5,155 research outputs found

    TeamSTEPPS and Organizational Culture

    Get PDF
    Patient safety issues remain despite several strategies developed for their deterrence. While many safety initiatives bring about improvement, they are repeatedly unsustainable and short-lived. The index hospital’s goal was to build an organizational culture within a groundwork that improves teamwork and continuing healthcare team engagement. Teamwork influences the efficiency of patient care, patient safety, and clinical outcomes, as it has been identified as an approach for enhancing collaboration, decreasing medical errors, and building a culture of safety in healthcare. The facility implemented Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS), an evidence-based framework which was used for team training to produce valuable and needed changes, facilitating modification of organizational culture, increasing patient safety compliance, or solving particular issues. This study aimed to identify the correlation between TeamSTEPPS enactment and improved organizational culture in the ambulatory care nursing department of a New York City public hospital

    Graphonomics and your Brain on Art, Creativity and Innovation : Proceedings of the 19th International Graphonomics Conference (IGS 2019 – Your Brain on Art)

    Get PDF
    [Italiano]: “Grafonomia e cervello su arte, creatività e innovazione”. Un forum internazionale per discutere sui recenti progressi nell'interazione tra arti creative, neuroscienze, ingegneria, comunicazione, tecnologia, industria, istruzione, design, applicazioni forensi e mediche. I contributi hanno esaminato lo stato dell'arte, identificando sfide e opportunità, e hanno delineato le possibili linee di sviluppo di questo settore di ricerca. I temi affrontati includono: strategie integrate per la comprensione dei sistemi neurali, affettivi e cognitivi in ambienti realistici e complessi; individualità e differenziazione dal punto di vista neurale e comportamentale; neuroaesthetics (uso delle neuroscienze per spiegare e comprendere le esperienze estetiche a livello neurologico); creatività e innovazione; neuro-ingegneria e arte ispirata dal cervello, creatività e uso di dispositivi di mobile brain-body imaging (MoBI) indossabili; terapia basata su arte creativa; apprendimento informale; formazione; applicazioni forensi. / [English]: “Graphonomics and your brain on art, creativity and innovation”. A single track, international forum for discussion on recent advances at the intersection of the creative arts, neuroscience, engineering, media, technology, industry, education, design, forensics, and medicine. The contributions reviewed the state of the art, identified challenges and opportunities and created a roadmap for the field of graphonomics and your brain on art. The topics addressed include: integrative strategies for understanding neural, affective and cognitive systems in realistic, complex environments; neural and behavioral individuality and variation; neuroaesthetics (the use of neuroscience to explain and understand the aesthetic experiences at the neurological level); creativity and innovation; neuroengineering and brain-inspired art, creative concepts and wearable mobile brain-body imaging (MoBI) designs; creative art therapy; informal learning; education; forensics

    Non-equilibrium universality: slow drives, measurements and dephasing

    Get PDF
    The behavior of quantum systems can be influenced by factors such as unitary evolution, measurements or decoherence. For large composite systems, these mechanisms can give rise to collective phenomena like phase transitions and universality. One example are quantum phase transitions in the ground states of a Hamiltonian. Close to the transition scale invariant behavior emerges, characterized by a set of universal critical exponents. If the system is driven in the vicinity of the transition, the drive scale can lead to a breakdown of the equilibrium scaling behavior. Nevertheless, the breakdown inherits universal properties and gives access to the leading critical exponents (Kibble-Zurek mechanism). However, the whole hierarchy of critical exponents, relevant and irrelevant, is accessible by a slow drive. We establish this generalized mechanism and its observable consequences at the level of elementary, but experimentally relevant, spin and fermion models. We construct drives that turn equilibrium irrelevant couplings into relevant drive couplings with an observable scaling in the excitation density. Criticality and universality also arise from competing unitary evolution and measurements, allowing for measurement-induced transitions. An example are (free) fermion models featuring a transition between an extended `critical' phase and a `pinned', weakly entangled phase. We investigate the role of dephasing/imperfect measurements onto the transition based on (i) numerical approaches (stochastic quantum trajectories), (ii) an effective bosonic replica field theory, and (iii) a perturbative treatment of the fermion dynamics. On the one hand, weak dephasing leaves the `critical' phase and measurement-induced transition in tact. On the other hand, we observe the emergence of a new, temperature-like scale for strong dephasing and weak measurements, enabled by the interplay of all three mechanisms. Despite the presence of the finite scale, observables like density-dependent correlations still feature scale invariant behavior. Paired with a perturbative treatment for strong dephasing, this behavior hints at a diffusion-like dynamics on the diagonal of the density matrix in the occupation number basis

