71 research outputs found

    Detection of changes in the characteristics of oceanographic time-series using changepoint analysis.

    Get PDF
    Changepoint analysis is used to detect changes in variability within GOMOS hindcast time-series for significant wave heights of storm peak events across the Gulf of Mexico for the period 1900–2005. To detect a change in variance, the two-step procedure consists of (1) validating model assumptions per geographic location, followed by (2) application of a penalized likelihood changepoint algorithm. Results suggest that the most important changes in time-series variance occur in 1916 and 1933 at small clusters of boundary locations at which, in general, the variance reduces. No post-war changepoints are detected. The changepoint procedure can be readily applied to other environmental time-series

    Non-stationary continuous dynamic Bayesian networks

    Get PDF

    Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes

    Get PDF
    <b>Method:</b> Dynamic Bayesian networks (DBNs) have been applied widely to reconstruct the structure of regulatory processes from time series data, and they have established themselves as a standard modelling tool in computational systems biology. The conventional approach is based on the assumption of a homogeneous Markov chain, and many recent research efforts have focused on relaxing this restriction. An approach that enjoys particular popularity is based on a combination of a DBN with a multiple changepoint process, and the application of a Bayesian inference scheme via reversible jump Markov chain Monte Carlo (RJMCMC). In the present article, we expand this approach in two ways. First, we show that a dynamic programming scheme allows the changepoints to be sampled from the correct conditional distribution, which results in improved convergence over RJMCMC. Second, we introduce a novel Bayesian clustering and information sharing scheme among nodes, which provides a mechanism for automatic model complexity tuning. <b>Results:</b> We evaluate the dynamic programming scheme on expression time series for Arabidopsis thaliana genes involved in circadian regulation. In a simulation study we demonstrate that the regularization scheme improves the network reconstruction accuracy over that obtained with recently proposed inhomogeneous DBNs. For gene expression profiles from a synthetically designed Saccharomyces cerevisiae strain under switching carbon metabolism we show that the combination of both: dynamic programming and regularization yields an inference procedure that outperforms two alternative established network reconstruction methods from the biology literature

    Using a Bayesian change-point statistical model with autoregressive terms to study the monthly number of dispensed asthma medications by public health services

    Get PDF
    In this paper, it is proposed a Bayesian analysis of a time series in the presence of a random change-point and autoregressive terms. The development of this model was motivated by a data set related to the monthly number of asthma medications dispensed by the public health services of Ribeirão Preto, Southeast Brazil, from 1999 to 2011. A pronounced increase trend has been observed from 1999 to a specific change-point, with a posterior decrease until the end of the series. In order to obtain estimates for the parameters of interest, a Bayesian Markov Chain Monte Carlo (MCMC) simulation procedure using the Gibbs sampler algorithm was developed. The Bayesian model with autoregressive terms of order 1 fits well to the data, allowing to estimate the change-point at July 2007, and probably reflecting the results of the new health policies and previously adopted programs directed toward patients with asthma. The results imply that the present model is useful to analyse the monthly number of dispensed asthma medications and it can be used to describe a broad range of epidemiological time series data where a change-point is present.Peer Reviewe

    An MDL approach to the climate segmentation problem

    Full text link
    This paper proposes an information theory approach to estimate the number of changepoints and their locations in a climatic time series. A model is introduced that has an unknown number of changepoints and allows for series autocorrelations, periodic dynamics, and a mean shift at each changepoint time. An objective function gauging the number of changepoints and their locations, based on a minimum description length (MDL) information criterion, is derived. A genetic algorithm is then developed to optimize the objective function. The methods are applied in the analysis of a century of monthly temperatures from Tuscaloosa, Alabama.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS289 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore