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ABSTRACT

Method: Dynamic Bayesian networks (DBNs) have been applied
widely to reconstruct the structure of regulatory processes from time
series data, and they have established themselves as a standard
modelling tool in computational systems biology. The conventional
approach is based on the assumption of a homogeneous Markov
chain, and many recent research efforts have focused on relaxing
this restriction. An approach that enjoys particular popularity is
based on a combination of a DBN with a multiple changepoint
process, and the application of a Bayesian inference scheme via
reversible jump Markov chain Monte Carlo (RIMCMC). In the present
paper, we expand this approach in two ways. First, we show that
a dynamic programming scheme allows the changepoints to be
sampled from the correct conditional distribution, which results in
improved convergence over RIMCMC. Second, we introduce a novel
Bayesian clustering and information sharing scheme among nodes,
which provides a mechanism for automatic model complexity tuning.
Results: We evaluate the dynamic programming scheme on
expression time series for Arabidopsis thaliana genes involved in
circadian regulation. In a simulation study we demonstrate that
the regularization scheme improves the network reconstruction
accuracy over that obtained with recently proposed inhomogeneous
DBNSs. For gene expression profiles from a synthetically designed
Saccharomyces cerevisiae strain under switching carbon metabolism
we show that the combination of both: dynamic programming and
regularization yields an inference procedure that outperforms two
alternative established network reconstruction methods from the
biology literature.

Availability: From http://www.statistik.tu-dortmund.de/bio2010.html a
supplementary paper with algorithmic details and further results for
the Arabidopsis data can be downloaded. The MATLAB programs
used for our simulations are available upon request.

Contact: grzegorczyk@statistik.tu-dortmund.de, dirk@bioss.ac.uk

1 INTRODUCTION

Two paradigm shifts have revolutionized molecular biology in the ) X
where the objective idaper we show that the number and location of changepoints can be

second half of this decade: systems biology,

to model the whole complexity of cellular processes in a holistic e ) .
which enables biologists to build nev_py a modification of the dynamic programming scheme proposed

sense, and synthetic biology,

molecular pathwayi vivo, i.e. in living cells. The combination of

approaches, which are too simplistic, dynamic Bayesian networks
(DBNs) have emerged as a promising trade-off between over-
simplicity and loss of computational tractability (Cantoeteal.,
20009).

The standard assumption underlying DBNs is that of homogeneity:
temporal processes and the time-series they generate are assumed
to be governed by a homogeneous Markov relation. However,
regulatory interactions and signal transduction processes in the cell
are usually adaptive and change in response to external stimuli.
Following earlier approaches aiming to relax the homogeneity
assumption for undirected graphical models (Talih and Hengartner,
2005; Xuan and Murphy, 2007), various recent research efforts
have therefore addressed the homogeneity assumption for DBNSs.
An approach that has become popular recently is based on a
combination of a DBN with a multiple changepoint process, and
the application of a Bayesian inference scheme via reversible
jump Markov chain Monte Carlo (RIMCMC). Robinson and
Hartemink (2009) proposed a discrete inhomogeneous DBN, which
allows for different structures in different segments of the time
series, with a regularization term penalizing differences among
the structures. Grzegorczyk and Husmeier (2009) proposed a
continuous inhomogeneous DBN, in which the parameters are
allowed to vary, while a common network structure provides
information sharing among the time series segmentgbré
(2007); Lebre et al. (2010) proposed an alternative continuous
inhomogeneous DBN, which is more flexible in that it allows the
network structure to vary among the segments. The model proposed
in Ahmed and Xing (2009) and Kolagt al. (2009) is a close
cousin of an inhomogeneous DBN. As opposed to the first three
approaches, (hyper-)parameters are not consistently inferreh with
the Bayesian context, though, and these methods will therefore not
be further considered here.

Instead, we will focus on the Bayesian inference scheme common
to the first three approaches. All three methods adopt an RIMCMC
scheme for inferring the number and location of changepoints, based
on changepoint birth, death and relocation moves. In the present

sampled from the proper conditional distribution. This is effected

in Fearnhead (2006) in the context of Bayesian mixture models.

both concepts allows the viability of machine learning approacheé,Ne discuss the trade-off between computational up-front costs

for network reconstruction to be tested in a rigorous way. Facin
the extremes of mechanistic models, which are restricted to smafl
systems with only few components, and mutual information base

9and improvement in mixing and convergence, and we empirically

uantify the net gain in computational efficiency in dependence on

&ertain features of the prior distribution.

© Oxford University Press 2010.
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The above mentioned inhomogeneous DBNs can be divided int¢2009); Lebreet al. (2010), the following integral can be solved analytically:

two classes according to whether changepoints are common to the m

whole network ¢lass 1), or varying from node to nodecl@ss 2). U (Drn [k, V) = / (H W(DEn[t, efl])évn(t)»k) P(6F|7,)d6F
The approach oflass 1, pursued in Grzegorczykt al. (2008), t=2 @
Roblnson ar)d_Hartem_lnk (20d9)and Grzegprc_zylet al. (2010), which yields a closed-form expression for the marginal ik@bd:

is over-restrictive, as it does not allow for individual nodes to be

affected by changing processes in different ways. The approack(p|g, v, K) = /p(p|g’V,K79)p(g|g’K)d9 A3)
of class 2, pursued in Grzegorczyk and Husmeier (2009bte .

(2007), and kbreet al. (2010) is potentially over-flexible, as it N Kn N

does not provide any information sharing among the nodes. When = II IT v@i» (k. Vi) = ] ¥1 (D72 [Kn, Val)

an organism undergoes transitional changes, e.g. morphogenic n=lk=1 n=1

transitions during embryogenesis, one would expect the majority of e objective of Bayesian inference is to sample the netwanlctare
genes to be affected by these transitions in identical ways. Howevey: the latent variablesv = (Vy,..., V), and the node-specific
there is no mechanism in the fully flexible model that incorporategUmbers of segmen& = (K, ..., Kyv) from the posterior distribution

o . . P K|D) x P K, D), wh
this prior notion of commonality. In the present paper, we explore a (G, V,KID) o P(6,V, K, D), where

Bayesian clustering scheme akin to the weight sharing principle inP(G, V., K,D) = P(G)P(VIK)P(K)P(D|G,V,K) (4)
neural computation (Nowlan and Hinton, 1992), by which we assign N

nodes to clusters that are characterized by common changepoints. = H P(rn) P(Va |[Kn) P(Kn) ¥ H(DE K, Vin])
We demonstrate that our scheme subsumes the aforementioned n=1

approaches as limiting cases, and that it automatically identifies thin Grzegorczyk and Husmeier (2009)ghre (2007), a truncated Poisson
right trade-off between them in a data-driven manner. prior is chosen forP(KC,,), and a multiple changepoint process prior for

P(V,|Ky). The approach in Grzegorczyk al. (2010) is similar, except
that the allocations of time points to components are not rspeeific (i.e.

2 METHOD K andV,, do not depend on); see abovedass1vs.?2).

2.1 Review of time-dependent DBNs 2.2 Improved Gibbs sampling based on dynamic

DBN's are flexible models for representing probabilistictietships among programming

interacting variables (nodesX, ..., Xy via a directed graplg. The  To sample from the posterior distributio?(G, V,K|D), all previous

parent node set of nod&,, in G, m, = m,(G), is the set of all nodes  studies (Robinson and Hartemink, 2009; Grzegorczyk and Hiesn909;
from which an edge points to nod¢€,, in G. Consider a data s&, where Leébreet al., 2010; Grzegorczylket al., 2010) follow the same procedure:
Dyt andD,. . 4 are thetth realizationsX, (t) and, (t) of X;, andm,, to sample the network structugs they follow Madigan and York (1995)
respectively, and < ¢ < m represents time. A DBN is based on a (first- and apply Metropolis-Hastings (MH) structure MCMC, basedsingle-
order) Markov process, which is determined by the conditipnababilities  edge operations; to sample the latent varialfisK), they follow Green
P(Xn(t) = Dnt|mn(t — 1) = Dy t-1),s en), Common choices are  (1995) and apply reversible jump Markov chain Monte CarloMRMC),

a multinomial distribution, as used in Robinson and Hartem00g), or ~ Pased on changepoint birth, death, and reallocation mowethel present
a linear Gaussian distribution, as for example applied ineGorczyk and ~ Study, we propose an improved scheme based on dynamic programming
Husmeier (2009), with corresponding (node-specific) paramectorsd,, . The idea is to adapt the method proposed by Fearnhead (200 in
An inhomogeneous generalization of the standard first-drderogeneous ~ context of Bayesian mixture models to inhomogeneous DBNs ofdire
DBN was proposed (e.g. seéhre (2007); Robinson and Hartemink (2009); defined in Eq. (1). Fearnhead (2006) assumes that the chentepecur at

Grzegorczyk and Husmeier (2009)%hreet al. (2010)) and is given by discrete time points, and he considers two priors for the ggpaints. The
first prior is based on a prior for the number of changepointsl, then a

conditional prior on their positions. This correspondsaglyeto P(/C,,) and
— TTn, k1Yo n s Y . . . .
P(DIG,V,K,0) = H H H V(DR [t, 0 ]) "V @k (1) P(V,|Ky), as discussed above. The second prior is obtained from & poin
n=1t=2k=1 process on the positive and negative integers. The poicepsois specified
G(DIn [t 0F]) = p(Xn(t) = Dn,tlmn(t —1) = Dy, 11 951) by‘the probat_)lllty mass functu_)g\(t_) for the tlme be_twee_n t_V\_/o successive
points, for which a natural choice is the negative binomistrdiution

N m Kpn

wheredv,,, 1), is the Kronecker deltaV is a matrix of latent variables t—a .

V.(t), Va(t) = Fk indicates that the realization of nod¥, at g(tla,p) = (a_ 1)?“(1 -p)° (5)
time ¢, X, (t), has been generated by thké¢h component of a mixture . . .

with K, components, andX = (K1, ...,K»). Let P(8]G,K) = whose form is defined by two hyperparametetsand p. The choice of

HN ) Hk)Cn, P(6|r,,) denote the (conjugate) prior distribution of the this prior immediately imposes a prior distribution on the téateariables
n= =1 nltn . . . i
parameters. Under fairly weak conditions satisfied (andudised) in v n Without any conditioning onC, P(Va|Kn) — P(Vn); hence

Labre (2007); Robinson and Hartemink (2009); GrzegorczykHusieier ~ (€ termsK and K, in Eqn. (1-4) become obsolete. For the remainder
of this section, we use the generic notativh = (Vi,...,Vy) to

denote the latent variables induced by the changepoint. pffiepending
on the form of the latter, we either haé = (V,K) or V. = V.
1 Changepoints in Robinson and Hartemink (2009) apply, in th&t fi Given a Bayesian mixture model for which the latent variables af
instance, to the whole networkléss 1), with changepoints that render the form of one of the two changepoint processes discussedealand
parent configurations invariant removed for the respectivden. While the parameters can be integrated out in the likelihood, asdn (E),
this imbues the model with aspects otlass 2 approach, it suffers from  Fearnhead (2006) shows that the changepoints can be sampiedHe
the fact that changepoints are inextricably associatell elianges in the  proper posterior distributioexactly, with a dynamic programming scheme.
presence/absence status of interactions, rather thagehanthe interaction  The computational complexity is quadratic in the number of pla®ns
strengths, resulting in a loss of model flexibility. m. To adapt this scheme to the inference of inhomogeneous DBds, n
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where the terms); (D,C,G) = > ¢ qj (D,C,Q,Vjc.) can be computed mathematical modelssynthetic biology aims to use such models
effectively with DP. The acceptance probabilities for themtd re-clustering  t0 design unique biological circuits (synthetic networks) in the cell

moves can be derived analogously as shown in the supplemeaataey. able to perform specific tasks. Conversely, data from synthetic
biology can be utilised to assess the performance of models from
3 DATA systems biology. We used a synthetically generated network of

. five genes irSaccharomyces cerevisiae (yeast), devised in Cantone
31 Synthetic RAF-pathway data et al. (2009) and depicted in Figure 3, which was obtained from
The RAF protein signalling transduction pathway, shown insynthetically designed yeast cells grown with different carbon
Figure 2, plays a pivotal role in the mammalian immune responsources: galactose (“switch on”) or glucose (“switch off”). We took
and has hence been widely studied in the literature (e.g. Sacnﬁe data from Cantonet al. (2009), which were obtained with

et al. (2005)). For our simulation study we followed Grzegorczyk guantitative RT-PCR in intervals of 20 minutes up to 5 hours for
and Husmeier (2009) and generated synthetic network data frofhe first, and in intervals of 10 minutes up to 3 hours for the second

a slightly modified version of the pathway, in which an extra condition. In our study, we standardized the data via a log and a
feedback loop has been added to node 'PIR3LP3(t + 1) = z-score transformation.

V1 —e2PIP3(t) + epprps(t + 1). The realizations of the
other nodes are linear combinations of the realizations of theiy gMULATION DETAILS
parents at the preceding time points plus iid standard Normall
distributed noise injections. E.g. for 'PIP2PIP2(t + 1) =
Bprps(t)PIP3(t) + Brrcc(t)PLCG(L) + cprrpa¢prpa(t + 1),

MI'he two improvements proposed in Section 2 can be applied to
any of the inhomogeneous DBNs recently proposed in the literature

where the variableg (.) are iid standard Gaussian distributed, (Lebre,‘ 2007; Robinson and Hartemink, 20092 .Grzegorczy‘k and
and the coefficient. can be used to vary the signal-to-noise ratio Husmeier, 2009; gbreet al., 2010). In our empirical simulation
(SNR). The regression coefficients are sampled from continuou§tuOIy we use the model presented in Grzegorcat)éd_. (2010) as
uniform distributions on the intervdD.5, 2] with a random sign. class 1 representant. The!a$ 2 model representant is taken from
We focus on the medium autocorrelation strengtk= 0.25, the Grzegorezyk an_d Husmeier (2009). The novel model_can be t_hough
SNRs 3 and 10, and we generate time series of lemgth= of as a regularized consensus of both models: It is effectively a

21. Different from Grzegorczyk and Husmeier (2009) we do not class 1 ”.‘O.d.e' if it infers only one cluster, and it becqmeslass
focus onclass 2 data, but distinguish four different scenarios: 2 model if it infersV clusters such that each node has its own node-

(i) homogeneous DBN data with regression coefficients that arépecific changepoints. In our simulation study we also include a
constant in time, e.gBpps(t) = const.; (i) inhomogeneous standard homogeneous dynamic Bayesian network model based on
class 1 DBN datayl whereall regression coéﬁicients of the domain the standard BGe score (Geiger and Heckerman, 1994). As in earlier

are re-sampled after — 11; (iii) inhomogeneousciass 2 DBN studies (Grzegorczyk and Husmeier, 2009; Grzegoroaylal.,

data with each node having one or two node-specific changepointg,()lo) we employ a uniform graph prior subject to a maximum fan-

where the corresponding regression coefficients are re-sampled; ( n gf :23 and_we l::hos_e fthe prior pa[)a_lmeter glstl’lbu::IOI.’lS n Edqr_l. 1)
inhomogeneousegularized class 2 data generated from a DBN &7 (2) maximally uninformative subject to the regularity conditions

where the coefficients of five nodes are re-sampled after 11, in Ggiger pnd Heckerman (1.994)' We Qemonstrat.e in Section .5'1
and the coefficients of the other 5 nodes are re-sampled twicg1at mfe_rencq based on Gibbs sampllng/dyn_amlc progra_mmlng
independently, aftet — 8 and aftert = 13. We also consider substantially improves convergence _and mixing. _Thus, in the
scenario (v): inhomogeneousgularized class 2 datawithout any cross-method comparison .(see Section 5.2) the |nh0mogene9us
autocorrelations = 1. For SNR=3 and SNR=10 we generated 10 DBN mod_els have been mferre_d by Gibbs sampllng/dynamlc
independent data instantiations for each scenario (i)-(v). programming ‘A tha_n employing the !ess effective R‘].MCMC
sampling schemes. As is standard, we discarded a burn-in phase,
3.2 Geneexpression time seriesfrom Arabidopsis and tested for convergence (PSRH.1) based on potential scale
thaliana reduction factors (PSRF), see (Gelman and Rubin, 1992), resulting

The Arabidopsis data stem from a study related to circadian"" 200 Gibbs steps per data set and method.

regulation in plants. To this endyrabidopsis thaliana seedlings 5§ RESULTS

grown under four different artificially controlled light/dark cycles . . . .

were transferred to constant light and harvested at 12-13 time poin@1 ~ Convergence diagnostics on gene expression time

in 2/4-hour intervals. From these seedlings, RNA was extracted series from Arabidopsis thaliana

and assayed on Affymetrix GeneChip oligonucleotide arrays. AsThe objective of the first study was to assess the improvement in

Grzegorczyk and Husmeier (2009) we focus &n = 9 genes, convergence and mixing achieved with the dynamic programming

LHY, TOC1, CCA1l, ELF4, ELF3, GI, PRR9, PRR5, and PRR3, scheme of Section 2.2. To this end, we applied the inhomogeneous

which from previous studies are known to be involved in circadianDBN of Eq. (1) to gene expression time series from the model

regulation (Lockeet al., 2005). Details about the data and their pre- plant Arabidopsis thaliana, described in Subsection 3.2. We aimed

processing are available from Grzegorczyk and Husmeier (2009). to reconstruct a regulatory network among 9 genes, which from

. . previous studies are known to be involved in circadian regulation

33 S\/nthgtlcally gener ated network in Saccharomyces (Locke et al., 2005). Our model and simulation setup matched
cerevisiae (yeast) the one described in Grzegorczyk and Husmeier (2009). We

While systems bhiology aims to develop a formal understanding compared the standard MCMC scheme applied in previous work,

of biological processes via the development of quantitativeMH/RIMCMC (Robinson and Hartemink, 2009; Grzegorczyk and
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Fig. 1. Convergence diagnostics. The graphs show the proportion of edges for which the PSRFktow the indicated threshold, satisfying the respective
convergence criterion. The horizontal axes represent atioul time, measured in terms of the equivalent number of MH/RVI@Gteps. Four MCMC
schemes for thelass 2 model from Grzegorczyk and Husmeier (2009) are compared; sg®$8.1, where the terms in the legend are explained.

Husmeier, 2009; &breet al., 2010), which is based on RIMCMC 5.2 Comparative evaluation on simulated data

(Green, 1995) and structure MCMC (Madigan and York, 1995),r6r our simulation study we employ the synthetically generated
with the Gibbs sampling/ dynamic programming scheme discussegar-pathway data from Section 3.1 to cross-compare the network
in Section 2.2. For the latter, we compared three different.qconstruction accuracy of the proposegularized class 2 model
subschemes, which differ with respect to the prior distribution onyit, three other models: a standard homogeneous Bayesian network
the changepoints. The first subscheme imposes a Poisson prior WiFﬁodeI, aclass 1 model with changepoints that are common to all
truncation thresholdC,, < 10 on the number of cpmponer_ﬂs, nodes (Grzegorczykt al., 2010), and alass 2 model with node-
P(K,), and the same even-numbered order statistics prior agpecific changepoints (Grzegorczyk and Husmeier, 2009). In our
applied in Grzegorczyk and Husmeier (2009); Green (1995) Onydy we evaluated the network reconstruction accuracy with the
the segmentations; (V. |KC). The second subscheme is identical, area under the precision-recall curve (AUC) (Davis and Goadrich,
except that the truncation threshold has been lowerédto< 5. 2006); see Section 5.3 for more details. This is standard in systems
The third subscheme follows Fearnhead (2006) and uses the pri‘?ﬁology, with larger scores indicating a better performance.

imposed by the point process prior of Eq. (5) with hyperparametergigyre 2 summarizes the empirical results of our simulation study.
p = 005anda = 2. We refer to these four schemes as 1) Homogeneous data: Except for the highest setting of the
MH/RIMCMC, Gibbs{naz = 10), GibbsEmaz = 5) and  pyperparametep, the three inhomogeneous DBNs never perform
Gibbs-NBIN, respectively. To assess the degree of convergamce, orse than the homogeneous model, while on the other hand for
repeated the MCMC simulations from five different initializations inhomogeneous data, the homogeneous model is inappropriate and
and computed the PSRFs for all potential edges, as described Bbrforms substantially worse. Z)ass 1 data: The class 1 model

the supplementary paper. Recall that PSRF=1 indicates perfegq the proposetbgularized class 2 model perform equally well.
convergence, and PSRH.1 is usually taken as an indication of gqip outperform theclass 2 model, except for high values of
sufficient convergence. Ideally, we would like to plot the PSRFpls 3) Class 2 data: The class 1 model cannot accommodate the
values against the MCMC iteration number. However, due tonode-specific changepoints and is outperformed by the proposed
different computational costs of the individual steps of the MCMCreguIarized class 2 model (the “NEW” model). Interestingly, the
simulations — a Gibbs step based on dynamic programming ifatter also shows more stability than thatass 2 model with
substantially more expensive than an MH/RIMCMC step — Weyegpect to a variation of the hyperparameteindicating increased
plotted the PSRF scores against the simulation time, measuregdp stness as a consequence of the node clusterifRggd)arized

in terms of conventional MH/RIMCMC stersThe results are  ¢jass 2 data: The results are comparable to those for thass
shown in Figure 1. The proposed Gibbs sampling scheme based N qata. Theclass 1 model is consistently inferior to thelass 2
dynamic programming significantly outperforms the conventionalmodeL and theclass 2 model is, once again, substantially more
MH/RIJMCMC scheme. When comparing the different dynamic ssceptible to a variation gf The mean AUC values are — overall
programming schemes, Gibbs-NBIN performs slightly better than_ |ower than for the previous case, thiass 2 data. This seems
GibbS(E na; = 10) and Gibbsfma. = 5), in agreement with 1 pe 5 consequence of spurious interactions resulting from chance
the findings in Fearnhead (2006). For the reconstructed networkqrelations. Setting the autocorrelation of noBéP3 to zero
topology and the inferred changepoint locations, which in the(E = 1, no AC), noticeably increases the mean AUC values. In

absence of a true gold standard cannot be evaluated properly, Weymmary, this study shows that the proposegliarized class 2
refer to our supplementary paper.

