sy,) is always

lower in the region 9 < 0,i than in 9> 0,i, (see METHODS). This explains why subjects

seldom choose to throw at an angle greater than 0,,,,. Moreover, in the lower projectile region an

optimal release velocity always exists that minimizes a. (5y,) (Eqs. 5.7, 5.8). Fig. 5.4A shows

the model fit to the targeting error data in the ground subjects. For a range of feasible values for

the exponent p an optimal release velocity and error variance can be found that are compatible

with the experimental data (see METHODS)., Interestingly, the predicted value of the exponent

a changes only slightly (from 0.97 to 0.36) as fl varies from 1 to 5 (Figure 5.13A). Thus, a

reasonable estimate for a is in the range (0.3, 1). Furthermore, the same set of parameter values

yielded comparable model fits to the space data (Figure 5.13B), with similar predicted decreases

in release velocity and target-error variability. Thus, although the model parameters are not

uniquely identifiable from the experimental data, the model predictions of an optimal release

velocity and target-error variability in 1G and OG are quite robust and are consistent with the

experimental data.

Since the sensitivity of muscle receptors remains unchanged in microgravity (Roll et al.,
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1993), the decreased throwing velocity in the space subjects is likely a result of central rather

than peripheral adaptation. However, naive subjects may experience increased postural instabil-

ity in microgravity although postural adaptation in spaceflight is quite rapid (Collins et al., 1995;

Grigorova and Kornilova, 1996; Lackner and DiZio, 1996; Paloski, 1998; Reschke et al., 1984).

Previous postural control studies in microgravity have demonstrated slower arm movements

when astronauts are in orbit (Berger et al., 1997; Clement et al., 1985; Collins et al., 1995).

Accordingly, the reduced release velocity in the space subjects (Fig. 5.2C) could represent a

neural strategy not only to reduce aiming inaccuracy but also postural instability-both of which

increase with V. However, in the present study the space subjects were stabilized by foot re-

straints. The video data revealed that only a minority (- 30%) of the space subjects used their

arm to stabilize their posture during the throw. Even so, their performance was not appreciably

different than other subjects, with no statistically significant differences (p > 0.1, Student's t test)

in release velocity (0.68±0.21 vs. 0.61±0.12 m/s) as well as targeting error (0.93±4.83 vs.

1.26±6.1 cm). Thus, postural factors probably played a relatively minor role in the visuomotor

adaptation in the space subjects.

Previous research on motor adaptation in space has been limited mostly to experiments

involving either target pointing or simple trajectory tracking by the hand (Berger et al., 1997;

Watt, 1997; Watt et al., 1986; Young et al., 1986). However, because arm weight represents

only a partial determinant of arm movement (Bock et al., 1992; Ross et al., 1984), the influence

that weightlessness exerts on this type of visuomotor adaptation is relatively small (Bock et al.,

1992) compared to those resulting from strong mechanical perturbations of the arm force field

(Shadmehr and Mussa-Ivaldi, 1994). In contrast, the present targeting experiment provoked

profound visuomotor adaptations in the space subjects by virtue of the projectile dynamics-

which is strongly influenced by the presence or absence of gravity (Eqs. 5.1, 5.2).

In conclusion, the present experimental and modeling results demonstrated that visuo-

motor learning is important not only for error correction through internal model adaptation on

ground or in microgravity, but also for the minimization of the total mean-square error in the

presence of random variability. Thus human intelligent decision, as with visual perception (Knili

and Richards, 1996,Porrill et al., 1999), displays certain attributes that seem to conform with Bayesian

statistical games.
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5.2.2. Methods for model development

5.2.2.1. Projectile Dynamics

From Fig. 5.1A , the projectile equation in IG is

Yt = -- + 1 L tan(9) eq. 5.1
V2sin(20)

where G is the acceleration due to gravity (9.8 lm/s 2) and other terms are defined in Fig. 5.1. Eq.

5.1 represents the gravito-geometric constraint on the environment and, correspondingly, the

internal model that must be learned by the visuomotor system in order to correct for the gravita-

tional bias in 1 G.

In microgravity, G = 0 and the new internal model to be learnt is (Fig. 5.1B):

y, = L tan(9) eq. 5.2

5.2.2.2. Bayesian Error Analysis in 1 G

Assuming that the internal model of Eq. 1 is eventually learnt exactly by the subjects in

1G, the bias due to gravitational pull is nullified and the only error remaining is that due to

random variations in the aiming and execution of the throw. Thus, the targeting error ( Sy, ) may

be modeled as a zero-mean random variable and can be expressed as:

sy, - s9(V)+ 03' SV(V) eq. 5.3

Eq. 3 indicates that there are two determinants for y,. First, imperfections in the aiming and

execution of a throw result in random variations in the release angle and release velocity. These

aiming and execution errors (denotedSO and NV, respectively) are assumed to be zero-mean

random variables and are independent of the projectile. Second, the random errors in the throw

are amplified during the projectile as a result of the gravito-geometric constraint. These projec-

tile amplification factors are given by the terms , which are the error sensitivities with
r 0 o aV

respective to 60 and c5V, respectively.
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Generally, aiming and execution of a throw become more variable as the speed of throw

increases. As a first approximation, we assume that the aiming and execution errors are both

given by a power-law relationship as follows:

oT2(V)= P 2 /a and C2(V)= N 2V,8 eq. 5.4

In Eq. 4, ov(.), o-0(.) denote the variance of the error in V and 9, respectively; P , N, a and

/6 are positive scalar factors that depend on the physiological parameters of individual subjects.

During the throw, subjects try to be as consistently accurate as possible. That is, besides

minimizing the mean of the targeting error (which is achieved by learning an internal model, Eq.

1) they also try to minimize its variance 02 (by,) - or, equivalently, a total risk in the form of

the Bayesian mean-square error. Assuming 5V and 80 are statistically independent of each

other, the optimal release velocity is given by:

g d [( , 2 a(6,1)2fild (c _,d=-[ 'qV" +a'V = 0 eq. 5.5
dV dV 90 ) sV)

and

d_ 2
d a 2 (y, ) > 0 eq. 5.6

dV2

E[.] denotes the statistical expectation fimction, q =(P/N)2 , and the variables 9 and V are

related by Eq. 5.1 such that the mean targeting error is zero.

From Figure 5.12, it can be seen that the error sensitivities are monotonically increasing

with 0 in the region 0 > 0,,,, . In this projectile region, an increasing 0 calls for an increasing

release velocity to hit the target by virtue of the gravito-geometric constraint (Eq. 1 and Figure

1 A). Therefore, a2 (y,) is monotonically increasing with increasing V in the region 0 > 0,,,, and

the minimum is at the boundary 0 = 0,, adjoining the lower projectile region. It follows that the

error variance is always lower in the region 0 <0,,,, than in the upper region.

We now show that an optimal release velocity satisfying Eq. 5.5 always exists in the re-

gion 0 < 0,,,, . Firstly, from the geometry of the projectile (Fig. IA) the targeting error resulting

from an execution error (SV) is always finite if 0 < cr, Consequently, the term
aV
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remains finite as V -+oo . From Eq. 5.1,

feasible provided 0 /? 6.

