610 research outputs found

    Symmetry Signatures for Image-Based Applications in Robotics

    Get PDF

    ON SYMMETRY: A FRAMEWORK FOR AUTOMATED SYMMETRY DETECTION

    Get PDF
    Symmetry has weaved itself into almost all fabrics of science, as well as in arts, and has left an indelible imprint on our everyday lives. And, in the same manner, it has pervaded a wide range of areas of computer science, especially computer vision area, and a copious amount of literature has been produced to seek an algorithmic way to identify symmetry in digital data. Notwithstanding decades of endeavor and attempt to have an efficient system that can locate and recover symmetry embedded in real-world images, it is still challenging to fully automate such tasks while maintaining a high level of efficiency. The subject of this thesis is symmetry of imaged objects. Symmetry is one of the non-accidental features of shapes and has long been (maybe mistakenly) speculated as a pre-attentive feature, which improves recognition of quickly presented objects and reconstruction of shapes from incomplete set of measurements. While symmetry is known to provide rich and useful geometric cues to computer vision, it has been barely used as a principal feature for applications because figuring out how to represent and recognize symmetries embedded in objects is a singularly difficult task, both for computer vision and for perceptual psychology. The three main problems addressed in the dissertation are: (i) finding approximate symmetry by identifying the most prominent axis of symmetry out of an entire region, (ii) locating bilaterally symmetrical areas from a scene, and (iii) automating the process of symmetry recovery by solving the problems mentioned above. Perfect symmetries are rare in the extreme in natural images and symmetry perception in humans allows for qualification so that symmetry can be graduated based on the degree of structural deformation or replacement error. There have been many approaches to detect approximate symmetry by searching an optimal solution in a form of an exhaustive exploration of the parameter space or surmising the center of mass. The algorithm set out in this thesis circumvents the computationally intensive operations by using geometric constraints of symmetric images, and assumes no prerequisite knowledge of the barycenter. The results from an extensive set of evaluation experiments on metrics for symmetry distance and a comparison of the performance between the method presented in this thesis and the state of the art approach are demonstrated as well. Many biological vision systems employ a special computational strategy to locate regions of interest based on local image cues while viewing a compound visual scene. The method taken in this thesis is a bottom-up approach that causes the observer favors stimuli based on their saliency, and creates a feature map contingent on symmetry. With the help of summed area tables, the time complexity of the proposed algorithm is linear in the size of the image. The distinguished regions are then delivered to the algorithm described above to uncover approximate symmetry

    Assessment of Driver\u27s Attention to Traffic Signs through Analysis of Gaze and Driving Sequences

    Get PDF
    A driver’s behavior is one of the most significant factors in Advance Driver Assistance Systems. One area that has received little study is just how observant drivers are in seeing and recognizing traffic signs. In this contribution, we present a system considering the location where a driver is looking (points of gaze) as a factor to determine that whether the driver has seen a sign. Our system detects and classifies traffic signs inside the driver’s attentional visual field to identify whether the driver has seen the traffic signs or not. Based on the results obtained from this stage which provides quantitative information, our system is able to determine how observant of traffic signs that drivers are. We take advantage of the combination of Maximally Stable Extremal Regions algorithm and Color information in addition to a binary linear Support Vector Machine classifier and Histogram of Oriented Gradients as features detector for detection. In classification stage, we use a multi class Support Vector Machine for classifier also Histogram of Oriented Gradients for features. In addition to the detection and recognition of traffic signs, our system is capable of determining if the sign is inside the attentional visual field of the drivers. It means the driver has kept his gaze on traffic signs and sees the sign, while if the sign is not inside this area, the driver did not look at the sign and sign has been missed

    Attentional Selection in Object Recognition

    Get PDF
    A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object

    Mid-Level Vision and Recognition of Non-Rigid Objects

    Get PDF
    We address mid-level vision for the recognition of non-rigid objects. We align model and image using frame curves - which are object or "figure/ground" skeletons. Frame curves are computed, without discontinuities, using Curved Inertia Frames, a provably global scheme implemented on the Connection Machine, based on: non-cartisean networks; a definition of curved axis of inertia; and a ridge detector. I present evidence against frame alignment in human perception. This suggests: frame curves have a role in figure/ground segregation and in fuzzy boundaries; their outside/near/top/ incoming regions are more salient; and that perception begins by setting a reference frame (prior to early vision), and proceeds by processing convex structures

    Advances in Stereo Vision

    Get PDF
    Stereopsis is a vision process whose geometrical foundation has been known for a long time, ever since the experiments by Wheatstone, in the 19th century. Nevertheless, its inner workings in biological organisms, as well as its emulation by computer systems, have proven elusive, and stereo vision remains a very active and challenging area of research nowadays. In this volume we have attempted to present a limited but relevant sample of the work being carried out in stereo vision, covering significant aspects both from the applied and from the theoretical standpoints

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    • …
    corecore