5 1100k MH/RIMCMC (5500 Gibbs-NBIN) steps take 45 min. with our ® Recall that a high value of the hyperparameteimplies a low prior
MATLAB code on a SunFire X4100M2 machine. penalty for changepoints.
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Fig. 2. Network reconstruction accuracy on synthetic data. The figure shows the mean area under the precision-recaks(AUC) in dependence on
the hyperparameter of the negative binomial point process prior of Eq. (5). Fa& BAF pathway (bottom right panel) we implemented 5 scenarfios o
inhomogeneity as explained in Section 5.2. For each scetimie is a panel for SNR=3 and SNR=10; “noAC” stands for “ntmearrelation”. The following
models were applied to the data, each representing a partidats: (i) homogeneous model: the standard DBN model bastn @Ge score, (ii) thelass

1 model was taken from Grzegorczgkal. (2010), (iii) theclass 2 model was taken from Grzegorczyk and Husmeier (2009), andh@regularized class 2
model was generated from thiass 2 model in Grzegorczyk and Husmeier (2009) as explained in &e8til. The mean AUC scores were computed from 10
independent data instantiations.

model, which implements the method of Section 2.3, is alwaysapplied to infer a network (see Cantoeeal. (2009) for details),

among the best-scoring models. It shows more robustness than tfimm which, by comparison with the known gold standard, the
competing schemes both with respect to a variation of the type oprecision (proportion of correctly predicted interactions out of the
data, and a variation of the prior knowledge (inherent in Eq. (5) viatotal number of predicted interactions) and recall (percentage of

D). true interactions that have been correctly identified) scores were
determined. In our study, we used the data described in Section
5.3 Synthetic biology in Saccharomyces cerevisiae 3.3, applied the proposedgularized class 2 model as described in

. o . Sections 2.3, and sampled networks from the posterior distribution

In the final application we compare the proposed model with other . : . . . . .

. : ‘with the Gibbs sampling scheme described in Section 2.2. This

state-of-the art techniques on a topical data set from synthetic. ) . . . .

. . ) ives us an ordering of interactions, ranked by their marginal
biology. We used a synthetically generated network of five gene

in Saccharomyces cerevisiae (yeast), depicted in Figure 3, which posterior probability, and by plotting precision against recall scores
was used in Cantonet al. (2009) vto evaluate two staté—of-the- for different thresholds, we obtain the precision-recall (PR) curves

art network reconstruction methods: BANJO, a conventional DBN (Davis and Goadrich, 2006) shown in Figure 3. Larger areas under

. . . . ‘the PR curve are indicative of a better reconstruction accuracy;
trained with simulated annealing; and TSNI, an approach based on . . )
. : . . . - _hence in agreement with Cantoeeal. (2009) we find that the
ordinary differential equations. Both methods, which are describeq _ . B . ; e Y
switch on” data are more informative than their “switch off

n more_ det_all n C.antonet_ al. (2009), Were. applied .to gene counterpart. The scores for BANJO and TSNI, which we took from
expression time series obtained from synthetically designed yeagantoneet al. (2009), lie clearly and consistently below the “switch

cells grown with different carbon sources: galactose (“switchon,, PR curve. for different choices of the chanaenoint Process br
on”) or glucose (“switch off”). BANJO and TSNI were then ’ gep P P
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Fig. 3. Network reconstruction accuracy evaluated with synthetic biology. The centre panel shows the true gene regulatory netwogadcharomyces
cerevisiae, designed in Cantonet al. (2009). The outer panels show the precision-recall curoethe proposedegularized class 2 model (NEW). Results
were obtained for both experimental conditions: the “switcfi and the “switch off” time series described in Cant@al. (2009). The symbols at fixed
positions (triangle, star and square) mark the precisioalreesults obtained in Cantoeeal. (2009) for two state-of-the-art network reconstructionmoeis:
BANJO (conventional homogeneous DBN) and TSNI (ODE basedoagp).

— defined byp in Eq. (5). This suggests that the method proposedbavis, J. and Goadrich, M. (2006) The relationship between precision-recall aGd RO

in the present paper achieves a genuine and significant improvementcurves.ICML, 23, 233-240.

over state-of-the-art schemes reported in the recent systems biologgarnhead, P. (2006) Exact and efficient Bayesian inference for multiple changepoint

literature problems.Statistics and Computing, 16, 203—213.

’ Friedman, N. and Koller, D. (2003) Being Bayesian about network struckliaehine
Learning, 50, 95-126.

Geiger, D. and Heckerman, D. (1994) Learning Gaussian netwbiAs.10, 235-243.

6 CONCLUSION Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation usinigjptes

We have proposed two improvements for time-varying DBNs: a sequencesSatistical Science, 7, 457-472.

; ; ; ; reen, P. (1995) Reversible jump Markov chain Monte Carlo computation andiBayes
Gibbs sampling (GS) scheme based on dynamic programming (Dlﬁ model determinatiorBiometrika, 82, 711-732.

as an alternative to RIMCMC, and information coupling betweerbrzegorczyk, M. and Husmeier, D. (2009) Non-stationary continuous dynamic
nodes based on Bayesian clustering. The evaluation on a real genegayesian networksNIPS, 22, 682-690.
expression data set froMrabidopsis thaliana suggests that GS- Grzegorczyk, M., Husmeier, D., Edwards, K., Ghazal, P. and Millar, A. (2008)
DP shows faster mixing and convergence than MH/RIMCMC. A Modelling non-stationary gene regulatory processes with a non-homogeneous
. . . Bayesian network and the allocation sampRioinformatics, 24, 2071-2078.
comparative evaluation on synthetic data demonstrates that the new . , . ! i
. . . gorczyk, M., Rahnetifirer, J. and Husmeier, D. (2010) Modelling non-stationary
model based on information coupling between nodes comMpares gynamic gene regulatory processes with the BGM maGefputational Satistics.
favourably with earlier models that either employ network-wide In Press, DOI 10.1007/s00180-010-0201-9.
(class 1) or node-specific dass 2) changepoints. On gene Kolar, M., Song, L. and Xing, E. (2009) Sparsistent learning of varyingfioeft
expression time series from a recent study of synthetic biology in _ M°de!s with structural changeIPS, 22, 1006-1014. _ _
.. Lébre, S. (2007Rochastic process analysis for Genomics and Dynamic Bayesian
SaCCharomyceS cerevisiae the proposed model has OUtperformed Networks inference. Ph.D. thesis, Univergitd'Evry-Val-d‘Essonne, France.
two state-of-the-art network reconstruction methods. These findingsebre, S., Becq, J., Devaux, F., Stumpf, M. P. and Lelandais, G. (2010)tiS#itis
suggest that the proposed method makes important contributions inference of the time-varying structure of gene-regulation netwdBk&C Systems
both to inference and performance of network reconstruction Biology, inprint

. ocke, J., Southern, M., Kozma-Bognar, L., Hibberd, V., Brown, P., Tuderand
methods, and hence adds a valuable new tool to the kit O% Millar, A. (2005) Extension of a genetic network model by iterative experitation

computational systems biology. In our future work we will  ang mathematical analysisiolecular Systems Biology, 1, (online).
investigate different choices for the prior on node cluster formationsMadigan, D. and York, J. (1995) Bayesian graphical models for discrete data.
introduced in Section 2.3, exploring methods from Bayesian non- International Satistical Review, 63, 215-232.

rametri n Dirichl r riors. Nowlan, S. J. and Hinton, G. E. (1992) Simplifying neural networks Hy weight-
parametrics based o chlet process priors sharing.Neural Computation, 4, 473-493.

Robinson, J. W. and Hartemink, A. J. (2009) Non-stationary dynamic Bayesi
networks.NIPS, 21, 1369-1376.
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Abstract: This paper is a supplement to our main paper 'Improvements in the reconstruction of time-
varying gene requlatory networks: dynamic programming and regularization by information sharing among
genes’ (submitted to Bioinformatis, 2010). It contains the algorithmic details of the proposed model im-
provements and provides further results obtained for the circadian gemes in Arabidopsis thaliana data.
Section 1 gives a comprehensive description of the dynamic programming schemes, the cpBGe model, and
the novel reqularized cpBGe model. In Section 2 the inferred network topology and the inferred changepoint
locations for circadian genes in Arabidopsis thaliana are presented and discussed.

1 Methodology

1.1 The homogeneous dynamic BGe network

DBNSs are flexible models for representing probabilistic relationships between interacting variables
(nodes) Xi,..., Xy via a directed graph G. In most applications first-order DBNs are considered
so that all interactions are subject to a time delay 7 = 1. An edge pointing from X; to X,
symbolically G(j,») = 1, in a DBN with 7 = 1 indicates that the realization of X,, at time point
t, symbolically: X, (t), is conditionally dependent on the realization of X; at time point ¢ — 1,
symbolically: X;(t — 1). See Figure 1 for an example of a DBN consisting of two nodes X and
Y. The parent node set of node X,, in G, 7, = m,(G), is the set of all nodes from which an edge
points to node X,, in G. Note that there is a one-to-one mapping between the graph G and the

Page 8 of 27
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(a) recurrent network (b) unfolded dynamic network

Figure 1: State space graph and corresponding dynamic Bayesian network of order
7 = 1. Panel (a) shows a recurrent state space graph containing two nodes. Node X has a
recurrent feedback loop and acts as a regulator of node Y. Panel (b) shows the same graph
unfolded in time.

N parent node sets m,; i.e. G(j,n) =1 if and only if X; € m,; and vice-versa G(j,n) = 0 if and
only if X; ¢ m,. Given a data set D, where D,,; and D, ;) are the tth realizations X, () and
mn(t) of X, and 7, respectively, and 1 <t < m represents time, DBNs are based on the following
homogeneous Markov chain expansion:

N m
P(0I6,0) = [T IT P(Xa®) = Putlma(t = 1) = Dir, 1), 62 M)

n=11t=2

where 0 is the total parameter vector, composed of node-specific subvectors 6,,, which specify the
local conditional distributions in the factorization. From Eq. (1) and under the assumption of
parameter independence, P(0|G) = [],, P(6,|m,), the marginal likelihood is given by

N
P(DIG) = /P(DIQ,G)P(O\Q)CI@ = [ w5 (2)
YD) = /HP(Xn(t) = Dyilmal(t — 1) :D(,,mt_l),Gn)P(0n|7rn)d9n (3)

where DIn := {(Dy, 1, Dr,, 1—1) : 2 < ¢t < m} is the subset of data pertaining to node X,, and parent
set m,. We will refer to W (D) as local score of X,,. For the local scores ¥ (D7) various modelling
frameworks, such as sparse Bayesian regression models (e.g. see Rogers and Girolami (2005)), have
been proposed and applied in the literature. In this study we focus on the BGe model, which was
proposed by Geiger and Heckerman (1994). That is, a linear Gaussian distribution is chosen
for the local conditional distribution P(X,|m,,8,) in Eq.(3), and the conjugate normal-Wishart
distribution is assigned to the local prior distributions P(0,|7,). Under fairly weak regularity
conditions discussed in Geiger and Heckerman (1994) (parameter modularity), the integral in
Eq. (3) has a closed form solution, given by Eq. (24) in Geiger and Heckerman (1994). The
resulting expression is called the (local) BGe score.

1.2 The inhomogeneous dynamic changepoint BGe model (cpBGe)

To obtain a inhomogeneous DBN, we generalize Eq. (1) with a node-specific mixture model:

N m K
T N\ OV )n
PG, V.K,0) = [T T IT P(Xa(®) = Duslma(t = 1) = Dis, 1), 6%) (4)
n=1t=2k=1
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where dv (1), is the Kronecker delta, V is a matrix of latent variables V,,(t), V,,(t) = k indicates
that the realization of node X,, at time ¢, X,,(t), has been generated by the kth component of
a mixture with C,, components, and K = (Kq,...,K,). Note that the matrix V divides the
data into several disjoined subsets, each of which can be regarded as pertaining to a separate BGe
model with parameters Oﬁ. The vectors V,, are node-specific, i.e. different nodes can have different
changepoints so that the proposed model has a higher flexibility in modelling nonlinear relationships
than the BGM model proposed in Grzegorczyk et al. (2008). The probability model defined in
Eq. (4) is effectively a mixture model with local probability distributions P(X,|r,,8%) and it can
hence, under a free allocation of the latent variables, approximate any probability distribution
arbitrarily closely. But different from the free allocation of latent variables in Grzegorczyk et al.
(2008), in the present work, we change the assignment of data points to mixture components from
a free allocation to a changepoint process. This allocation scheme provides the approximation
of a nonlinear regulation process by a piecewise linear process under the assumption that the
temporal processes are sufficiently smooth. Employing a changepoint process effectively reduces
the complexity of the latent variable space and incorporates our prior belief that, in a time series,
adjacent time points are likely to be assigned to the same component. From Eq. (4), the marginal
likelihood conditional on the latent variables V is given by

N
P(D|G,V,K) = /P(D\Q,V,K,())P(O)de = [[ ¥'(D5" [Kn, V) (5)

n=1

a

n

VN DR [Kn, Vi)

U(Dy [k, Vi) (6)
1

b
Il

where the factors in Eq. (6) are given by:
m OV (1), k
W(D7 [k, Val) = / [T P(Xa() = Dutlmalt = 1) = Dig, 00, 05) 7 POk w0y (7)
t=2

Eq. (7) is similar to Eq. (3), and can be interpreted as a local BGe score restricted to the data
subset DI [k, V,,] := {(Dn.t, Dr, 1-1) : Vau(t) = k,2 <t < m}. The product U1 (D [K,,V,]) in
Eq. (6) is the local cpBGe score of X,,. Note that there is a factor for each mixture component
k and that each factor W(D7"[k, V,]) can be interpreted as a local BGe score for the data subset
DI [k, V.

When the regularity conditions defined in Geiger and Heckerman (1994) are satisfied, then the
expression in Eq. (7) has a closed-form solution: it is given by Eq. (24) in Geiger and Heckerman
(1994) restricted to the subset of the data pertaining to node X,, and its parents m, that has been
assigned to the kth mixture component (or kth segment).

The joint probability distribution of the proposed cpBGe model is given by:
P(G,V,K,D) = P(G)P(VIK)P(K)P(D|G, V,K) (8)

We restrict on graph prior distributions that can be factorized into node-specific factors, symbol-
ically: P(G) = Hﬁ[:l P(7,) and in the absence of genuine prior knowledge about the regulatory
network structure, we assume for P(m,) a uniform distribution. As done in our earlier work (Grze-
gorczyk and Husmeier, 2009) and in other Bayesian network studies (e.g. Friedman and Koller
(2003) or Grzegorczyk and Husmeier (2008)) we impose a fan-in restriction on the cardinality of the
parent node sets, symbolically: |m,| < 3, to ensure sparsity of the inferred graph structures. More-
over, we assume that the distributions of the node-specific numbers of mixture components and
allocation vectors P(V,|KC,)P(K,) are independent (n = 1,...,N) so that the joint probability
distribution in Eq. (8) can be factorized:

N
P(gvV’KvD) = H P(ﬂ'n)P(VnVCn)P(Kn)\IIT(IDzn [’Cnavn]) (9>

Page 10 of 27
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Accordingly, the posterior distribution P(G,V,K|D) can be factorized into independent node-
specific posterior distributions:

N
P(G,V.K[D) = [ P(mn, Vi, K0 D) (10)
n=1

where DYV = {(D,4,D14-1,---,Dni—1) : 2 < t < m} contains the last m — 1 observations
Dn2,...sDpm of X, and the first m — 1 observations Dy 1,...,D;jm—1 of all potential parent
nodes X; (j =1,...,N) of X,,. We note that each factor P(m,, V,,, K,|DLY) in Eq. (10) can be
infered independently.

As prior probability distributions on the node-specific numbers of mixture components K,,, P(K,,),
we take iid truncated Poisson distributions with shape parameter A = 1, restricted to 1 < I, <

Kaax (we set Kyax = 10 in our simulations). The prior distribution on the node-specific
latent variable vectors, P(V,|K,), is implicitly defined via a changepoint process. We identify K,,
components with /C,, — 1 changepoints b,, = (by1,...,bn k, —1) on the discrete set {2,...,m — 1}.

For node X, the observation at time point ¢ is assigned to the kth component, symbolically V,,(t) =
k, if and only if b, 1 <t < by i, where by, j is the kth changepoint implied by V,,, and b, =1
and b, x,, = m are two pseudo changepoints. There is a one-to-one mapping between allocation
vectors and changepoints: For ¢t = 2,...,mand k =1,...,Ky: bpp—1 <t < by & V,(t) = k.
To make that more specific, we henceforth use the notation by, = (by, 1,--.,bv, k,—1) for the
changepoint vector implied by V,,. Following Green (1995) we assume that the changepoints are
distributed as the even-numbered order statistics of £ := 2(K,, — 1)+ 1 points uq, . .., u, uniformly
and independently distributed on the set {2,...,m — 1}. The even-numbered order statistics prior
on the discrete changepoint locations induces the following prior distribution on the node-specific
allocation vectors P(V,,|KC,):

Kn—1

. ) H (bv, k+1 —bv, k—1) (11)

P(V,|K,) =
m— 2
k=0
( 2K, —1)+1
where by, o = 1 and by, x, = m. We note that the even-numbered order statistics prior avoids

changepoints at neighbouring time points ¢ and ¢ + 1, and we have: |by, k41 — by, x| > 1 for
k=0,...,K, — 1.

In the following sections we discuss Metropolis-Hastings and Gibbs MCMC sampling schemes
for sampling from the local posterior distributions P(7,, V,,, Kn|DEN) (n = 1,...,N). The
Metropolis-Hastings samplers employ local changepoint birth, death and reallocation moves on
(K, Vy,), and the acceptance probabilities depend on P(K,,)P(V,|K,,) ratios, which are straight-
forward to compute. For the Gibbs samplers, which include dynamic programming schemes
to sample the changepoints from the correct posterior distribution, closed-form expressions for
P(K,)P(V,|K,) are crucial.

1.3 MCMC based model inference

1.3.1 Metropolis-Hastings sampling schemes

We now describe a Metropolis-Hastings (MH) MCMC algorithm to obtain a sample
{G", VI, K"'};—1, .1 from the posterior distribution P(G,V,K|D) « P(G,V,K,D) of Eq. (10).
Our MH samplers combine the structure MCMC algorithm for Bayesian networks (Giudici and
Castelo, 2003; Madigan and York, 1995) with the reversible jump MCMC sampling scheme for
changepoints presented in Green (1995). This can be done straightforwardly, since conditional on
the node-specific allocation vectors V,, the model parameters can be integrated out to obtain the



©CoO~NOUTA,WNPE

Bioinformatics

local cpBGe scores WT(D7*[KC,,, V,]) in closed form, as shown in the previous Section 1.2. The re-
sulting algorithm is effectively an RIMCMC scheme (Green, 1995) in the discrete space of network
structures and latent allocation vectors, where the Jacobian in the acceptance criterion is always
1 and can be omitted. With probability pg = 0.5 we perform a single edge move on the current
graph G’ and leave the latent variable matrix and the numbers of mixture components unchanged,
symbolically: Vit = V? and K**! = K’. The new candidate graph is obtained by randomly
selecting one of the domain nodes X,, and changing its parent set 7, by either adding or removing
a parent node. There are |7! | nodes that can be removed from 7 and there are N — |7% | nodes
that can be added to 7, unless the maximal fan-in F is reached; for |r| = F no more edges can
be added. This gives a set N'(r%) of new candidate parent sets with |N(7%)| € {F, N} from which
we randomly select a new candidate parent set 7571, The MH sampler proposes the new candidate
graph G which results from G by replacing 7, by 7.1, and the new graph is accepted with
probability:

) ) \I/T D:;n (VA P i+1 i
A(gz+1|gz) = min 1’ ( - [Km 4n]) (ﬂ-ni ) |N(7:12| (12)
wi(opr K, Vi) Plm) [N (m)]
where |.| is the cardinality, and the local UT(.) scores have been specified in Eq. (6). The graph is

left unchanged, symbolically Gi*t! := G?, if the move is not accepted.

With the complementary probability 1 — pg we leave the graph G¢ unchanged and perform a move
on (Vi K'), where V! is the latent variable vector of X, in V¢ and K’ = (Ki,...,K%). We
randomly select a node X,, and change its current number of components K¢ and its allocation
vector V¢ via a changepoint birth or death move, or we keep K¢, and change its latent variable
vector V!, by a changepoint re-allocation move along the lines of the RIMCMC algorithm of Green
(1995).

The changepoint birth (death) move increases (decreases) K, by 1 and changes Vi correspondingly.
The changepoint reallocation move leaves K¢, unchanged and modifies Vi only. If with probability
(1 — pg)/N a changepoint move on (K¢, V?) is performed, we randomly draw the move type.
Under fairly mild regularity conditions (ergodicity), the MH MCMC sampling scheme converges
to the desired posterior distribution (Green, 1995) if the acceptance probabilities for the three
changepoint moves (K&, Vi) — (Kit1 Vitl) are chosen of the form min(1, R), with

o YO [KE Vi)

jcitt .
" (DI [k, Vi
X A X B — Hk:l ( n [ ) n ])

! - x Ax B (13)
UH(Dr" K, Vi) [T, Y(DE" [k, Vi])

where A = P(VIFLCHL) P(KCEHY) /P(VEKE) P(KE) is the prior probability ratio, B is the inverse
proposal probability ratio, and the W(.)t- and W(.)-terms have been specified in Eqn. (6) and (7).