Also, from Figure 5.12A

Indeed, for

_ is always
89)

- ~ V~6 and thus the variance model

, <6 the term 2 _, V -+0-
dV V) j

(Eq. 5.4) is

as V -+oo.

positive and monotonically decreasing with respect

to 9 (and hence, monotonically increasing with V since 9 and V are inversely related in the

region 0 <0,,,, ). It follows that

Vf8 e (0,6),

Likewise, from Fig.

lim-,{O i ddV 0

0

r;Va + V > 0

5.3B --- +0 as V approaches its minimum
do

target (or equivalent, as 9 -+ 0,,,,). Moreover, for 8 <6 the term

region 9 < 9c,,, . Hence,

eq. 5.7

value (Vmin) for hitting the

d 0 in the
dV v 

0

lim [ y 7Va +0

In a similar fashion, it can be shown that the conditio

8lE (0, 6) when d '2gy =.
dV

vj<0 eq. 5.8

td 2
n d 2 a.2(6y,) > 0 always holds for

Consequently, Eqs. 5.7 and 5.8 imply that for a power law

with feasible values offl e (0, 6), the variance of the targeting error always has a minimum at

some values of V . In fact, this condition holds even when the power law includes multiple

terms, i.e. o(sv)=PV" +P,_,V z +--+ P and -(90)= NV'' + N_, V'02 +-.-+No, where

n and k are positive integers and /, e (0, 6), i = 1,2,...,k . This model prediction is verified by

numerical simulation of the model (Figure 5.13A) which shows that for the range of parameter

Vp E (0, 6),
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values E (0, 6) a unique minimum exists for o-(y, ) at some optimal release velocity.

5.2.2.3. Bayesian Error Analysis in 0 G

In microgravity the error analysis is greatly simplified as the projectile equation (Eq. 5.2) is

dependent on 0 only. Hence, following a similar approach as in the above it can be shown

readily that .2 (y) tends to zero (minimum) as V -+ 0. (In practice, o.2(y,) may not attain

the absolute minimum because other limiting factors may set in as V -+ 0). This model predic-

tion is demonstrated in the computer simulation shown in Figure 5.13B.
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4

Figure 5.7 Four consecutive frames of the digitized video footage for a throw from the
ground set. Sets of frames like this one were used to estimate the velocities and angles of
release of the projectile.
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Figure 5.8 Three consecutive frames of the digitized video footage for a throw from the
space set.
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Figure 5.9 The initial and final digitized frames during a ground throw (before the projec-
tile release).
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Figure 5.10 Animated illustrations of the throws. A) On ground. B) In microgravity.
The figure is showing initial and final body positions, geometry of the projectiles and
possible ball trajectories that hit the target at a distance L away and height y, below the
point of ball release. A) On ground, trajectories depend on both release angle (6) and
release velocity (V). Shaded area shows the range of possible optimal trajectories from a
minimum (Vn.) to infinite release velocity (V.) that result in a minimum Bayesian risk in
terms of the mean-square targeting error. The critical release angle (6,,,,) is defined as that
corresponding to Vn.. Above 6M,, the risk is increasingly higher than in the optimal range.
B) In microgravity only a straight-line trajectory at a specific angle will hit the target
irrespective of V. Bayesian risk is smallest as V tends to zero.
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movement direction and velocity data at point of ball release. Release velocity (C) is
markedly decreased in space subjects compared with ground subjects.
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Figure 5.12 Effects of projectile dynamics on targeting performance under the influence of
gravity. Plotted are the squared sensitivities of targeting error to imprecisions in aiming
(A) and execution of a throw (B) as a function of release angle. Vertical dotted lines indi-
cate the critical angle (6cri,) corresponding to the minimum release velocity required for

hitting the target. The target-error sensitivity to aiming inaccuracy is minimum (zero) at
6crit Above 6,, both error sensitivities are higher and the steeper is the throw. For

optimal targeting performance, the release angle should be below 6crit.
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APPENDIX A
Muscles are major part of the musculoskeletal structure of the human arm. Successful

controlling of the arm movements by the CNS requires an accurate representation of the muscles.

The muscle model shown is Figure 1 was developed on SIMULINK (Mathworks, Natick, MA)

based on a muscle model description used by Hapee (1992). The muscle model of Figure 1 is a

third order, nonlinear, lumped parameter model. The CNS sends neural input (u) to the agonist-

antagonist muscle pair. The neural excitation (E) is the output of the neural input through a first

order system with time constant (T.). The active state (A) is the output of the neural excitation

through another first-order system with time constant (T). The active state rescaled is:

Ar = Amin +(0- Ain)A

The minimum non-zero value of A is denoted by Amin. The active force relative to the isometric

force that would result from the current active state is:

F
F =Ar

mraxr

F is the active muscle force, and FmX is the maximum isometric force. The force-velocity

relationship of the contractile element is:

it = MV tan 1.38 tan 1 -1.38cetan 1 .38J+tan(1.38) -54 .54
0.54

MVm is the maximum shortening velocity.

For the series elastic element:

F l.SEA
F= Fa e SE.

e SEA

SE, is the series elastic shape parameter, SE. is the series elastic stretch with maximal isometric

force, lm is the total muscle length and ls is the length of the series elastic element.
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Figure A.1 A simulation block representing a muscle model. This model was built using the
description by Gerdes and Hapee. The inputs are EMG patterns at the agonist and antago-
nist muscles and the output is the rotational displacement of the joint.
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APPENDIX B
> with(linalg):

> alphaO:=0:

> aO:=0:

> dO:=0:

> alphal:=Pi/2:

> al:=L1:
> dl:=0:

> alpha2:=Pi/2:

> a2:=0:
> d2:=0:

> alpha3:=-Pi/2:

> a3:=0:
> d3:=0:

> alpha4:=Pi/2:

> a4:=0:

> d4:=L4:

> alpha5:=-Pi/2:

> a5:=0:

> d5:=0:

> alpha6:=Pi/2:

> a6:=0:

> d6:=L6:

> alpha7:=Pi/2:

> a7:=0:

> d7:=0:

> alpha8:=0:
> a8:=L8:
> d8:=0:

> AQO:=matrix([[cos(0) ,-sin(0)*cos(alphao), sin(o)*sin(alphaO),
aO*cos(o)J, [sin(0), cos(0)*cos(alphao), -cos(0)*sin(alphao), aO*sin(0)], [0,

sin(alpha0), cos(alphao), dO],[0, 0, 0, 1]]):

> A01:=matrix( [[cos(thetal), -sin(thetal)*cos(alphal),
sin (thetal) *sin(alphal), al*cos (thetal) ], [sin (thetal),
cos(thetal)*cos(alphal), -cos(thetal)*sin(alphal), ai*sin(thetal)), [0,
sin(alphal), cos(alphal), dl],[0, 0, 0, 1))):

> A12:=matrix( [[cos(theta2), -sin(theta2) *cos(alpha2),
sin (theta2) *sin (alpha2),
cos(thetal)*cos(alpha2),
sin(alpha2)