    Echo Particle Image/Tracking Velocimetry: Technical Development and In Vivo Applications in Cardiovascular and Cerebrovascular Flows

    Get PDF
    Contrast-enhanced ultrasound (CEUS) imaging utilizes intravascular echogenic microbubbles (1-5ÎĽm in diameter) to visualize the blood flow in various organs. In this dissertation, we develop and implement techniques for analyzing the motions of microbubbles to quantify cardiovascular and cerebrovascular flows. Obtaining accurate bubble center locations from noisy CEUS images is a primary challenge. Since the bubble trace is typically modeled as a point scatter convolved with a point spread function (PSF), techniques including blind deconvolution, supervised, and self-supervised learning are introduced and calibrated for identifying the PSF and locating the bubble center. The enhanced CEUS images enable echo particle image velocimetry (echo-PIV) for characterizing 2D cardiovascular flows, and the global-optimized Kalman filter-based echo particle tracking velocimetry (echo-PTV) for determining bubble trajectories which are subsequently used for mapping the cerebral and ocular microcirculation at a spatial resolution of 20ÎĽm. These techniques are applied to two applications. First, echo-PIV is used for monitoring the aortic root flow in an adult pig undergoing veno-arterial extracorporeal membrane oxygenation (VA-ECMO), a life support technology whose parameters can be optimized based on the aortic root hemodynamics. Phase-averaged and instantaneous flow fields show that, for the pig with severe myocardial ischemia, the cardiac ejection velocity, velocity-time integral, and mean arterial pressure (MAP) reach their peak at an ECMO flow rate of 3.0L/min, indicating an optimal flow rate that provides adequate support. Second, we investigate non-invasive methods for estimating intracranial pressure (ICP), a critical parameter for hydrocephalus patients that cannot be invasively measured safely. Echo-PTV is used to map cerebral and ocular microcirculation of pediatric hydrocephalus porcine models for inferring ICP. Results show that accounting for pulse pressure, highly correlated relationships between ICP and cortical microcirculation density are obtained with correlation coefficients beyond 0.85. For cerebral ischemia, nondimensionalized cortical micro-perfusion decreases by an order of magnitude when the ICP exceeds 50% of MAP. Moreover, retinal microcirculation also shows a highly correlated relationship with ICP when accounting for pulse pressure. These findings suggest that CEUS-based microcirculation measurement is a plausible noninvasive method for evaluating the ICP and detecting brain ischemia

    Microscopy of spin hydrodynamics and cooperative light scattering in atomic Hubbard systems

    Get PDF
    Wechselwirkungen zwischen quantenmechanischen Teilchen können zu kollektiven Phänomenen führen, deren Eigenschaften sich vom Verhalten einzelner Teilchen stark unterscheiden. Während solche Quanteneffekte im Allgemeinen schwierig zu beobachten sind, haben sich ultrakalte, in optischen Gittern gefangene atomare Gase als vielseitige experimentelle Plattform zur Erforschung der Quantenvielteilchenphysik erwiesen. In dieser Arbeit setzten wir ein Gitterplatz- und Einzelatom-aufgelöstes Quantengasmikroskop für bosonische Rb-87 Atome ein, um Vielteilchensysteme im und außerhalb des Gleichgewichts zu untersuchen. Zunächst betrachteten wir den quantenmechanischen Phasenübergang zwischen dem suprafluiden und dem Mott-isolierenden Zustand im Bose-Hubbard-Modell, das nativ durch kalte Atome in optischen Gittern realisiert wird, und zeigten, dass sich die Brane-Parität eignet, um nichtlokale Ordnung im konventionell als ungeordnet erachteten zweidimensionalen Mott-Isolator zu identifizieren. Mithilfe eines mikroskopischen Ansatzes zur Realisierung einstellbarer Gittergeometrien und programmierbarer Einheitszellen implementierten wir Quadrats-, Dreiecks-, Kagome- und Lieb-Gitter und beobachteten die Skalierung des Phasenübergangspunkts mit der mittleren Koordinationszahl des Gitters. In einem eindimensionalen Gitter untersuchten wir zudem den Hochtemperatur-Spintransport im Heisenberg-Modell, das durch Superaustausch in der Mott-isolierenden Phase eines zwei-Spezies Bose-Hubbard-Modells realisiert wurde. Durch Betrachten der Relaxationsdynamik eines als Domänenwand präparierten Anfangszustandes fanden wir eine superdiffusive Raum-Zeit-Skalierung mit einem anomalen dynamischen Exponenten von 3/2. Anschließend untersuchten wir die theoretisch vorhergesagten mikroskopischen Voraussetzungen für Superdiffusion, indem wir reguläre Diffusion im nicht-integrablen, zweidimensionalen Heisenberg-Modell und ballistischen Transport für SU(2)-Symmetrie-gebrochene magnetisierte Anfangszustände nachwiesen. Weiterhin maßen wir die Zählstatistik der durch die Domänenwand transportierten Spins; die sich daraus ergebende schiefe Verteilung deutete auf einen nichtlinearen zugrundeliegenden Transportprozess hin, der an die dynamische Kardar-Parisi-Zhang Universalitätsklasse erinnert. Mittels Mott-Isolatoren im Limit tiefer Gitter konnten wir darüber hinaus die durch Photonen vermittelten Wechselwirkungen in einem Spinsystem untersuchen, das aus zwei über einen geschlossenen optischen Übergang gekoppelten Zuständen besteht. Durch spektroskopische Untersuchung der Reflexion und Transmission konnten wir die direkte Anregung einer subradianten Eigenmode und kohärente Spiegelung beobachten, was auf die Realisierung einer effizienten, im freien Raum operierenden, paraxialen Licht-Materie-Schnittstelle hindeutet.The interplay of quantum particles can give rise to collective phenomena whose characteristics are distinct from the behavior of individual particles. While quantum effects are generally challenging to observe, ultracold atomic gases trapped in optical lattices have emerged as a versatile experimental platform to study quantum many-body physics. In this thesis, we employed a site– and single-atom–resolved quantum gas microscope of bosonic Rb-87 atoms to explore many-body systems in and out of equilibrium. We first considered the ground-state quantum phase transition between the superfluid and Mott-insulating state in the Bose–Hubbard model, natively realized by cold atoms in optical lattices, for which we found brane parity to be suitable for detecting nonlocal order in the conventionally unordered two-dimensional Mott insulator. Using a microscopic approach to realizing tunable lattice geometries and programmable unit cells, we implemented square, triangular, kagome and Lieb lattices, and observed the mean-field scaling of the phase transition point with average coordination number. In a one-dimensional lattice, we furthermore studied high-temperature spin transport in the Heisenberg model, realized by superexchange in the Mott-insulating phase of a two-species Bose–Hubbard model. By tracking the relaxation dynamics of an initial domain-wall state, we found superdiffusive space–time scaling with an anomalous dynamical exponent of 3/2. We then probed the predicted microscopic requirements for superdiffusion, verifying regular diffusion for the integrability-broken two-dimensional Heisenberg model and ballistic transport for SU(2)-symmetry–broken net magnetized initial states. Subsequently, we measured the full counting statistics of spins transported across the domain wall; the resulting skewed distribution implied a nonlinear underlying transport process, reminiscent of the Kardar–Parisi–Zhang dynamical universality class. Moving to Mott insulators in the deep-lattice limit, we could moreover study photon-mediated interactions on a subwavelength-spaced, array-ordered spin system consisting of states coupled by a closed optical transition. By spectroscopically probing the reflectance and transmittance, we demonstrated the direct excitation of a subradiant eigenmode and observed specular reflection, indicating the realization of an efficient free-space paraxial light–matter interface

    Evaluating EEG–EMG Fusion-Based Classification as a Method for Improving Control of Wearable Robotic Devices for Upper-Limb Rehabilitation

    Get PDF
    Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices. One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor fusion techniques have been proposed to combine EEG and EMG; however, further development is required to enhance the capabilities of EEG–EMG fusion beyond basic motion classification. To this end, the goals of this thesis were to investigate expanded methods of EEG–EMG fusion and to develop a novel control system based on the incorporation of EEG–EMG fusion classifiers. A dataset of EEG and EMG signals were collected during dynamic elbow flexion–extension motions and used to develop EEG–EMG fusion models to classify task weight, as well as motion intention. A variety of fusion methods were investigated, such as a Weighted Average decision-level fusion (83.01 ± 6.04% accuracy) and Convolutional Neural Network-based input-level fusion (81.57 ± 7.11% accuracy), demonstrating that EEG–EMG fusion can classify more indirect tasks. A novel control system, referred to as a Task Weight Selective Controller (TWSC), was implemented using a Gain Scheduling-based approach, dictated by external load estimations from an EEG–EMG fusion classifier. To improve system stability, classifier prediction debouncing was also proposed to reduce misclassifications through filtering. Performance of the TWSC was evaluated using a developed upper-limb brace simulator. Due to simulator limitations, no significant difference in error was observed between the TWSC and PID control. However, results did demonstrate the feasibility of prediction debouncing, showing it provided smoother device motion. Continued development of the TWSC, and EEG–EMG fusion techniques will ultimately result in wearable devices that are able to adapt to changing loads more effectively, serving to improve the user experience during operation
    • …
    corecore