In our implementation we choose K/ -dependent proposal probabilities b , dici , and ryc; for birth
(b), death (d) and re-allocation (r) moves. Like Green (1995) we set: bx: = c min{l, P(’C;H)}

_ P(K)
and dx: = ¢ min{1, Pg?,:éi_)l)} with the constant c as large as possible subject to the constraint

bii +di < 0.9 for all i so that the ratio of the proposal probabilities for birth versus death moves
dxi +1)/bx: cancels out against the prior ratio P(K: +1)/P(K!). The proposal probability for a
changepoint (re-)allocation move is given by: r¢i =1 —bxi — dii .

(i) For a changepoint reallocation (r) we randomly select one of the existing changepoints by j from
the vector (bvg Ly bvi K,—1), and the replacement value bt is drawn from a uniform distribution
on the discrete set {bV’;'l,j—l +2,..,bvi i1 — 2} where byi o =1 and by: i, = m. The proposal
probability ratio is one and the prior probabilities P(K:t!) = P(K!) cancel out, B, = 1. From
Eq. (11) it can be seen that the remaining prior probability ratio is P(VEFHCIHHL) /P(VE|KL) is
given by:

(bys 1 = b = D)bF by, ;1 — 1)

A, = 7
(bvi jr1 —bvi g — D(bvi j —byi j1—1)

(14)
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If there is no changepoint (K! = 1) the move is rejected and the Markov chain is left unchanged.

(ii) If a changepoint birth move (b) on (K%, V%) is proposed, the location of the new changepoint
bt is randomly drawn from a uniform distribution on the set of all valid new changepoint locations:

BY(Vi):={b:2<b<m—1AVje{l,....Ky—1}:[b—byi ;| > 1} (15)

The new candidate changepoint bf with bvi ; < bt < bvi jy1 ylelds Kitl = K! + 1 mixture
components and a new candidate allocation vector V! in which one segment has been subdivided
into 2 segments. The proposal probability for this move is bx: / |BT(V?)|, where |Bf(V?)] is the
number of valid changepoint locations for b'. The reverse death move, which is selected with
probability d(x: 1), consists in discarding randomly one of the (Ki +1) — 1 = K! changepoints
from (Kir Vi+tl) The prior probability ratio A, can be computed with Eq. (11):

g PELHD  @RLDEE) Gy D0 by o)
"TOPKL) (m=2K -D(m 2K, -2 (v by =)
. A - d(}ci +1)‘BT(V2)| . . .
and the inverse proposal probability ratio is B, = oK) This can be simplified to:
K&
(255, +1)(2K3,) (bvy,j+1 = b = DO = byy ; — 1) |BI (V)|
AyBy = - 3 & = - (17)
(m — 2K}, — 1)(m — 2K}, — 2) (bvi jy1 —bvi j—1) K

For K¢ = K4z the birth of a new changepoint is invalid and the Markov chain is left unchanged.
(iii) A changepoint death move (d) on the current state (K¢, V%) is the reverse of the birth move.
There are !, — 1 changepoints and we randomly select and delete one of them. Let bf = byi ; be
the selected changepoint and let Vi be the new candidate allocation vector after deletion of the
selected changepoint bf. We obtain for the product of the prior probability ratio and the inverse
proposal probability ratio:

(m — 2K% — 3)(m — 2K1 — 4) (bvi j41 —bvi j—1—1) Ki—1

AyBg = d . i
7 (2K —1)(2Ki, —2)  (byi jp1 = bf = 1)(0F —bys ;1 — 1) [BI (Vi)

(18)

where |BT(VZt1)| is the number of valid new changepoint locations that can be added during a
birth move. For K = 1 there is no changepoint that can be deleted during a death move and the
Markov chain is left unchanged.

1.4 Sampling parent node sets from the Boltzmann distribution

The Metropolis-Hastings (MH) sampler presented in Section 1.3.1 changes the current graph G by
single-edge operations. An improvement can be achieved by sampling new parent node sets 7% for
each node X,, directly from the posterior distribution:

¥(D;)
Znn:hn\g}‘ \P(Dzn)

where the local ¥(.)-scores of the standard (homogeneous) DBN were specified in Eq. (3) and the
sum is over all valid parent node sets m, subject to a fan-in restrition F. Eq. (19) is similar to
Eq. (10) in Friedman and Koller (2003). The main difference is that Friedman and Koller (2003)
apply this scheme to static Bayesian networks subject to an order constraint, where the latter has
to be imposed on the system to render it modular. A DBN without intra-time-slice connectivities,
on the other hand, is intrinsically modular, i.e. Eq. (19) exploits modularities that already exist
and do not need to be enforced via an additional constraint.

P(m| DY) = (19)
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In standard (homogeneous) DBNs the Boltzmann distributions can be pre-computed and stored
for each node so that sampling from them may become computationally very effective and superior
to MH samplers that are based on single edge operations. For our changepoint model it turns
out that sampling from the Boltzmann distribution is ineffective, as the local scores depend on
the node-specific changepoints and would have to be re-computed in every single MCMC step. In
our cpBGe model we have the following node-specific Boltzmann distributions conditional on the
number of changepoints IC,, and the allocation vector V,,:

DR K, Val) T (DR [k, V)
Zﬂnzlﬂ—n‘gj: \IIT (Dgn [IC’ILa Vn]) Zﬂn‘ﬂnlgf Hlkczl \II(DZ{” [k7 Vn])

P(ﬂ-:z'K:n?VmDrlL:N) = (20>

where the local cpBGe scores U1 (D [K,,, V,]) and the local BGe scores ¥ (D" [k, V,]) can be
computed with Eqn. (6) and (7). Although the three changepoint moves affect only two local BGe
scores in the products, the re-computation of the Boltzmann distribution after each changepoint
move becomes computationally expensive. The bottleneck becomes obvious when taking into
consideration that the three changepoint moves give relatively small steps in the configuration
space of the allocation vector V,, so that a large amount of re-computations is required.

In Sections 1.5 and 1.6 we will discuss a dynamic programming scheme for sampling the node-
specific numbers of changepoints /C,, and the node-specific allocation vectors V,, directly from the
conditional posterior distribution: P(V,, K, |m,, Di*). This dynamic programming scheme for
sampling from P(V,, K, |m,, DI") in combination with sampling parent node configurations m,
from the Boltzmann distribution P(m,|Kpn, Vi, DEN) can be used to construct a Gibbs MCMC
sampling scheme.

1.5 Sampling changepoints by dynamic programming

In the proposed cpBGe model we have a parent node set m,,, a number of components K,,, and an
allocation vector V,, for each domain node X,, (n =1,...,N). K,, can be identified with C,, — 1

changepoints on the discrete set {2,...,m — 1} and there is a one-to-one mapping between V,, and
the changepoint vector by, = (bv, 0,...,bv, k, ) where by, o = 1 and by, x, = m are pseudo
changepoints.

We now want to apply a dynamic programming scheme to sample for each domain node X,, from
the joint posterior distribution of (K, V,,) conditional on the parent node set m,:

P(Ky, Vul|mn, Dir) = P(Kylmp, DE*YP(V o, | Ky 70, DI (21)

where D7 denotes the set of observations {(D,, i, Dx, ,i—1) : 2 < ¢ < m} pertaining to node X,
and its parent node set m,. Accordingly, let D] [s : t] denote the sub-segment {(Dy, ;, Dx, i-1) :
s < i <t} of adjacent observations, and we also define Dy, sy = {Dy,; : s < <t} and Dy s =
(Dp its—1<i<t—1}

The local cpBGe score WT(D7[K,,, V,,]) of X, is the probability of the observations Di,2:m of Xy,
given the parent set m, and its observations Dx, 2.m, Ky mixture components, and the allocation
vector V,,. The local score of X,, can be factorized using Eq. (6). Mapping the allocation vector
V,, onto the changepoint vector by we obtain as alternative representation:

Kn—1
‘I/T(D::" [Kns Vin]) = P(Dn72:m|Dm72:maKna bv,) = H ‘IJ(DZ"[(an,k +1): an,k-i-l]) (22)
k=0

When just conditioning on IC,, with IC,, > 1, we obtain the following marginal distribution:

Kn—1

P(Dy 2| Dy 2 Kn) = Y P(byp) [ WDF[(bnk +1) : b)) (23)
b,eB(K,) k=0

Page 14 of 27
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where B(K,,) is the set of all valid changepoint vectors b,, = (b, 0, .- ., by x,, ) of cardinality &C,, + 1
with b, 41 — by > 1, byo = 1 and b, , = m, and P(b,) = P(V,(b,)) is the prior probability
of the unique allocation vector V,,(b,) and can be computed with Eq. (11) after having extracted
the allocation vector V,(b,) from b,. Now we additionally fix the j-th changepoint location,
symbolically: b, ; =t — 1, and restrict on the data sub-segment DJ" [t : m]:

Kn—1
P(Dn tim[Dry iy Koy b =t — 1) = > PoL) [] w@m bk + 1) basa)  (29)
b7, €83 (Ky|by, j=t—1) k=j
where B?(K,|b,; =t — 1) is the set of all valid changepoint vectors bJ, = (b, j11,...,bnx,) on

the discrete interval {t+1,...,m—2} with b, ;41 —bn; > 1, b, ; =t —1 and b, x,, = m. Different
from Eq. (23) the prior probability P(b?) of the changepoint subset b/ cannot be computed in
closed-form for j > 0.

For K, >1and j =0,...,K, — 1 we set Q;C (tIn, ) = P(Dnt:m|Dr,, tim, Kn, bn,j = t — 1) for
t=2(j+1),....,m—2(K, —j)+1 and let Q;-C”(t|n,7rn) be zero otherwise, i.e. for ¢t < 2(j + 1)
and t >m —2(K, —j) + 1.

It can be seen from Eq. (23) that QOK" (2|n, my,) is equal to P(Dy, 2:m|Dx,, 2:m, Kr), since by, o =1
is a fixed pseudo changepoint, and we have for t = 2KC,,,...,m — 1:

Qkr 1 (tln,m) = W(D [t = m]) (25)
so that the @ terms can be computed straightforwardly for j = IC,, — 1 .

Afterwards — as a special case of the recursions given in Fearnhead (2006) — we obtain the following
recursions: For K, >1,7=0,...,K, —2and t =2(j +1),...,m —2(K,, — j) + 1:

m—2(K,—j—1)
QF(thnym) = > WDt DR (s + Un,m) Plbng =t = Lbnger = 5,K,)  (26)
s=t+1

where the bounds of ¢ as well as the upper summation index allow for the changepoints that still
need to be included?.