> A23:=matrix

sin(theta3)

cos(theta3)

sin(alpha3)

> A34:=matrix

sin(theta4)

cos(theta4)

sin(alpha4)

cos(alpha2),

([[cos (theta3)
*sin(alpha3),
*cos (alpha3),

, cos(alpha3),
([[cos(theta4)

*sin(alpha4),

*cos (alpha4),

, cos(alpha4),

a2*cos(theta2)], [sin(theta2),
-cos(theta2)*sin(alpha2), a2*sin(theta2)], [0,
d2 , [0, 0, 0, 1]]):
-sin(theta3)*cos(alpha3),

a3*cos(theta3)J, [sin(theta3),

-cos(theta3)*sin(alpha3), a3*sin(theta3)], [0,
d1l, [0, 0, 0, 1]]):
-sin(theta4)*cos(alpha4),

a4*cos(theta4)], [sin(theta4),
-cos(theta4)*sin(alpha4), a4*sin(theta4)], [0,
d4],[0, 0, 0, 1]]):

> A45:=matrix( [[cos (theta5), -sin(theta5)*cos(alpha5), sin(theta5)*sin(alpha5),
a5*cos(theta5)], [sin(theta5), cos(theta5)*cos(alpha5), -
cos (theta5) *sin(alphaS), a5*sin(theta5)],[0, sin(alpha5), cos(alphaS),
d5],[0, 0, 0, 1))):
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> A56:=matrix( [[cos(theta6), -sin(theta6)*cos(alpha6), sin(theta6)*sin(alpha6),
a6*cos(theta6)1, [sin(theta5),

cos(theta6)*cos(alpha6), -cos(theta6)*sin(alpha6), a6*sin(theta6)], [0,

sin(alpha6), cos(alpha6), d6],[0, 0, 0, 11):

> A67:=matrix( [[cos(theta7), -sin(theta7)*cos(alpha7), sin(theta7)*sin(alpha7),
a7*cos(theta7)], [sin(theta7), cos(theta7)*cos(alpha7), -
cos(theta7)*sin(alpha7), a7*sin(theta7)1, [0, sin(alpha7), cos(alpha7),
d7],[O, 0, 0, 1]]):

> A78:=matrix([ [cos (thetaB), -sin(theta8) *cos (alpha8), sin(theta8) *sin(alpha8),
a8*cos(theta8)], [sin(theta8), cos(theta8)*cos(alpha8), -
cos(theta8)*sin(alpha8), a8*sin(theta8)], [0, sin(alpha8), cos(alpha8),
d8],[O, 0, 0, 1]]):

> A02:=multiply(AOl,Al2):

> A03:=multiply(multiply(A01,A12) ,A23):
> A04:=multiply(multiply(multiply(A1,A12) ,A23) ,A34):
> A05:=multiply(multiply(multiply(multiply(A1,A12) ,A23), A34),A45):
> A06: =multiply (multiply (multiply (multiply (multiply (Ao1,
A12),A23),A34),A45),A56):

> A07: =multiply (multiply (multiply (multiply (multiply (multiply
(AO1,A12) ,A23) ,A34) ,A45) ,A56) ,A67):

> A08: =multiply(multiply(multiply(multiply(multiply(multiply (multi-
ply (AO1,A12) ,A23) ,A34) ,A45) ,A56) ,A67) ,A78):
rcl:=multiply(Ao1,matrix(

rc2:=multiply(A02,matrix(
rc3:=multiply(A03,matrix(

rc4:=multiply(A04,matrix(

rc5:=multiply(A05,matrix(

rc6:=multiply(A06,matrix(
rc7:=multiply(A07,matrix(

rc8:=multiply(A08,matrix(

rcl:=convert(rcl,vector):

rc2:=convert(rc2,vector):

rc3:=convert(rc3,vector):
rc4:=convert(rc4,vector):
rc5:=convert(rc5,vector):
rc6:=convert(rc6,vector):

rc7:=convert(rc7,vector):

rc8:=convert(rc8,vector):

[[-LclJ , [01 , [01, [1]

1[0] , [0] , [Lc3J , [i)]

[[0] , [-Lc4], [0] , El)
[[0] , [0] , [Lc5] , [1]]
[[0] , [-Lc6], [0], [l)
[[-Lc7] , (0], [0], [1]
I[-Lc8], [0], [0], [1]

Ji:=jacobian(rc 1,
J2:=jacobian(rc2,

J3:=jacobian(rc3,

J4:=jacobian (rc4,
JS:=jacobian(rc5,

J6:=jacobian (rc6,
J7:=jacobian(rc7,

J8: =jacobian (rc8,

[thetal,
[thetal,
[thetal,
[thetal,
[thetal,
[thetal,

theta2,theta3,theta4,theta5,

theta2,theta3,theta4,theta5,

theta2,theta3,theta4,thetas,

theta2,theta3,theta4,theta5,

theta2,theta3,theta4,theta5,

theta2,theta3,theta4,theta5,

[thetal,theta2,theta3,theta4,theta5,

[thetal,theta2,theta3,theta4,theta5,
> Jao:=matrix([[0,0,0,0,0,0,0,01,[0,0,0,0,0,0,0,0],[0,0,
> Jal:=add(multiply(multiply(matrix([[1,0,0,0], [0,1,0,0]

theta6,theta7,theta8])

theta6,theta7,theta8])

theta6,theta7,theta8])

theta6,theta7,theta8])

theta6,theta7,theta8])

theta6,theta7,theta8j)

theta6,theta7,theta8])

theta6,theta7,theta8])

0,0, 0,0,0,011):
, [0,

0,1,0]]) ,multiply(AOO,matrix([[] , [0] , 1] , [0]]))) ,matrix([[1,0,0,0,0,0,o,]])
),Jao):

> Ja2:=add(multiply(multiply(matrix([[1,0,0,0], [0,1,0,o], [o,
0,1,0]) ,multiply(AO1,matrix([[0), [0] , [1], [0]))) ,matrix([[0,1,0,0,0,0,o,0]])
),Jal):
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> Ja3:=add(multiply(multiply(matrix([[1,0,0,0),
0,1,0]]),multiply(A02,matrix([[0], [0) [1], [0]
),Ja2):

> Ja4:=add(multiply(multiply(matrix([[1,0,0,0],

0,1,0]]),multiply(A03,matrix([[0], [0) , [1], [0]
),Ja3):

> Ja5:=add(multiply(multiply(matrix([[1,0,0,0],

0,1,0]]),multiply(A04,matrix([[0], [0], [1], [0]

),Ja4):

> Ja6:=add(multiply(multiply(matrix([[1,0,0,0],

0,1,0]) ,multiply(A05,matrix([[0], [0] , [1], [0]
),Ja5):

> Ja7:=add(multiply(multiply(matrix([[1,0,0,0],

0,1,0]]),multiply(A06,matrix([[0], [0], [1], [0]
),Ja6):

