
Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

 
 
 
 
 
 
 
Grzegorczyk, M., and Husmeier, D. (2011) Improvements in the 
reconstruction of time-varying gene regulatory networks: dynamic 
programming and regularization by information sharing among genes. 
Bioinformatics, 27 (5). pp. 693-699. ISSN 1367-4803 
 
 
 
 
 
 
http://eprints.gla.ac.uk/69382/ 
 
 
 
 
Deposited on: 28 September 2012 
 
 



For Peer Review

 
 
 

 
 

 
 

Improvements in the reconstruction of time-varying gene 
regulatory networks: dynamic programming and 
regularization by information sharing among genes 

 
 

Journal: Bioinformatics 

Manuscript ID: Draft 

Category: Original Paper 

Date Submitted by the 
Author: 

n/a 

Complete List of Authors: Grzegorczyk, Marco; TU Dortmund University, Statistics 

Husmeier, Dirk; Biomathematics and Statistics Scotland (BioSS) 

Keywords: 
Bayesian networks, Gene regulatory networks, Machine learning, 
Systems biology 

  
 
 

 

Bioinformatics



For Peer Review

BIOINFORMATICS Vol. 00 no. 00 2010
Pages 1–7

Improvements in the reconstruction of time-varying gene
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ABSTRACT
Method: Dynamic Bayesian networks (DBNs) have been applied
widely to reconstruct the structure of regulatory processes from time
series data, and they have established themselves as a standard
modelling tool in computational systems biology. The conventional
approach is based on the assumption of a homogeneous Markov
chain, and many recent research efforts have focused on relaxing
this restriction. An approach that enjoys particular popularity is
based on a combination of a DBN with a multiple changepoint
process, and the application of a Bayesian inference scheme via
reversible jump Markov chain Monte Carlo (RJMCMC). In the present
paper, we expand this approach in two ways. First, we show that
a dynamic programming scheme allows the changepoints to be
sampled from the correct conditional distribution, which results in
improved convergence over RJMCMC. Second, we introduce a novel
Bayesian clustering and information sharing scheme among nodes,
which provides a mechanism for automatic model complexity tuning.
Results: We evaluate the dynamic programming scheme on
expression time series for Arabidopsis thaliana genes involved in
circadian regulation. In a simulation study we demonstrate that
the regularization scheme improves the network reconstruction
accuracy over that obtained with recently proposed inhomogeneous
DBNs. For gene expression profiles from a synthetically designed
Saccharomyces cerevisiae strain under switching carbon metabolism
we show that the combination of both: dynamic programming and
regularization yields an inference procedure that outperforms two
alternative established network reconstruction methods from the
biology literature.
Availability: From http://www.statistik.tu-dortmund.de/bio2010.html a
supplementary paper with algorithmic details and further results for
the Arabidopsis data can be downloaded. The MATLAB programs
used for our simulations are available upon request.
Contact: grzegorczyk@statistik.tu-dortmund.de, dirk@bioss.ac.uk

1 INTRODUCTION
Two paradigm shifts have revolutionized molecular biology in the
second half of this decade: systems biology, where the objective is
to model the whole complexity of cellular processes in a holistic
sense, and synthetic biology, which enables biologists to build new
molecular pathwaysin vivo, i.e. in living cells. The combination of
both concepts allows the viability of machine learning approaches
for network reconstruction to be tested in a rigorous way. Facing
the extremes of mechanistic models, which are restricted to small
systems with only few components, and mutual information based

