82 research outputs found

    Complexity classification of two-qubit commuting hamiltonians

    Get PDF
    We classify two-qubit commuting Hamiltonians in terms of their computational complexity. Suppose one has a two-qubit commuting Hamiltonian H which one can apply to any pair of qubits, starting in a computational basis state. We prove a dichotomy theorem: either this model is efficiently classically simulable or it allows one to sample from probability distributions which cannot be sampled from classically unless the polynomial hierarchy collapses. Furthermore, the only simulable Hamiltonians are those which fail to generate entanglement. This shows that generic two-qubit commuting Hamiltonians can be used to perform computational tasks which are intractable for classical computers under plausible assumptions. Our proof makes use of new postselection gadgets and Lie theory.Comment: 34 page

    Efficient approximate unitary t-designs from partially invertible universal sets and their application to quantum speedup

    Full text link
    At its core a tt-design is a method for sampling from a set of unitaries in a way which mimics sampling randomly from the Haar measure on the unitary group, with applications across quantum information processing and physics. We construct new families of quantum circuits on nn-qubits giving rise to ε\varepsilon-approximate unitary tt-designs efficiently in O(n3t12)O(n^3t^{12}) depth. These quantum circuits are based on a relaxation of technical requirements in previous constructions. In particular, the construction of circuits which give efficient approximate tt-designs by Brandao, Harrow, and Horodecki (F.G.S.L Brandao, A.W Harrow, and M. Horodecki, Commun. Math. Phys. (2016).) required choosing gates from ensembles which contained inverses for all elements, and that the entries of the unitaries are algebraic. We reduce these requirements, to sets that contain elements without inverses in the set, and non-algebraic entries, which we dub partially invertible universal sets. We then adapt this circuit construction to the framework of measurement based quantum computation(MBQC) and give new explicit examples of nn-qubit graph states with fixed assignments of measurements (graph gadgets) giving rise to unitary tt-designs based on partially invertible universal sets, in a natural way. We further show that these graph gadgets demonstrate a quantum speedup, up to standard complexity theoretic conjectures. We provide numerical and analytical evidence that almost any assignment of fixed measurement angles on an nn-qubit cluster state give efficient tt-designs and demonstrate a quantum speedup.Comment: 25 pages,7 figures. Comments are welcome. Some typos corrected in newest version. new References added.Proofs unchanged. Results unchange

    Topological Quantum Compiling

    Get PDF
    A method for compiling quantum algorithms into specific braiding patterns for non-Abelian quasiparticles described by the so-called Fibonacci anyon model is developed. The method is based on the observation that a universal set of quantum gates acting on qubits encoded using triplets of these quasiparticles can be built entirely out of three-stranded braids (three-braids). These three-braids can then be efficiently compiled and improved to any required accuracy using the Solovay-Kitaev algorithm.Comment: 20 pages, 20 figures, published versio

    Extending ancilla driven universal quantum computation beyond stepwise determinism

    Get PDF
    A major research goal in the field of quantum computation is the construction of the universal quantum computer (UQC): a device that can implement any quantum algorithm. Several theoretical schemes for implementing UQC have been developed which require different sets of resources and capabilities with varying implications for the optimum experimental implementations. The ancilla driven quantum computation scheme (ADQC) comprises two subsystems: a memory register of qubits on which information is retained and processed and an ancilla system of qubits which couple to the register. This coupling is represented in the ADQC scheme by a fixed quantum gate.By preparing the ancilla in selected states before applying this gate and then measuring it in selected measurement basis afterwards, quantum gates are enacted on the register qubits. ADQC is deterministic in that the probability of the outcome after performing the entire procedure is 1 but we have to apply corrections to the procedure at each step that depend on the probabilistic outcome of the ancilla measurement. An important resource in this model is the availability of a maximally entangling two-qubit gate between the ancilla and register qubits because if the gate is not maximally entangling,the resulting gates on the register can not be selected with stepwise determinism.It is proven in this thesis that in fact ADQC with non-maximally entangling interaction gates is universal. This requires showing that single- and two-qubit unitary gates can be effciently implemented probabilistically. We also show a relationship between the expected time of the probabilistic implementation of a gate and the ability to control the ancilla. In the ADQC model, the ancilla is controlled with single qubit unitary gates just before interacting with the register and just before measurement.We show that the increase in time caused by a loss of maximally entangling two-qubit gates can be counteracted by control over the ancilla. This needs not be the ability to perform any single qubit unitary to the ancilla but just the ability to perform a specific small finite set of operations.This is important because the resource requirements described by a scheme affect the properties of possible experimental implementations. The ADQC scheme was originally designed to be used with physical implementations of quantum computing that involves qubits coming from different physical systems that have different properties.This may restrict the availability of couplings between the register and ancilla systems equivalent to maximally entangling quantum gates. By further focusing on the model under specific restrictions, such as minimal control of the ancilla system or long distance separation between register qubits, we find certain properties of the physical implementation that may best suit it for ADQC beyond stepwise determinism. Minimal control appears best suited for symmetric ancilla-register interactions; use overlong distances suits a transmitter going to an unknown receiver with possible small errors in the receiver's interaction with the ancilla.A major research goal in the field of quantum computation is the construction of the universal quantum computer (UQC): a device that can implement any quantum algorithm. Several theoretical schemes for implementing UQC have been developed which require different sets of resources and capabilities with varying implications for the optimum experimental implementations. The ancilla driven quantum computation scheme (ADQC) comprises two subsystems: a memory register of qubits on which information is retained and processed and an ancilla system of qubits which couple to the register. This coupling is represented in the ADQC scheme by a fixed quantum gate.By preparing the ancilla in selected states before applying this gate and then measuring it in selected measurement basis afterwards, quantum gates are enacted on the register qubits. ADQC is deterministic in that the probability of the outcome after performing the entire procedure is 1 but we have to apply corrections to the procedure at each step that depend on the probabilistic outcome of the ancilla measurement. An important resource in this model is the availability of a maximally entangling two-qubit gate between the ancilla and register qubits because if the gate is not maximally entangling,the resulting gates on the register can not be selected with stepwise determinism.It is proven in this thesis that in fact ADQC with non-maximally entangling interaction gates is universal. This requires showing that single- and two-qubit unitary gates can be effciently implemented probabilistically. We also show a relationship between the expected time of the probabilistic implementation of a gate and the ability to control the ancilla. In the ADQC model, the ancilla is controlled with single qubit unitary gates just before interacting with the register and just before measurement.We show that the increase in time caused by a loss of maximally entangling two-qubit gates can be counteracted by control over the ancilla. This needs not be the ability to perform any single qubit unitary to the ancilla but just the ability to perform a specific small finite set of operations.This is important because the resource requirements described by a scheme affect the properties of possible experimental implementations. The ADQC scheme was originally designed to be used with physical implementations of quantum computing that involves qubits coming from different physical systems that have different properties.This may restrict the availability of couplings between the register and ancilla systems equivalent to maximally entangling quantum gates. By further focusing on the model under specific restrictions, such as minimal control of the ancilla system or long distance separation between register qubits, we find certain properties of the physical implementation that may best suit it for ADQC beyond stepwise determinism. Minimal control appears best suited for symmetric ancilla-register interactions; use overlong distances suits a transmitter going to an unknown receiver with possible small errors in the receiver's interaction with the ancilla
    corecore