> Ja8:=add(multiply(multiply(matrix([[1,0,0,0],

[0,1,0,0], [0,
]))),matrix([[0,

[0,1,0,0], [0,
]))),matrix([[0,

[0,1,0,0], [0,
])),matrix([[0,

[0,1,0,0], [0,
]))) ,matrix( [[0,

[0,1,0,0], [0,
]))) ,matrix( [[0,

0,1,0,0,0,0,0]])

0,0,1,0,0,0,0]])

0,0,0,1,0,0,0]])

0,0,0,0,1,0,0]])

0,0,0,0,0,1,0]])

[0,1,0,0], [0,
0,1,0]]) ,multiply(A07,matrix([[0], [0] , [1], [0]]))),matrix([[0,0,
),Ja7)

> I1:=matrix([[Ilx,0,0],[0,Ily,0],[0,0,Ilz]]):
> Hi: =add(ml*multiply(transpose (Ji), Ji) ,multiply (multiply( trans-

pose(Jal),I1),Jal)):

> 12:=matrix([[12x,0,0] , [0,12y,0] , [0,0,12z]])

> H2:=add(m2*multiply(transpose(J2),J2)

pose(Ja2) ,12) ,Ja2)):
> 13:=matrix([[13x,0,0], [0,13y,0], [0,0,
> H3:=add(m3*multiply(transpose(J3), J3)

pose (Ja3),13) ,Ja3)):
> 14:=matrix([[I4x,0,0],[0,I4y,0],[0,0,
> H4:=add(m4*multiply(transpose(J4),J4)

pose (Ja4) ,14) ,Ja4)):
> I5:=matrix([[I5x,0,0], [O,I5y,0], [0,0,
> H5:=add(m5*multiply(transpose(J5), J5)

pose(Ja5),I5),Ja5)):

> 16:=matrix([[16x,0,0], [0,I6y,0] ,[0,0,
> H6:=add(m6*multiply(transpose(J6), J6)

pose (Ja6) ,I6) ,Ja6)):
> 17:=matrix([[I7x,0,0],[0,I7y,0],[0,0,
> H7:=add(m7*multiply(transpose(J7),J7)

pose (Ja7) ,17) ,Ja7)):
> 18:=matrix([[I8x,0,0],[0,I8y,0],[0,0,
> H8:=add(m8*multiply(transpose(J8) ,J8)

pose (Ja8) ,I8) ,Ja8)):
> H:=add(add(add(add(add(add(add(H1,H2)

0,0,0,0,0,1]])

,multiply(multiply( trans-

13z]]):
,multiply(multiply(

14z]]):

,multiply(multiply(

I5z]]):

,multiply(multiply(

I6z]]):
,multiply (multiply(

17z]]):

,multiply (multiply(

18z]]):
,multiply(multiply(

trans-

trans-

trans-

trans-

trans-

trans-

,H3),H4),H5),H6),H7), H8):
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APPENDIX C
This appendix gives the Maple scripts for the derivation of equations and plots related to:

i. Figure 3.5

Sliding Mode Simulation for thesis.m

clear
global GAMMA LAMBDA etal eta2 Kd
ml=1;
11=1;
me=2;
de=pi/6;
I1=0.12;
11=0.5;
Ie=0.25;
lce=0.6;
al=Il+ml*lcl^2+Ie+me*lce^2+me*11^2;
a2=Ie+me*lce^2;
a3=me*ll*lce;
a5=lcl*ml*9.81;
a6=ll*me*9.81;
a7=lce*me*9.81;
a=[al a2 a3 a5 a6 a7];
G=1;
GAMMA=G*diag([0.6 0.04 0.03 300 40 225]);
LAMBDA=20*eye(2);
etal=0.1;
eta2=0.1;
Kd=70*eye (2);
t0=0;
tf=30;
ahatinit=[0 0 0 0 0 0]';
qO=[0 0 0 0 ahatinit']';
tic
[t,q]=ode23('phd2_sys',tO, tf, qO);
toc
q_d=[(1-cos(2*pi*t)) (2*(1-cos(2*pi*t)))]';
qtilde=[q(:,1) q(:,3)]'-qd;
atilde=q(:,5:10)-ones(length(t),6)*diag(a');
junk=['Gamma=' num2str(G)];
figure(1)
subplot(221)
plot(t,qtilde(1,:)*180/pi,'-')
ylabel('Position Error anglel (deg.)')
xlabel('Time (s)')
title(junk)
subplot(222)

plot(t,qtilde(2,:)*180/pi,'-')
ylabel('Position Error angle2 (deg.)')
xlabel('Time (s)')
title(junk)
subplot(223)
plot (t, atilde(:1) ,')
ylabel('Parameter Error al')
xlabel('Time (s)')
subplot(224)
plot(t,atilde(:,2),'-')
ylabel('Parameter Error a2')
xlabel('Time (s)')
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figure (2)
subplot(221)
plot (t,atilde(:,3),'-')
ylabel('Parameter Error
xlabel('Time (s)')
title(junk)
subplot(222)
plot(t,atilde(:,4),'-')
ylabel('Parameter Error
xlabel('Time (s)')
title(junk)
subplot(223)
plot(t,atilde(:,5),'-')
ylabel('Parameter Error
xlabel('Time (s)')
subplot(224)
plot (t, atilde :,6),'-')
ylabel('Parameter Error
xlabel('Time (s)')

a3')

a4'

a4'

a4')

phd2 sys.m
function qdot=f(t,q)
global GAMMA LAMBDA etal eta2 Kd
q-d=[(1-cos(2*pi*t)) (2*(1-cos(2*pi*t)))]';
qd d=[2*pi*sin(2*pi*t) 4*pi*sin(2*pi*t)]';
qddd=[4*pi*pi*cos(2*pi*t) 8*pi*pi*cos(2*pi*t)]';
qtilde=[(q(1)-q_d(l)) (q(3)-q_d(2))]';
qtildedot=[(q(2)-qd_d(1)) (q(4)-qdd(2))]';
qd_r=qd_d-LAMBDA*qtilde;
qdd_r=qdd d-LAMBDA*qtildedot;
s=qtildedot+LAMBDA*qtilde;
Y1l=qddr(1);
Y12=qddr(2);
Y13=cos(q(3))*(2*qdd_r(l)+qddr(2))-
sin(q(3) )*(q(4)*qd_r(1)+q(2)*qd_r(2)+q(4)*qd r(2));
Y15=cos (q(1));
Y16=cos (q(1));
Y17=cos (q(1)+q(3));
Y21=0;
Y22=qddr(1)+qddr(2);
Y23=cos(q(3))*qddr(1)+sin(q(3))*q(2)*qd_r(1);
Y25=0;
Y26=cos (q(1));
Y27=cos(q(1)+q(3));
Y=[Yl1 Y12 Y13 Y15 Y16 Y17;Y21 Y22 Y23 Y25 Y26 Y27];
ahat=q(5:10);
tau=Y*ahat-Kd*qtildedot;
m1=1;
11=1;
me=2;
de=pi/6;
Il=0.12;
lcl=0.5;
Ie=0.25;
lce=0.6;
al=Il+ml*lcl^2+Ie+me*lceA2+me*11A2;
a2=Ie+me*lceA2;
a3=me*ll*lce;
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a4=0;
a5=lcl*ml*9.81;
a6=11*me*9.81;
a7=lce*me*9.81;
H11=a1+2*a3*cos (q(3) )+2*a4*sin(q(3));
H12=a2+a3*cos(q(3))+a4*sin(q(3));
H21=H12;
H22=a2;
h=a3*sin(q(3))-a4*cos(q(3));
H=[H11 H12;H21 H22];
C=[-h*q(4) -h*(q(2)+q(4));h*q(2) 01;
gravity= [-9.-8*lc*cos(q())*ml-9.8*-(*cos(q(l))+lce*cos(q(1)+q(3)))*me
9.8* (11*cos (q (1) ) +lce*cos (q (1) +q (3)) )*me]'
qdot (1)=q(2);
qdot(3)=q(4);
dynamics=[0 0]';
dynamics=inv(H)*(tau-C*[q(2) q(4)]' + gravity);
qdot(2)=dynamics(1);
qdot (4)=dynamics (2);
qdot(5:10)=-GAMMA*Y'*s;
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APPENDIX D
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These Maple scripts for the derivation of equations and plots related to:

i. Figure 4.2 (The Matlab0 simulation script that compares with the experimental data of the

reaching experiment in the rotating room)

dizio matlab simulation.m

clear

global GAMMA Kd
G=2;
GAMMA=G*diag([0.03 0.05 0.1 0.3 0.1]);
Kd=60*[1 0;0 1];
tO=0;
tf=300;
ahatinit=[0 0 0 0 0]';
qO=[0.2527 0 2.6362 0 ahatinit']';
tic

[t,q]=ode23('dizio matlab simulation sys' ,to,tf,qO);
toc

time=t;

L=length(time);

vy=5*sin(time);

ay=5*cos(time);

y=10-5*cos(time);

q_d(:,2)=acos (y.^2/(2 *10^ 2)-1);
qd _d (:, 2) =-y. *vy./(10^2*sin (q_d(:, 2)));
qdd_d(:,2)=-(10A2*(vy.^2+ay.*y).*sin(q_d(:,2))-

y.*vy.*cos(q-d(:,2)).*qdd(:,2))./ ...
(10^4*sin(q-d(:,2)) .2);

q-d(:,1)=atan((l+cos (q_d(:,2))) ./sin(q_d(:,2)));
qd_d 21)=qd_d:2).cos(q_d(2))2./sin(q_d:2))2;
qdd-d(:,1)=-(qdd -d(:,2) .*cos(q[_d(:,1)) .^2. *sin (q_d(:2)).2 ...

-qd-d(:2) .*qd _d(:1) .*sin (2 *qd _d(:1)).*sin (q_d(:2)).2 ...

qd__d(:2).*qd -d(:,1) .*sin(2*qd,_d(:,2)) .*cos(q_d(:,2)).^ 2) ./sin(q_d(:,2)) .^*4
qtilde=[q(:,1) q(:,3)]-qd;
figure(1)
clf
subplot(211)
plot(time,q(:,1)*180/pi,'y', time, q_d(:,1)*180/pi,'ro')
ylabel('Position Angle 1')
xlabel('Time (s)')
hold on

subplot(212)

plot (time, q(:, 3) *180/pi,'ly', time, q_d(:,2)*180/pi,'ro')
ylabel('Position Angle 2')
xlabel('Time (s)')
hold on

figure(2)

clf
plot (10*cos(q(:,1))+10*cos (q(:,1) +q(:,3)),10*sin(q(:,1)) +...
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1O*sin(q(:,1)+q(:,3)),'y')
axis([-8 8 0 16])
grid

hold on
plot (1o*cos (qd(:,l)) +10*cos (q_d(:

dl*sin(qd(:,)+q d(:,2))

dizio matlab simulation sys.m

,1)+q_d(:,2)),10*sin(q d(:,1))+...

,f'ro')

function qdot=f (t,q)
global GAMMA Kd
LAMBDA=20*eye(2);
etal=0.1;
eta2=0.1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
time=t;
L=length(time);
vy=5*sin (time) ;
ay=5*cos (time) ;
y=10-5*cos(time);

q_d(:, 2)=acos (y.^2/ (2*10^2) -1);
qd d(:,2)=-y.*vy./(10^2*sin(q_d(:,2) ));
qdd d (:, 2)=- (10^2* (vy.^2+ay. *y) . *sin (q_d (:,2) )-
y.*vy.*cos(q-d(:,2)) .*qd d(:,2)) . ..

(10^4*sin(q_d(:,2)).^2);
qc_d(:,1)=atan((1+cos(qd(:,2)))./sin(qd(:,2)));
qdd(:,1)=-qd_d(:,2) .*cos(q_d(:,2)) .^2./sin(q_d(:,2)) .^2;

qdd-d (:, 1)=- (qdd-d (:, 2) .*cos (q_d (:, 1) ) .^2. *sin (q_d (:, 2) ) .^2 ...
-qd_d(:,2).*qd-d(:,1).*sin(2*qd_d(:,1)).*sin(q_d(:,2)).^2 ..
-q_d(: ,2) . *qd_d (:, 1) . *sin (2*qd_d (:, 2) ) .*.
cos (q d (:, 2) ).^2) ./sin (q-d (:, 2) ) .4;

q_d=q_d';
qdd=qd_d';
qdd d=qdd d';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
qtilde=[(q(l)-q_d(l)) (q(3)-q_d(2))]';
qtildedot= [ (q (2) -qd _d (1) )(q (4 ) -qd-d (2))]';
qdr=qdd- LAMBDA*qtilde;
qddr=qdd-d-LAMBDA*qtildedot;
s=qtildedot+LAMBDA*qtilde;
Y1l=qddr(l);
Y12=qdd_r(2);
Y21=qdd_r(2);
Y22=qddr (1);
Y13=qd_r(1);
Y14=qd_r(2);
Y23=qd_r(2);
Y24=qd_r(l);
Y15=2.5;
Y25=0.15;
Y=[Y1I Y12 Y13 Y14 Y15;Y21 Y22 Y23 Y24 Y251;
ahat=q(5:9);
tau=Y*ahat-Kd*s+vy*2*pi*5; %% Coriolis
me=1;
11=1;
me=2;
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de=pi/6;
I1=0.12;
lcl=0. 5;
Ie=0.25;
lce=0.6;
al=Il+ml*lcl^2+Ie+me*lce^2+me*11^2;
a2=Ie+me*lce^2;
a3=me*ll*lce*cos(de);
a4=me*11*lce*sin(de);
H11=al+2*a3*cos(q(2))+2*a4*sin(q(2));
H12=a2+a3*cos(q(2))+a4*sin(q(2));
H21=H12;
H22=a2;
h=a3*sin(q(2))-a4*cos(q(2));
H=[H11 H12;H21 H22];
C=[-h*q(4) -h*(q(2)+q(4));h*q(2) 0];
gravity=[-9.8* (2.5*cos(q(1))+0.15*cos(q(1)+q(2))) -
9.8*0.15*cos(q(1)+q(2))]';
qdot(1)=q(2);
qdot (3)=q(4);
dynamics=[0 0]';
dynamics=inv(H)*(tau-C*[q(2) q(4)]' - gravity);
qdot(2)=dynamics(1);
qdot (4)=dynamics (2);
qdot(5:9)=-GAMMA*Y'*s;
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ii. This is the Matlab script used to analyze the digitized video footage from the throwing

experiments. The velocities and angles of release were recorded.