approaches, which are too simplistic, dynamic Bayesian networks
(DBNs) have emerged as a promising trade-off between over-
simplicity and loss of computational tractability (Cantoneet al.,
2009).
The standard assumption underlying DBNs is that of homogeneity:
temporal processes and the time-series they generate are assumed
to be governed by a homogeneous Markov relation. However,
regulatory interactions and signal transduction processes in the cell
are usually adaptive and change in response to external stimuli.
Following earlier approaches aiming to relax the homogeneity
assumption for undirected graphical models (Talih and Hengartner,
2005; Xuan and Murphy, 2007), various recent research efforts
have therefore addressed the homogeneity assumption for DBNs.
An approach that has become popular recently is based on a
combination of a DBN with a multiple changepoint process, and
the application of a Bayesian inference scheme via reversible
jump Markov chain Monte Carlo (RJMCMC). Robinson and
Hartemink (2009) proposed a discrete inhomogeneous DBN, which
allows for different structures in different segments of the time
series, with a regularization term penalizing differences among
the structures. Grzegorczyk and Husmeier (2009) proposed a
continuous inhomogeneous DBN, in which the parameters are
allowed to vary, while a common network structure provides
information sharing among the time series segments. Lèbre
(2007); L̀ebre et al. (2010) proposed an alternative continuous
inhomogeneous DBN, which is more flexible in that it allows the
network structure to vary among the segments. The model proposed
in Ahmed and Xing (2009) and Kolaret al. (2009) is a close
cousin of an inhomogeneous DBN. As opposed to the first three
approaches, (hyper-)parameters are not consistently inferred within
the Bayesian context, though, and these methods will therefore not
be further considered here.
Instead, we will focus on the Bayesian inference scheme common
to the first three approaches. All three methods adopt an RJMCMC
scheme for inferring the number and location of changepoints, based
on changepoint birth, death and relocation moves. In the present
paper we show that the number and location of changepoints can be
sampled from the proper conditional distribution. This is effected
by a modification of the dynamic programming scheme proposed
in Fearnhead (2006) in the context of Bayesian mixture models.
We discuss the trade-off between computational up-front costs
and improvement in mixing and convergence, and we empirically
quantify the net gain in computational efficiency in dependence on
certain features of the prior distribution.

c© Oxford University Press 2010. 1
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The above mentioned inhomogeneous DBNs can be divided into
two classes according to whether changepoints are common to the
whole network (class 1), or varying from node to node (class 2).
The approach ofclass 1, pursued in Grzegorczyket al. (2008),
Robinson and Hartemink (2009)1, and Grzegorczyket al. (2010),
is over-restrictive, as it does not allow for individual nodes to be
affected by changing processes in different ways. The approach
of class 2, pursued in Grzegorczyk and Husmeier (2009), Lèbre
(2007), and L̀ebreet al. (2010) is potentially over-flexible, as it
does not provide any information sharing among the nodes. When
an organism undergoes transitional changes, e.g. morphogenic
transitions during embryogenesis, one would expect the majority of
genes to be affected by these transitions in identical ways. However,
there is no mechanism in the fully flexible model that incorporates
this prior notion of commonality. In the present paper, we explore a
Bayesian clustering scheme akin to the weight sharing principle in
neural computation (Nowlan and Hinton, 1992), by which we assign
nodes to clusters that are characterized by common changepoints.
We demonstrate that our scheme subsumes the aforementioned
approaches as limiting cases, and that it automatically identifies the
right trade-off between them in a data-driven manner.

2 METHOD

2.1 Review of time-dependent DBNs
DBNs are flexible models for representing probabilistic relationships among
interacting variables (nodes)X1, . . . , XN via a directed graphG. The
parent node set of nodeXn in G, πn = πn(G), is the set of all nodes
from which an edge points to nodeXn in G. Consider a data setD, where
Dn,t andD(πn,t) are thetth realizationsXn(t) andπn(t) of Xn andπn,
respectively, and1 ≤ t ≤ m represents time. A DBN is based on a (first-
order) Markov process, which is determined by the conditional probabilities

P
(

Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θn

)

. Common choices are

a multinomial distribution, as used in Robinson and Hartemink (2009), or
a linear Gaussian distribution, as for example applied in Grzegorczyk and
Husmeier (2009), with corresponding (node-specific) parameter vectorsθn.
An inhomogeneous generalization of the standard first-orderhomogeneous
DBN was proposed (e.g. see Lèbre (2007); Robinson and Hartemink (2009);
Grzegorczyk and Husmeier (2009); Lèbreet al. (2010)) and is given by

P (D|G,V,K,θ) =
N
∏

n=1

m
∏

t=2

Kn
∏

k=1

ψ(Dπn
n [t,θk

n])δVn(t),k (1)

ψ(Dπn
n [t,θk

n]) = P
(

Xn(t) = Dn,t|πn(t− 1) = D(πn,t−1),θ
k
n

)

whereδVn(t),k is the Kronecker delta,V is a matrix of latent variables
Vn(t), Vn(t) = k indicates that the realization of nodeXn at
time t, Xn(t), has been generated by thekth component of a mixture
with Kn components, andK = (K1, . . . ,Kn). Let P (θ|G,K) =
∏N

n=1

∏Kn
k=1 P (θk

n|πn) denote the (conjugate) prior distribution of the
parameters. Under fairly weak conditions satisfied (and discussed) in
Lèbre (2007); Robinson and Hartemink (2009); Grzegorczyk andHusmeier

1 Changepoints in Robinson and Hartemink (2009) apply, in the first
instance, to the whole network (class 1), with changepoints that render
parent configurations invariant removed for the respective nodes. While
this imbues the model with aspects of aclass 2 approach, it suffers from
the fact that changepoints are inextricably associated with changes in the
presence/absence status of interactions, rather than changes in the interaction
strengths, resulting in a loss of model flexibility.