In our changepoint model the probability distribution P(b, j =t—1|b, ;11 = s, ;) of changepoint
by, ; conditional on C,, changepoints and the b, ;41 changepoint being located at time point s cannot
be computed in closed-form. Following Fearnhead (2006) we set:

s—t

( Q(K,in—_1§—|— 1 )

This is a 'computational trick’ which also yields: Q4™ (2|n, m,) = P(DI"|K,) (Fearnhead, 2006).
Thus, the modified recursions can be employed to compute: P(Dy 2.m|Dr, 2:m,Krn) for K, =
2,...,Kymax. Note that there is no changepoint for K,, = 1 so that the local cpBGe score (see
Eq. (6)) is equal to the local BGe score of X,, (see Eq. (3)).

P(bp; =t —1|by 11 = 5,Ky) = P(m, Ky, s,t) 1=

(27)

P(Dn,Z:m‘IDﬂn,Q:mJCn = 1) = \I’(Dzn) (28)
Subsequently, the marginal posterior probability of the number of mixture components IC,, can be

computed as follows:

P(IC = ]{}*) (’Dn,2;m|D7rn,2:maICTL = k*)
Z’CMAX P( = k)P(Dn,Z:m|D7T,L,2:m7’C’ﬂ = k)

P(Icn = k*|Dn,2:maD7rm2:m) = (29)

INote that there must be room for including j — 1 changepoints bn,1,...,bn,j—1 on the locations 2,...,t—2 with
bn,j —bn,j—1>1(=1,...,5), bn,o =1 and b,,; =t — 1. And there must be room for I, — 1 — j changepoints
bn,j+1s--->bn,k,—1 on the locations ¢,...,m — 1 with b, j — by j—1 > 1 (G =75+1,...,Kn), by,j =t —1 and
bn.xc,, =m.
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where P(K,) is a Poisson distribution with A = 1 truncated to 1 < K, < Kprax in our ¢cpBGe
model.

After having sampled K,, = k from P(K,,| Dy 2:m, Dr, 2:m), We can sample an allocation vector V,,
from P(V,|K, = k, Dy 2:m,Dx, 2:m) by sampling the j-th changepoint bv, ,; conditional on the
(j — 1)-th changepoint by, ;1 for j =1,...,k — 1 from the following distribution:

Y(DR" by, j—1 + 1) = sDQF (s + Lin, mn) P(m, k, 8,by, j—1 + 1)
Q;?,l(bvn,jq + 1|n,mn)

as shown in Fearnhead (2006). The dynamic programming scheme works as follows: (i) We sam-
ple K, = k from Eq. (29). (ii) For ¥ = 1 we have no changepoints and for £k > 1 we can
subsequently employ Eq. (30) to sample the locations of the k — 1 changepoints. Because of
the one-to-one mapping between changepoints and allocation vectors, the sampled changepoints
bv, 1,--.,bv, k-1 give a unique allocation vector V,, which can be seen as directly sampled from
P(Vn“Cn = kypn,2:mvpﬂn,,2:m)~

As a summary: By employing the dynamic programming scheme presented in this Section for each
node X, with parent set 7,, the number of mixture components K, and the allocation vector V,
can be sampled from the conditional posterior distribution of P(K,,, V|7, D).

P(bv,,; =slbv, j—1,D5" Kn = k) =

(30)

1.6 Sampling changepoints from a point process prior

As shown by Fearnhead (2006) the computational costs of the dynamic programming scheme can
be reduced by a slightly modified prior distribution for (K,,, V,,). Instead of modelling P(/C,,), and
afterwards the allocation vectors V,, conditional on /C,,, a point process prior can be used to model
the distances between successive changepoints. In the point process model g(t) (t = 1,2,3,...)
denotes the prior probability that there are t time points between two successive changepoints
by j—1 and by, ; on the discrete interval {2,...,m—1}. The prior probability of K, —1 changepoints
being located at time points by, 1,...,b, k, —1 is:

Kn—1
P, sbn,—1) = go(bn1) | T 9ns —bnj1) | (1 =Gloni, —bux,-1)  (31)
j=2

where b, o = 1 and b, x, = m are again pseudo changepoints, G(t) = Y'_, g(t), and go(.) is
the prior distribution for the first changepoint b, 1. For g(.) the probability mass function of the
negative binomial distribution NBIN(p,a) with parameters p and a can be used:

a—1

t—1 Y
o= (17 - (32)
In a point process model on the positive and negative integers the probability mass function of the

first changepoint b, 1 € {2,...,m — 1} is a mixture of k negative binomial distributions:

k

go(bn1) = %Z ( (bn,li—_ll) -1 >pi(1 _p)(bn,lfl)fi (33)

i=1

For each node X, we define Q(¢t|n,m,) as the probability of its observations D, t.,, given the
observations Dy (;—1):(m—1) of ™, and a changepoint bt at time point t — 1 (t=2,...,m):

Q(t|n; 7Tn) = P(Dn,t:m‘Dfrn,(tfl):(mfl)a b=t — 1) (34>

Q(m|n,m,) is then equal to ¥(Dr~[m : m]), defined below Eq. (21). For t = 3,...,m — 1 the
following recursion can be used:

Q(tn, m,) = (i: U(Drn[t: s])Q(s+ 1|n, m,)g(s + 1 — t)) + U (Dt :m])(1—G(m—t)) (35)

s=t
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and

m—1

Q2|n,m,) = (Z U(Drr12: s))Q(s+ 1n,mpn)go(s — 1)) +U(Dr)(1 — Go(m —2)) (36)
s=2

where Gy(t) = 22:1 go(s). The posterior distribution of the first changepoint b,, 1 given the parent

set 7, is:

go(t — 1)

P(bp =t/Dpr) = ¥(Dr[2 : t))Q(t + 1\”»%)W (37)
for t =2,...,m — 1 and the probability of no changepoint (P(K,, = 1)) is given by:
1-G -2
P(Ky = 1jmn, D) = (DT [2 : ) L=-C0m = 2) (38)

Q(2[n, m)

The posterior distribution of the j-th changepoint b, ; given the parent node set m, and the
previous changepoint b, ;1 is:

g(t — by, j71>
P, := P(b,; = tlbn j—1,D5") = V(D [(byj—1 + 1) : 1) Q(t + 1|n, 7, : 39
1= Pl = tbn g1, D) = D (b yoa + 1) QA+ Ln,m) 5ol =2l (39
for t =b, ;-1 +1,...,m — 1 and the probability of no further changepoint is given by:
1—Go(m—by j—1—1
Py o= U(DI [(byj—1 + 1) : m)) of =1~ 1) (40)

Q(bn,jfl + 1‘”7 7Tn)

Consequently, if there is a changepoint at b, j_1 = ¢, then the location of the next changepoint can
be sampled from the discrete mass probability distribution [Pb7hj71+1, ooy Pm—1, P>p] where Ps,,
is the probability for no further changepoints. Having sampled changepoints by, 1, ..., by r—1 from
these conditional distributions, the number of mixture components is K,, = k and the allocation
vector V,, can be computed from the changepoints.

As a summary: For each node X, with parent set m,, (K,,V,) can be sampled from
P(Ky, Vi |mn, DEn) when the prior distribution P(K,,V,,) is replaced by a point-process model as
described above.

1.7 Sampling changepoints from a point process prior for the regularized
cpBGe model

The dynamic programming scheme presented in Section 1.6 can also be used to sample changepoints
for the novel regularized cpBGe model. In this Section we describe the modifications that have
to be made. We employ the same point process prior for cluster-specific changepoints. The prior
probability that there are K; — 1 changepoints being located at time points b; 1, ..., b; x,—1 for the
nodes in the ith cluster is given by:

Ki—1
P(bi,- - bix—1) = go(bin) | [T 9(biy —bij1) | (1= Gbix, — bix,—1)) (41)
=2

where ¢(.), G(.), go(.) have been specified in Section 1.6 (see Eqn. (32)-(33)).

Different from the original cpBGe model we now have changepoints for each of ¢ clusters of nodes
induced by the clustering C rather than node-specific changepoints for each individual node. We
want to sample changepoints for each cluster, which are then common to all the nodes in that
cluster. We consider the ith cluster (1 < i < ¢), that is the set of nodes {X,, : C(n) =i}. The
nodes in the ith cluster share K; components and there is a set of changepoints b; 1,...,b;x,—1

10
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that can be mapped onto the allocation vector of the ith cluster V&: VE(t) =k & b 1 <t < b
(t=2,...,mand k=1,...,K;).

We define Q(t|i, C, G) as the probability of the observations for the nodes in the ith cluster Dy, s,
(n : C(n) = i) conditional on the corresponding realisations of the parent nodes Dr, (—1):(m—1)
(n:C(n) = i) and a changepoint b' at time point ¢t — 1 (¢ = 2,...,m).

For t = m we have:

Q(mli,C,G) = 1(1) W(Dy [m : m]) (42)
i ()i
and for t = 3,...,m — 1 the same recursion as in Section 1.6 can be used:
Qtli.c.g) = mzl [T w@ilt:s) | Qs +11i,C,G)g(s + 1 —t) (43)
= \ ()i
+| I w@r:m) | Q-Gim-1) (44)
n:C(n)=i
and
Q@2li,C.g) = mz_j [T w@r2:sDQs+1[i,¢,9) | gols — 1) (45)
=2 \nc(n)=i
+< IT @@ ) (1 -Go(m—2) (46)
n:C(n)=i

where Go(t) = Y.'_, go(s). The posterior distribution of the first changepoint b; ; of cluster
i given the graph G that implies the parent sets for the nodes in the ith cluster, symbolically
{mp|n : C(n) =i}, is:

go(t —1)

0(20i.C.0) 47)

P(bi71 = t‘gvcvi) = H \D(D:{n [2 : t]) Q(t + 1|i,C,g)
n:C(n)=1

for t = 2,...,m — 1 and the probability of no changepoint for the ith cluster (P(K; = 1)) is given
by:
1— GO (m — 2)

pPii=1ic,g)=| [ w@i2:m) Q2)i,C,G)

n:C(n)=1

(48)

The posterior distribution of the j-th changepoint for the ith cluster b; ; given the parent node
sets m, ({n:C(n) =i}) and the previous changepoint b; ;_; is:

Page 18 of 27

) ) gt —bi-1)

P, :=P(b; ; =t|b; ;_1,1,C,G) = \I’DTT;" b;i—1+1):t t+1|:,C, G e

t ( 3] ‘ ,J—1 ) nzcg)_i ( [( J—1 ) ]) Q( | )Q(bi7j—1 + 1|Z7C,g)
(49)
fort =b; ;1 +1,...,m — 1 and the probability of no further changepoint is given by:
1— Go(m — bZ i1 — 1)

Pspy = U(Dr[(b; ;1 +1):m I 50
> nzcg[l)_i ( [( J—1 ) ]) Q(bi7j—1 4 1|Z,C,g) ( )
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We note that Eqn. (49-50) are the regularized cpBGe equivalents of Eqn. (39-40) in Section 1.6. If
there is a changepoint at b; ;1 = t, then the location of the next changepoint can be sampled from
the discrete mass probability distribution [Pbi,_,»_ 1415+ Pm—1, P>p] where P>, is the probability
for no further changepoints. Having sampled changepoints b; 1,...,b; ;—1 from these conditional
distributions, the number of mixture components for the ith cluster of nodes is K; = k and the
allocation vector for the nodes in the ith cluster V§ can be extracted from the changepoints:
Vlc(t) :kﬁbi,k—l <t< bi,k (t:2,...,m and k = 17--~7]Ci)-

As a summary: Conditional on the graph G for each cluster ¢ (1 < i < ¢) the number of change-
points and the changepoint locations, symbolically (K;, V$) can be sampled from P(K;, V¢|i,C, G).

With regard to Section 1.9 we note that Q(t|¢,C,G) was defined such that we have for t = 2:

Q(li.c,q) =3 P(véie) ] wi@pve) (51)
Vi

n:C(n)=j

where the sum is over all possible allocation vectors VJC- for the jth cluster induced by the clustering
C. The probability of the observations for the nodes in the jth cluster D, 2., (n : C(n) = j)
conditional on the corresponding realisations of the parent nodes Dr, 1.m—1 (n : C(n) = j) can
be thought of as the marginal distribution over all possible allocation vectors. In Section 1.9 and
in the main paper we refer to Q(2[4,C,G) as Q;(D,C,G), and as we have seen in this section
Q;(D,C,G) = Q(2|j,C,G) can be computed efficiently by applying the recursions of Fearnhead
(2006).

1.8 MCMC convergence

For our Matlab implementation of the cpBGe model we observed for the Arabidopsis data sets with
N = 9 variables and m = 49 data points that the computational costs of 2000 MCMUC iterations of
the Metropolis-Hastings (MH) RJMCMC sampling scheme are comparable to the computational
costs of approximately 1 Gibbs sampling step, when the same Poisson/changepoint process prior
is used and the maximal number of components is set to Ky;ax = 10. Each single Metropolis-
Hastings step proposes the change of either a parent node set m,, or a node-specific allocation vector
V... Each Gibbs iteration consists of two steps, i.e. a new parent node set m, and a new node-
specific allocation vector V,, are sampled. We refer to this Gibbs sampler as Gibbs(K = 10). We
tried two other variants of this Gibbs sampling scheme, with the objective to increase the number
of Gibbs steps at the same computational costs. (i) Setting Kp;ax = 5 approximately halves
the computational costs of the Gibbs sampler, so that 2 moves are approximately as expensive
as 2000 MH iterations. We refer to this version of the Gibbs sampler as Gibbs(K=5). (ii) For
the Poisson/changepoint process prior with the hyperparameters p = 0.05 and a = 2 of the
negative binomial distribution gained a tenfold increase in the number of Gibbs steps at the same
computational costs. We will refer to this version of the Gibbs sampler as Gibbs-NBIN, and we
note that performing 10 Gibbs-NBIN steps required the same computational costs as 2000 MH
steps.

During the sampling phase the cpBGe model outputs a graph sample G, ..., G! from the posterior
distribution from which marginal edge posterior probabilities can be computed. For a network
domain with N nodes an estimator e, ; for the marginal posterior probability of the individual
edge X, — X, (G(n,j)) is given by:

€n,j =

I
Z G'(n, j) (52)

~1 =
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where G¢(n, 7) is an indicator function which is 1 if the ith graph in the sample contains the edge
X, — Xj, and 0 otherwise (n,j € {1,...,N}). A standard diagnostic that we apply to evaluate
convergence is based on potential scale reduction factors (PSRFs), which are usually monitored
along the number of MCMC iterations. In the following representation we assume that H in-
dependent MCMC simulations with 2s iterations each have been performed on the same single
data set. Discarding the first s iterations as burn-in phase, I, graph samples can be taken from
the remaining s MCMC iterations. Note that the number of samples Iy that can be taken in the
sampling-phase is limited by the number of MCMC iterations s and the distance (no. of iterations)
between samples.

For each of the H independent MCMC simulations h = 1,..., H we compute the posterior prob-
abilities of all edges e, ;n (1,7 € {1,...,N}) from the graph samples Gh1l ... G"s as described
above. For each individual edge X,, — X; the ’between-chain’ variance B(n, j) and the 'within-
chain’ variance W(n, j) of its edge posterior probability are defined as (see Brooks and Gelman
(1998)):

H
) 1 _
B(n,j) = -1 Z(ew‘,h —€nj.)” (53)
h=1
where €, ; . is the mean of e, j1,...,€en, 1, and:

H I
W(n,j) = I my ZZ (G™(n,5) — enjn)? (54)

h:ll:l

where G™(n, 7) is 1 if the ith graph in the sample taken in the hth simulation contains the edge
Xn — Xj, and 0 otherwise. Following Brooks and Gelman (1998) the PSRF(n, j) of the individual
edge X,, — Xj is then given by:

(1= £)W(n,j) + (1 + %)B(n, j)

PSRF(n,j) = Wi, 3)

(55)

where PSRF values near 1 indicate that each of the H MCMC simulations is close to the stationary
distribution. In our study we use as PSRF-based convergence diagnostic the fraction of edges C(&)
whose PSRF is lower than a pre-defined threshold value &:

L, NN
=3z Z Z Zpsrr<¢(PSRE(n, j)) (56)

n=1j=1

C(¢)
where Zpsrr<e(PSRF(n,j)) is 1 if PSRF(n,j) < £ and 0 otherwise.

For the Arabidopsis thaliana data 2s = 1100k MCMC iterations were performed. From the last
s = 550k iterations we sampled I, = 550 graphs by sampling every 1000th iteration. The focus
of our study is on the convergence of the four MCMC sampling schemes for the cpBGe model.
We perform H = 10 independent MCMC simulations and consider three different thresholds for &
(£ =1.02,1.05,1.1).

1.9 Information coupling between nodes based on Bayesian clustering
(Extended version of the main paper)

We instantiate the class 2 model from Eq. (4) of the main paper by following Fearnhead (2006)
and employing the point process prior for the changepoint locations defined in Eq. (5) of the main
paper, i.e. the terms K and /C,, in Eqn. (1-4) become obsolete. We extend the class 2 model by

13
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introducing a cluster function C(.) that allocates the nodes X1, ..., X, to ¢ (1 < ¢ < N) non-empty
clusters, each characterized by its own changepoint vector Vic, 1<i<e

P(G, V¢, D,C)=P(C)P(VC|C)P(G)P(D|G,VE,C) (57)

c N
=P(C) (H P(Vfc)> [T Pra) ¥ (D7 [VE L))
i=1 n=1

with V€ = (V§,..., V), where c is the number of non-empty node clusters induced by C. We
assume for P(C) a uniform distribution on all functions C that give ¢ (1 < ¢ < N) clusters. The key
idea behind the model of Eq. (57) is to encourage information sharing among nodes with respect
to changepoint locations. Moreover, nodes that are in the same cluster ¢ (1 < i < ¢) share the
same allocation vector V¢ and will be “penalized” only once?. Note that the novel model is a
generalization that subsumes both class I and class 2 models as limiting cases. It corresponds
to class 1 for ¢ = 1 and to class 2 for ¢ = N. Inference can follow a slightly extended Gibbs
sampling procedure, where we iteratively sample the latent variables from P(V§|g, D,C), a new
network structure from P(G|V¢,D,C), and a new cluster formation from P(C|V¢,D,G). The first
two steps follow the procedure discussed in Section 2.2 of the main paper.

For the third step, sampling from P(C|VY,D,G), we adopt an RIMCMC (Green, 1995) scheme
based on cluster birth (b), death (d), and re-clustering (r) moves.® In a cluster birth move we
randomly select a node cluster ¢ that contains at least 2 nodes, and we randomly choose a node
contained in it. The move tries to re-cluster this node from the ith cluster to a new cluster
¢+ 1. Denote by C* the new cluster formation thus obtained. For the ith cluster and for the new
(¢ + 1)th cluster we propose new changepoint allocation vectors Vic* and Vg;l by sampling them
from the distributions P(VS, |G, D,C*) and P(VS'|G,D,C*), defined in Eq. (59), with Fearnhead’s
dynamic programming scheme (Fearnhead, 2006), as discussed in Section 2.2 of the main paper.
In a cluster death move we randomly select one of the clusters that contain only a single node, and
we re-allocate this node to one of the other existing clusters, chosen randomly. The first cluster
disappears and for cluster j, which absorbs the node, we propose a new changepoint allocation
vector VJC-* from P (V]C-* |G, D, C*) with dynamic programming (Fearnhead, 2006), where C* denotes
the proposed cluster formation. In a re-clustering move we randomly choose two clusters ¢ and j
(i # j) as follows. First, cluster 7 is randomly selected among those that contain at least 2 nodes.
Next, cluster j is randomly selected among the remaining clusters. We then randomly chose one of
the nodes from cluster 7 and re-allocate the selected node to cluster j. Denote by C* the new cluster
formation obtained. (Since cluster ¢ contains at least 2 nodes, this does not affect c¢.) For both
clusters 7 and j we propose new changepoint allocation vectors V§' and VJC_* from P (Vic* |G, D,C*)

and P(ngﬁ G,D,C*) with Fearnhead’s dynamic programming scheme (Fearnhead, 2006).

The acceptance probabilities of these three RJIMCMC moves are given by the product of the
likelihood ratio (LR), the prior ratio (PR), the inverse proposal probability ratio or Hastings
factor (HR), and the Jacobian (J) in the standard way (Green, 1995): A 4 = min{l, Rp.q.)},
where R, 4,y = LR x PR x HR x J. Since this is a discrete problem, the Jacobian is J = 1,
and for the chosen uniform prior on C, the prior ratio is PR = 1. For a cluster birth move (b),
symbolically (C, V€) — (C*, V"), we thus get: Ry = LR x HR

R :1:)(g,\/'c*’c*7'D)>< cTciP(Vﬂg,D,C) (58)
O7P(G,ve,C,D) " ¢+P(VC,|G,D,Cc*)P(VC|G,D,C*)

where ¢! is the number of clusters induced by C with at least two nodes, ¢t is the number of nodes
in the ith cluster (that was selected), and ¢* is the number of clusters induced by C* that contain
only a single node. In our regularized class 2 model the recursions of Fearnhead (2006) can be

2Rather than “penalizing” nodes with identical allocation vectors independently, like the model in Grzegorczyk
and Husmeier (2009).
3Each RIMCMC step was repeated 5 times.
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employed as described in Section 1.7 to sample the j-th (1 < j < ¢) allocation vector V]c-. We

have: ( C)
q; D,C,Q,V-

P(V¢|G,D,C) = a— 59

( J|g ) ZVf* qj(D,C*,Q,V]C-) ( )

where
4(D,C,6,V§) = P(vile) [[ w'(@r(vi) (60)
n:C(n)=j
and the sum in Eq. (59) is over all valid allocation vectors VJC-* for the variables in the jth cluster
of C*.

It follows from Eqn. (57-58) that all factors except for the (¢ 4 1)th in the nominator and the ith
ones cancel out in the likelihood ratio:

_ Q’i(D7C*7 guvzc*) : qC+1(Duc*7 g7VS:L1)

LR 61

Hence, Ry = LR x HR in Eq. (58) reduces to:

't Qi(D,C*,G)Qes1(D,C*, G)
R — ) ) (& ) Y 62
® = Q:(D.C.0) (62)
where the terms
Q;(D,C,G) = 4;(D,C,G,V5) (63)
V¢

can be computed efficiently with Fearnhead’s dynamic programming scheme as described in Sec-
tion 1.7. More precisely, as explained in the paragraph below Eq. (51) we have

Q;(D,C,9) = Q(2lj,C,9) (64)

where Q(2]7,C,G) was specified in Section 1.7 (see Eq. (45)) and can be computed efficiently with
Fearnhead’s recursions.

The acceptance probabilities for cluster death and re-clustering moves can be derived as follows:
For the cluster death move (d), (C, VE) — (C*, V€"), we assume that ¢! is the number of clusters
induced by C with one single node and that the ith cluster belongs to this group and is selected.
Removing the single node from the ith cluster, such that the ith cluster is unoccupied and can be
removed, and adding this node to the jth (i # j) cluster induced by C gives a new clustering C*.
We then get: R = LR x HR

_P(G, V< ,C*,D) *P(V§|G,D,C)P(VS|G,D,C)

Rone
D=7P(G,ve,C,D) " (et — 1)P(VE'|G,D,C*)

(65)

where ¢! is the number of clusters induced by C that contain only one single node, ¢ is the number
of clusters induced by C, and ¢* is the number of clusters induced by C* with at least two nodes.

It follows from Eqn. (57) and(65) that all factors except for the ith ones and the jth ones in the
denominator cancel out in the likelihood ratio:

q; (D7 C*7 ga VS*)

LR = 66
ql(D7C,Q,VJC)qJ(D,C, gvvjc) ( )
Hence, Eq. (65) reduces to:
¢ e
B = 33 0.D.¢.00,0.6.0) (67
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where the Q(.) terms defined in Eq. (63) can be computed efficiently as described in Section 1.7.

For the re-clustering move (r), (C, V€) — (C*, VC"), we assume that C induces ¢ clusters, and we
further assume there are ¢ clusters with at least two nodes and that the ith cluster belongs to
this group and is selected. One of the nodes from the ith cluster is randomly selected and moved
to the jth (i # j) cluster of C. Let n® and n’ be the numbers of nodes in the ith and jth cluster
of C. We obtain: R,y = LR x HR

P(G, V€ C*, D) y ctni(c - 1)P(V§|G,D,C)P(V§|G,D,C)
P(G,VC,C,D) " () +1)(c—1)P(VS'|G, D,C*)P(VS'|G,D,C)

Ry= (68)

where ¢® is the number of clusters induced by C* that contain at least 2 nodes.

It follows from Eqn. (57) and (68) that all factors except for the ith and the jth ones cancel out

in the likelihood ratio: . .
~ 4(D,C*,G, Vi )g;(D,C*,G,VS")

LR 69
QZ(Dvcvgvvjc)qJ(Dacv g’V]C) ( )
Hence, Eq. (68) reduces to:
_cn' Qi(D,C*,6)Q,(D,C*,G)
R = (i +1) Qi(D,C,6)Q;(D,C,3) (70)

where the Q(.) terms can be computed effiviently as described in Section 1.7.

2 Arabidopsis thaliana gene expression time series

Plants assimilate carbon via photosynthesis during the day, but have a negative carbon balance
at night. They buffer these daily alternations in their carbon budget by storing some of the
assimilated carbon as starch in their leaves in the light, and utilising it as a carbon supply during
the night. In order to synchronize these processes with the external 24 hour photo period, plants
possess a circadian clock that can potentially provide predictive, temporal regulation of metabolic
processes over the day/night cycle. The proper working of this circadian regulation is paramount
to biomass production and growth, and considerable research efforts are therefore underway to
elucidate its underlying molecular mechanism. In the present article, we aim to reconstruct the
regulatory network of nine circadian genes in the model plant Arabidopsis thaliana.

We apply our method to microarray gene expression time series related to the study of circadian
regulation in plants. Arabidopsis thaliana seedlings, grown under artificially controlled Te-hour-
light /T.-hour-dark cycles, were transferred to constant light and harvested at 13 time points in
7-hour intervals. From these seedlings, RNA was extracted and assayed on Affymetrix GeneChip
oligonucleotide arrays. The data were background-corrected and normalized according to standard
procedures?, using the GeneSpring© software (Agilent Technologies).

We combine four time series, which differed with respect to the pre-experiment entrainment con-
dition and the time intervals: T, € {10h,12h,14h}, and 7 € {2h,4h}. The data, with detailed
information about the experimental protocols, can be obtained from Edwards et al. (2006), Grze-
gorezyk et al. (2008), and Mockler et al. (2007). For an overview see Table 1. We focus our analysis
on 9 circadian genes: LHY, TOC1, CCA1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3, and we
merge all four time series into one single data set. The objective is to employ the cpBGe model
(Grzegorezyk and Husmeier, 2009), a (class 2) model with node-specific changepoints, to detect
the different experimental phases. Since the gene expression values at the first time point of a

4We used RMA rather than GCRMA for reasons discussed in Lim et al. (2007).
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’ \ Segment 1 Segment 2 Segment 3 Segment 4 ‘

Source Mockler Edwards Grzegorcyk Grzegorcyk

et al.(2007) et al. (2006) et al. (2008) et al. (2008)
Time points 12 13 13 13
Time interval 4h 4h 2h 2h
Pretreatment 12h:12h 12h:12h 10h:10h-dark 14h:14h
entrainment light:dark cycle light:dark cycle light:dark cycle light:dark cycle
Measurements Constant Constant Constant Constant

light light light light

Laboratory Kay Lab Millar Lab Millar Lab Millar Lab

Table 1: Gene expression time series segments for Arabidopsis. The table contains an
overview of the experimental conditions under which each of the gene expression experiments was
carried out.

time series segment have no relation with the expression values at the last time point of the pre-
ceding segment, the corresponding boundary time points are appropriately removed from the data
as described in Grzegorczyk and Husmeier (2009). This ensures that for all pairs of consecutive
time points a proper conditional dependence relation determined by the nature of the regulatory
cellular processes is given.

We elected to use these data as a test case for evaluating the efficiency of different sampling schemes
for the cpBGe model (Grzegorczyk and Husmeier, 2009). Figure 1 of the main paper shows that the
three Gibbs sampling schemes outperform the original RJMCMC sampler proposed in Grzegorczyk
and Husmeier (2009) in terms of convergence and mixing. Since it appears that the GIBBS-NBIN
algorithm performs slightly better than the other two Gibbs sampling schemes (see Figure 1 of the
main paper), we report the results obtained with the GIBBS-NBIN algorithm:

Figure 2 shows the marginal posterior probability of the changepoint locations (right panel), and
the posterior probability of the co-allocation of two time points to the same component (left panel).
It is seen that, overall, the true segment boundaries tend to be detected. Different genes tend to be
affected by the concatenation of the expression time series differently, though. For two genes (TOC1
and PRR9), all true changepoints are correctly predicted. Gene PRR9 shows various additional
changepoints; this might indicate that it is affected by additional heterogeneities beyond the four
experimental phases. Three of the genes (CCA1l, ELF3, GI) show two changepoints, at the true
locations (GI) or with a short time lag (CCA1). For genes LHY and ELF4 only one changepoint is
predicted, at the location of the first or second concatenation point. A comparison of Table 1 with
the locations of the peaks in Figure 2 suggests that gene CCA1 is mainly affected by a change of
the entrainment condition, gene ELF4 is mainly affected by factors associated with the laboratory
context, and genes ELF3 and PRR3 are mainly affected by a change of the sampling time interval (2
versus 4 hours). This deviation indicates that the genes are affected by the changing experimental
conditions (entrainment, time interval) in different ways and that the node-specific changepoint
model can be exploited as an exploratory tool for hypothesis generation.

Figure 3 shows the gene interaction network that is predicted when keeping all edges with marginal
posterior probability above 0.5. There are two groups of genes. Empty circles in the figure repre-
sent morning genes (i.e. genes whose expression peaks in the morning), shaded circles represent
evening genes (i.e. genes whose expression peaks in the evening). There are several directed edges
pointing from the group of morning genes to the evening genes, mostly originating from gene CCA1.
This result is consistent with the findings in McClung (2006), where the morning genes were found
to activate the evening genes, with CCA1 and/or its partially redundant homologue LHY (Miwa
et al., 2007) being central regulators. E.g. Alabadi et al. (2001) found that CCA1 (and/or LHY)
repress TOC1 and potentially other evening genes, and Kikis et al. (2005) report that CCA1 (and
LHY) act negatively on ELF4 expression. Our reconstructed network also contains edges pointing
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25 Figure 2: Results on the Arabidopsis gene expression time series. Panel (a): Co-allocation
26 matrices for the nine circadian genes. The axes represent time. The grey shading indicates the
27 posterior probability of two time points being assigned to the same mixture component, ranging
28 from 0 (black) to 1 (white). Panel (b): Average posterior probability of a changepoint (vertical
29 axis) at a specific transition time plotted against the transition time (horizontal axis) for the nine
30 circadian genes. The vertical dotted lines indicate the boundaries of the time series segments,
31 which are related to different experimental conditions (see Table 1).
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57 Figure 3: Circadian gene regulatory network in Arabidopsis learnt from gene expression
58 time series. Predicted regulatory network of nine circadian genes in Arabidopsis thaliana. Empty
59 circles represent morning genes. Shaded circles represent evening genes. Edges indicate predicted
60 interactions with a marginal posterior probability greater than 0.5.
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into the opposite direction, from the evening genes back to the morning genes. This finding is also
consistent with McClung (2006), where the evening genes were found to inhibit the morning genes
via a negative feedback loop. E.g. the edges ELF3 — CCAl and ELF3 — LHY in Figure 3 are
consistent with the biological finding in Kikis et al. (2005) that ELF3 is necessary for light-induced
CCA1 and LHY expression. Moreover, it is also known that GI and ELF3 play important roles in
the circadian clock network and in that they are involved in the regulatory interactions between
the morning genes LHY /CCA1 and the evening gene TOC1 (Miwa et al., 2006). Within the group
of evening genes, the reconstructed network contains a feedback loop between GI and TOC1, sym-
bolically GI <+ TOC1. This feedback loop has also been found in Locke et al. (2005) and is an
improvement on our earlier work (Grzegorczyk and Husmeier, 2009), where only a unidirectional
interaction GI — TOC'1 was extracted.

Hence while a proper evaluation of the reconstruction accuracy is currently unfeasible — like Robin-
son and Hartemink (2009) and many related studies, we lack a gold-standard owing to the unknown
nature of the true interaction network — our study suggests that the essential features of the re-
constructed network are biologically plausible and consistent with the literature.
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