Vidanal.m

clc
clf
clear
clear functions
%xpixpercm=6.4; (This was used for space subjects. It was calculated)
%ypixpercm=6.4; (using length comparison from the Mir footage)
directory='This Directory Does NOT exist';
while exist(directory)-=7

directory=input('Enter the working directory: ','s');
clC

end
eval(['cd ''' directory '''']);
clC
current file='This File Does NOT exist';
while exist(current file)-=2

eval(['dir ''' directory '''');
current_file=input('Now, enter the first file to analyze: ','s');
if length(current file)==0

current file='This File Does NOT exist';
end
clC

end
current file=[current-file blanks (80-length(currentfile))];
lcf=80;
for counter=80:-1:1

junk=blanks(80-counter+1);
if currentfile(counter:80)==junk

lcf=counter-1;
end

end
dx=[];
dy=[];
FILES=[blanks(80)];
while eval(['exist(''' currentfile(l:lcf) ''')'])==2 1 current file-=['0'
blanks(79)]

clC
clf
eval(['[PIC,MAP]=imread(''' current file(l:lcf) ''');']);
image(PIC)
colormap(MAP)
if exist('xpixpercm')==0

disp('Now Pick The Origin of the Calibration Figure')
title('CALIBRATION - PICK THE ORIGIN')
[xc0,yc0]=ginput(1);
xcl=xc0;
ycl=yc0;
while xcl<=xc0

disp('Now Pick The X=+11 inches point of the Calibration Figure')
title('CALIBRATION - X=+11')
[xcl,yc1]=ginput(1);

end
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xc2=xc0;
yc2=yc0;
while yc2>=yc0

disp('Now Pick The Y=+8.5 inches point
title('CALIBRATION - Y=+8.5')
[xc2,yc2]=ginput(1);

end
xpixpercm=(xcl-xcO)/(11*2.54*39/110)
ypixpercm=- (yc2-ycO) / (8.5*2.54*39/110)

end
title(currentfile(1:lcf))
clear XS YS
disp('Using the mouse chose the point on the
[XS(:,1),YS(:,1)]=ginput(1);
dx=[dx;XS/xpixpercm];
dy=[dy;YS/ypixpercm];
clC
dir
tempfile=input('Now, enter the NEXT file to
if exist(tempfile)==2

current file=[temp file blanks(80-lcf)];
else

of the Calibration Figure')

subject to record!')

analyze: ','s');

disp( ['V='
num2str(mean(sqrt((diff(dx)*27/100).^2+(diff(dy)*27/100).^2)))])

disp(['q='
num2str(mean(atan((diff(dy)*27/100)./(diff(dx)*27/100)))*180/pi)])

break
end

end
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iii. This is the C++ code that I wrote to control the manipuladum during the continuous trajec-

tory tracking experiment. This only includes the code that I edited (rewrote). More code is

necessary to compile this piece, but since those scripts where written by other authors, they

are not included here.

//miketl0.cpp

#include <conio.h>
#include <time.h>
#include <stdio.h>
#include "apoint.h"
#include "textdisp.h"
#include "manip.h"
#include "dataman4.h"
#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <bios.h>
#include <math.h>
#include <dos.h>
#include <graphics.h>
#include <stdlib.h>
#ifndef FALSE

#define FALSE 0
#define TRUE 1

#endif /* FALSE */
int readtargets(int targetx[], int targety[], int viax], int viay[],

int targetrec[], int targetvfb[], int ffield[], int gain[],
float reachtime[], float waittime[], char colortarg[], int);

REAL t1=0.0, t2=0.0;
int read matrix(float* matrix);
#define SAMP_FREQ 100 /* Hz */
#define INT( X ) int( floor( X + 0.5
#define scalex( 0 ) INT(-(0)/0.7+maxx/2.0)
#define scaley( 0 ) INT((0-450.0)/0.7+maxy/2.0)
#define scaledx( 0 ) INT(0/0.7)
#define max(x,y) ((x)>(y)?(x): (y))
#define mat size 120
//size of input matrix x size
#define xinput_size 15
#define mmpergrain 20
// origin of the field(absolute distance from center)
#define xmin from center 160
#define xmax-from-center 120
// opposite corner of the field
#define ymin_fromcenter 160
#define ymax_fromcenter 60

//#define sqr_size 1
extern Manipulandum manip;
extern TextDisplay tDisp;

//polhemus x y z data <polhemus.c>
extern double polx(void);
extern double poly(void);
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extern double pol_z(void);
extern void initrs232( void );
extern void input(void);
int maxx, maxy;

void drawtarget(REAL xpos, REAL ypos) // in robot coordinates

{
int i, size = 4; /* mm
moveto(scalex(xpos+size/2),scaley(ypos-size/2));
linerel(scaledx(size),0);
linerel(0,scaledx(size));
linerel(-1*scaledx(size),0);
linerel(0,-1*scaledx(size));

}

void env(REAL xx, REAL xy, REAL yx, REAL yy)
{

// input variables should be in N/m/sec, N/m, or Newtons
// for cartesian viscosity, stiffness, and parallel field,
// N.m/rad/sec, N.m/rad, or N.m for joint based items

#define tottargets 1 //max targets (we set this for purpose of bounds on
vectors)

#define Pi 3.141592654
#define ERRMARGIN -20 //how close the cursor must be to the target to

count as close enough (used to be 10)
#define bias_tl 0.0
#define biast2 0.0

ManagedData4 theData; //4 column data array
REAL sh_angvbias, el_angvbias; //velocity biases from tachometer
REAL xv, yv, fx, fy, fdir, staystillperiod,

xpos, ypos, shy, elv, oldfx, oldfy, axx[903],
ayy[903], ci, si,
tottime, delaytime, MVMTTIME /* in sec */;
//extracted tl and t2;

float reachtime[tottargets], waittime[tottargets];
REAL movestarttime, moveendtime, summovetime, timeattarget, oldxp,

oldyp, omega;
int targetindex = -1, testindex = 0, testfileindex = 1; /* first file

number*/
int targetx[tottargets+1], targety[tottargets+1], viax[tottargets],

viay[tottargets], gain[tottargets], //general targets
targetrec[tottargets], targetvfb[tottargets], ffield[tottargets];

int lasttarindex, odddetector, index, axy[903], ayx[903];
float matrix[mat size];
char file info[20], colortarg[tottargets];

int numtargetsexploded = 0;
int done = FALSE, trace = FALSE, applyb = FALSE,

eraseobject = FALSE, timetodrawobj = FALSE, objonscreen = FALSE,
movedyet = FALSE, soundcount = 0, drawobjdelaycounter = 11, wait-

counter = 1000,
numof moves = 0, movepfileopen = FALSE, cursorON = FALSE;

int keepcount, key, i, j, k, waitedbeepcount;
char string[39],fname[20],subjid[5];
int gdriver = DETECT, gmode;

ostream *pOuts; /* Temporary local output stream */
ostream *pOuts2;
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int polhemus=0; //toggle var for polhemus input

//initialize polhemus serial port
initrs232();

// Initialize the data buffer, 40 sec max
theData.init(300);

cout << "Enter one-character subject identifier: ";
cin >> subjid;
subjid[l] = '\0'; // end of string

if(!readtargets(targetx, targety, viax, viay, targetrec,
targetvfb, ffield, gain, reachtime, waittime, color-

targ,
tottargets))

cout << "Error in reading targets from file. \n";
return;

I
targetx[2] = targetx[1];
targety[21 = targety[l];

if(!read matrix(matrix)) {
cout << "Error in reading field information from file. \n";
return;

}

// initialize graphics
initgraph(&gdriver, &gmode, "");
setfillstyle( SOLIDFILL, RED );
maxx = getmaxx() + 1;
maxy = getmaxyo) + 1;
cleardevice (;
settextjustify(LEFT TEXT, BOTTOMTEXT);
settextstyle(DEFAULT FONT, HORIZDIR, 3);
setwritemode(XORPUT);

//Clear the text screen's upper section
for(i=0; i<10; i++)

tDisp .put(i,0,
") ;

// describe the available commands
tDisp.put(0,0," b: x-viscous N/m/s

x-force N");
tDisp.put(2,0," r: release fields
tDisp.put(3,0," t:-start targets");
tDisp.put(4,0," c: end targets");
tDisp .put(5,0," q: QUIT

tDisp.put(8,0,"Test Target Num. : 0
Current Field: NONE");

tDisp.put(9,0, "Test Files Stored: 0");
tDisp.put(10,0, "Movement time: ");
theData.activate();
theData.init(); /* Initialize
manip.torque(0.0, 0.0);
manip.update(; /* Update
fx=0;
fy=0;

w: j-viscous Nms/rad

x: subject's kinematics");

Max. Force recorded at Lord:

the data */

state */
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xpos = manip.x(;
ypos = manip.y(;

// initialize counts
keepcount = 8; // will keep every tenth point
index = 0; // will keep every tenth point
tottime = 0.0;
timeattarget = 0.0;
staystillperiod = 0.0;
movestart time = 900.0; // some non-zero start time
summove time = 0.0;
delaytime = 0.0;
omega = 1.0;

manip.clock.set(ONEms*(1000/SAMPFREQ));
manip.clock.go();

// get shoulder and elbow tachometer
shangvbias = elangvbias = 0.0;
i = 0;
while(manip.clock.wait() && (i<101))

manip.update();
sh angvbias += manip.tjl();
elangvbias += manip.tj2();
i += 1;

shangvbias = sh angvbias/100.0;
elangvbias = elangvbias/100.0;

oldxp= xpos;
oldyp= ypos;
xpos = manip.xo;
ypos = manip.yo;

/* sampling period */

biases

{

// The Main Loop
while(manip.clock.wait() && !done) {

manip.update(; /* Update state */
oldfx=fx;
oldfy=fy;
oldxp=xpos;
oldyp=ypos;
xpos = manip.x(); // mm
ypos = manip.y(;
shy = manip.tjl()-shangvbias; // rad per sec
elv = manip.tj2()-elangvbias;
xv = (shv*manip.jac[d][0] + elv*manip.jac[0][ 1)*0.001;
yv = (shv*manip.jac[1] [0) + elv*manip.jac[1][11 )*0.001;
if(polhemus){

input();
xpos=pol_x();
ypos=pol_y();
xv=pol_z();

tottime += 0.01; // update total time (in seconds);
keepcount++;
if(keepcount == 9){

axx[index] = xpos; //x-position in mm
ayy[index] = ypos; //y-position in mm
axy[index] = xv*1000; //x-velocity in mm/s

// m/sec
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ayx[index] = yv; //y-velocity in mm/s
keepcount = -1;
index++;

}

// erase the cursor
if(cursorON) {

setcolor(RED);
rectangle(scalex(oldxp)-scaledx(2) , scaley(oldyp) -scaledx(2),
scalex(oldxp)+scaledx(2) ,scaley(oldyp)+scaledx(2));
cursorON = FALSE;

}

// draw the target
setcolor(WHITE);
targetindex = 1;
drawtarget(targetx[2],targety[2]);
setcolor(WHITE);
targetx[1] = -80*cos(omega*tottime);
targety[1] = 440-80*sin(omega*tottime);
drawtarget (targetx[targetindex] , targety[targetindex];
targetx[2] = targetx[1];
targety[2] = targety[1];
// draw the cursor
if((!trace && !cursorON) II

(trace && !cursorON && targetvfb[testindex])) {
setcolor(RED);
rectangle(scalex(xpos)-scaledx(2) , scaley(ypos) -scaledx(2),
scalex(xpos)+scaledx(2) ,scaley(ypos)+scaledx(2));
cursorON = TRUE;

}
// save data if needed
if(index==300)

strcpy(fname, "setl"); /* Copy file prefix */
strncat(fname, subjid, 79); /* Append subject ID */
itoa(testfileindex, string,10);
strncat(fname, string, 79);
strncat(fname, ".dat", 79); /* Append file suffix */
pOuts = new ofstream(fname);
while (index>-1){

theData.addRec(axx[index], ayy[index], testfilein-
dex, axy[index]);
// theData.addRec(axx[index], ayy[index], axy[index],
ayx[index]);

index--;
}
*pOuts << theData; // write the data to file
delete pOuts; // close the data file
sprintf(string, "%d", testfileindex);
tDisp.put(9,19," ");
tDisp.put(9,19, string);
theData.init();
index=0;
testfileindex += 1;

}

if (tottime<150) {
fx = 0; //Newtons
fy = 0;

}



186

if (tottime>=150 && tottime<300) {
fx = 10; //Newtons
fy = 0;

I
if (tottime>=300 && tottime<450) {

fx = 0; //Newtons
fy = 10;

I
if (tottime>=450 && tottime<600) {

fx = 20; //Newtons
fy = 0;

}
if (tottime>=600 && tottime<750) {

fx = -27*xv - 81*xpos/1000.0 ; //Newtons

fy = -10*yv - 30*(ypos-440)/1000.0
I
if (tottime>=750 && tottime<900) {

fx = -54*xv - 162 *xpos/10 0 0 .0 ; //Newtons

fy = -7.5*yv - 7.5*(ypos-440)/1000.0 ;
}
if (tottime>=900 && tottime<1050) {

omega = 0.7;
fx = -54*xv - 162*xpos/1000.0 ; //Newtons
fy = -7.5*yv -

7 .5*(ypos-4 4 0)/1000.0 ;
}
if (tottime>=1050) {

done = TRUE;
}

t2 = (manip.jac[0][0] * fx + manip.jac[l][03 * fy)*0.001+bias t2;
t2 = (manip.jac[0] [1] * fx + manip.jac[l] [1] * fy)*0.001+bias_t2;

