272 research outputs found

    Exact Bounds for Some Hypergraph Saturation Problems

    Full text link
    Let W_n(p,q) denote the minimum number of edges in an n x n bipartite graph G on vertex sets X,Y that satisfies the following condition; one can add the edges between X and Y that do not belong to G one after the other so that whenever a new edge is added, a new copy of K_{p,q} is created. The problem of bounding W_n(p,q), and its natural hypergraph generalization, was introduced by Balogh, Bollob\'as, Morris and Riordan. Their main result, specialized to graphs, used algebraic methods to determine W_n(1,q). Our main results in this paper give exact bounds for W_n(p,q), its hypergraph analogue, as well as for a new variant of Bollob\'as's Two Families theorem. In particular, we completely determine W_n(p,q), showing that if 1 <= p <= q <= n then W_n(p,q) = n^2 - (n-p+1)^2 + (q-p)^2. Our proof applies a reduction to a multi-partite version of the Two Families theorem obtained by Alon. While the reduction is combinatorial, the main idea behind it is algebraic

    Efficient enumeration of solutions produced by closure operations

    Full text link
    In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors) by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family of sets by any set of "set operations": union, intersection, symmetric difference, subsets, supersets …\dots). To do so, we study the MembershipFMembership_{\mathcal{F}} problem: for a set of operations F\mathcal{F}, decide whether an element belongs to the closure by F\mathcal{F} of a family of elements. In the boolean case, we prove that MembershipFMembership_{\mathcal{F}} is in P for any set of boolean operations F\mathcal{F}. When the input vectors are over a domain larger than two elements, we prove that the generic enumeration method fails, since MembershipFMembership_{\mathcal{F}} is NP-hard for some F\mathcal{F}. We also study the problem of generating minimal or maximal elements of closures and prove that some of them are related to well known enumeration problems such as the enumeration of the circuits of a matroid or the enumeration of maximal independent sets of a hypergraph. This article improves on previous works of the same authors.Comment: 30 pages, 1 figure. Long version of the article arXiv:1509.05623 of the same name which appeared in STACS 2016. Final version for DMTCS journa

    Covering graphs by monochromatic trees and Helly-type results for hypergraphs

    Full text link
    How many monochromatic paths, cycles or general trees does one need to cover all vertices of a given rr-edge-coloured graph GG? These problems were introduced in the 1960s and were intensively studied by various researchers over the last 50 years. In this paper, we establish a connection between this problem and the following natural Helly-type question in hypergraphs. Roughly speaking, this question asks for the maximum number of vertices needed to cover all the edges of a hypergraph HH if it is known that any collection of a few edges of HH has a small cover. We obtain quite accurate bounds for the hypergraph problem and use them to give some unexpected answers to several questions about covering graphs by monochromatic trees raised and studied by Bal and DeBiasio, Kohayakawa, Mota and Schacht, Lang and Lo, and Gir\~ao, Letzter and Sahasrabudhe.Comment: 20 pages including references plus 2 pages of an Appendi
    • …
    corecore