// safety region: will not produce torques outside this win-
dow

if(xpos>3001 xpos<-3001 ypos>6501Iypos<250){
t1=t2=0.0;
tDisp.put(8,73,"None");
applyb = FALSE;

}
manip.torque(tl, t2); //give the computed torques

if((keepcount == 3) && bioskey(1)) { // check every 50 msec
key = bioskey(0)&Oxff; // take the key
switch(key) {

case 'b':
tDisp.put(8,76,"
tDisp.put (8, 76, "B");
applyb = TRUE;

break;
case 'c':
break;
case 'p': //polhemus input on

polhemus=(polhemus==1)?0:1;
if(polhemus) tDisp.put(7,66,"Pol on");
else tDisp.put(7,66,"Pol off");

break;
case 'q':

done = TRUE;
break;
case 'r':

tDisp.put (8, 76, "None");
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applyb = FALSE;
break;
case 't':

if(trace) break;
if(cursorON) { // turn off cursor

setcolor (RED);
rectangle(scalex(xpos)-scaledx(2),

scaley(ypos)-
scaledx(2),scalex(xpos)+scaledx(2),

scaley(ypos)+scaledx(2));
cursorON = FALSE;

break;
}

} end of if
} / end of while

manip.torque(0.0,0.0);
if(movepfileopen) delete pOuts2; // close the file
theData.deactivate(; /* Turn storage off everytime*/
nosound();
return;
}

The bold letters in the code above indicate the instructions for the protocols. The ones shown

here are for protocols one through six (i.e., session 1). For session 2 instructions simply replace

that part of the code by the following piece.

if (tottime<150) {
fx = 0; //Newtons
fy = 0;

}
if (tottime>=150 && tottime<450) {

fx = -27*xv + 81*xpos/1000.0 ; //Newtons
fy = -10*yv + 30*(ypos-440)/1000.0

}
if (tottime>=450 && tottime<750) {

fx = -54*xv + 162*xpos/1000.0 ; //Newtons
fy = -7.5*yv + 7.5*(ypos-440)/1000.0

}
if (tottime>=750 && tottime<1050) {

fx = 27*xv - 81*xpos/1000.0 ; //Newtons
fy = 10*yv - 30*(ypos-440)/1000.0

}
if (tottime>=1050) {

done = TRUE;
}
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These are the Maple scripts for the derivation of equations and plots related to:

i. Figure 5.12

>y_g:=(-9.81*1.5^2/V_g^2+1.5*sin(2*q g))/(1+cos(2*qg)):#(Projectile equa-

tion for the ground)

>y-s:=(1.5*sin(2*q s)/(l+cos(2*q_s))):#(Projectile equation for the space)

>s_q_g:=simplify(diff(yg,q_g)^2):#(sensitivity of the throwing error with

respect to the angle of release on the ground)

>s_q_s:=simplify(diff(ys,q_s)^2):#(sensitivity of the throwing error with

respect to the angle of release in space)

>s-v-g:=simplify(diff(y_g,V-g)^2):#(sensitivity of the throwing error with

respect to the velocity of release on the ground)

>s_v s:=simplify(diff(y_s,Vs)^2):#(sensitivity of the throwing error with

respect to the velocity of release in space)

>q:=solve({y_g=-l},V_g):#(Calculate the angle of release on the ground nec-

essary for to hit the target at a given velocity of release)

>Vg:=90/(2600*sin(2*q_g)^2+2400*sin(2*q_g))*(-

218*sin(2*qg)*(13*sin(2*qg)+12)*(-3*sin(2*qg)-2+2*cos(2*q_g)))^(1/2):

>q_s:=-17*Pi/180:#(For the space angle of release we used the measured an-

gle of release)

>plot({s_v_g,s_q_g},qg=-arctan(1/1.5)..7*Pi/16,0..10):
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ii. Figure 5.13

>y_g:=(-22.0725/V g^2+1.5*sin(2*qg))/(1+cos(2*qg)

for the ground)

>ys:=(1.5*sin(2*q-s)/(1+cos(2*q-s))):#(Projectile

>s qg:=simplify(diff(yg,q g)^2):#(sensitivity of

respect to the angle of release on the ground)

>sq_s:=simplify(diff(y_s,q_s)A2):#(sensitivity of

respect to the angle of release in space)

>sv_g:=simplify(diff(y_g,V g)A2):#(sensitivity of

respect to the velocity of release on the ground)

>s v_s:=simplify(diff(y_s,V_s)^2):#(sensitivity of

respect to the velocity of release in space)

):#(Projectile equation

equation for the space)

the throwing error with

the throwing error with

the throwing error with

the throwing error with

>q:=solve(yg=-1,q_g):q_g:=q[1):#(Calculate the angle of release on the

ground necessary for to hit the target at a given velocity of release)

>q s:=-17*Pi/180:#(For the space angle of release we used the measured an-

gle of release)

>c g_1:=evalf(diff((etal*V g"ql*sqg+s_v_ g*(V gAq2)),Vg)):#(Constraint 1

for ground throws - The derivative of the cost becomes 0 at the obseved

conditions)

>c_g_2:=evalf(sqrt(etal*V_g^ql*s_q_g+s_vg*(V_g^q2))):#(Constraint 2 for

ground throws - The cost equals the observed values at the obseved release

conditions)

>c s_1:=evalf(sqrt(etal*V_s^ql*s_q_s+s_v_s*(V_sAq2))):#(Constraint 1 for

space throws - The cost equals the observed values at the obseved release

conditions)

>Z:=11:Vg:=3.4:V s:=0.66:sols:=solve({c_g_1=0,c_g_2=17/Z,c_s_1=6/Z},{ql,q2

,etal}):alpha:=subs(sols,ql):beta:=subs(sols,q2):eta:=subs(sols,etal):

>YG:=(-9.81*1.5^2/V_G^2+1.5*sin(2*QG))/(1+cos(2*QG)):S_Q_G:= sim-

plify(diff(YG,QG)^2):SVG:=simplify(diff(YG,VG)A2):Q:=solve(Y_G=-

1,Q_G):Q_G:=Q[1]:C_G_2:=Z*sqrt(eta2*V_GAalpha*S_Q_G+S_V_G*

V_GAbeta):Y_S:=(1.5*sin(2*QS))/(1+cos(2*QS)):S_Q_S:=simplify(diff(YS,Q_S

)^2):SVS:=simplify(diff(Y_S,VS)A2):QS:=17*Pi/180:CS_1:=Z*sqrt(S_QS*et

a2*V_SAalpha):

>eta2:=eta*1:C1l:=C_G_2:C21:=C_S_l:eta2:=eta:C12:=CG_2:C22:=C_S_1:eta2:=et

a/l:C13:=C G 2:C23:=CS_1:plot({(C11,C12,C13)},VG=0..8,0..30):plot({(C21,C

22,C23)},VS=0..8,0..30):