(2009); L̀ebreet al. (2010), the following integral can be solved analytically:

Ψ(Dπn
n [k,Vn]) =

∫

(

m
∏

t=2

ψ(Dπn
n [t,θk

n])δVn(t),k

)

P (θk
n|πn)dθk

n

(2)
which yields a closed-form expression for the marginal likelihood:

P (D|G,V,K) =

∫

P (D|G,V,K,θ)P (θ|G,K)dθ (3)

=
N
∏

n=1

Kn
∏

k=1

Ψ(Dπn
n [k,Vn]) :=

N
∏

n=1

Ψ†(Dπn
n [Kn,Vn])

The objective of Bayesian inference is to sample the network structure
G, the latent variablesV = (V1, . . . ,VN ), and the node-specific
numbers of segmentsK = (K1, . . . ,KN ) from the posterior distribution
P (G,V,K|D) ∝ P (G,V,K,D), where

P (G,V,K,D) = P (G)P (V|K)P (K)P (D|G,V,K) (4)

=

N
∏

n=1

P (πn)P (Vn|Kn)P (Kn)Ψ†(Dπn
n [Kn,Vn])

In Grzegorczyk and Husmeier (2009); Lèbre (2007), a truncated Poisson
prior is chosen forP (Kn), and a multiple changepoint process prior for
P (Vn|Kn). The approach in Grzegorczyket al. (2010) is similar, except
that the allocations of time points to components are not node-specific (i.e.
Kn andVn do not depend onn); see above (class 1 vs.2).

2.2 Improved Gibbs sampling based on dynamic
programming

To sample from the posterior distribution,P (G,V,K|D), all previous
studies (Robinson and Hartemink, 2009; Grzegorczyk and Husmeier, 2009;
Lèbreet al., 2010; Grzegorczyket al., 2010) follow the same procedure:
to sample the network structureG, they follow Madigan and York (1995)
and apply Metropolis-Hastings (MH) structure MCMC, based on single-
edge operations; to sample the latent variables(V,K), they follow Green
(1995) and apply reversible jump Markov chain Monte Carlo (RJMCMC),
based on changepoint birth, death, and reallocation moves. In the present
study, we propose an improved scheme based on dynamic programming.
The idea is to adapt the method proposed by Fearnhead (2006) inthe
context of Bayesian mixture models to inhomogeneous DBNs of theform
defined in Eq. (1). Fearnhead (2006) assumes that the changepoints occur at
discrete time points, and he considers two priors for the changepoints. The
first prior is based on a prior for the number of changepoints, and then a
conditional prior on their positions. This corresponds exactly toP (Kn) and
P (Vn|Kn), as discussed above. The second prior is obtained from a point
process on the positive and negative integers. The point process is specified
by the probability mass functiong(t) for the time between two successive
points, for which a natural choice is the negative binomial distribution

g(t|a, p) =
(t− a

a− 1

)

pa(1 − p)t−a (5)

whose form is defined by two hyperparameters,a and p. The choice of
this prior immediately imposes a prior distribution on the latent variables
Vn without any conditioning onKn, P (Vn|Kn) → P (Vn); hence
the termsK andKn in Eqn. (1-4) become obsolete. For the remainder
of this section, we use the generic notatioñV = (Ṽ1, . . . , ṼN ) to
denote the latent variables induced by the changepoint prior. Depending
on the form of the latter, we either havẽV = (V,K) or Ṽ = V.
Given a Bayesian mixture model for which the latent variables are of
the form of one of the two changepoint processes discussed above, and
the parameters can be integrated out in the likelihood, as in Eq. (2),
Fearnhead (2006) shows that the changepoints can be sampled from the
proper posterior distributionexactly, with a dynamic programming scheme.
The computational complexity is quadratic in the number of observations
m. To adapt this scheme to the inference of inhomogeneous DBNs, note
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Time-varying dynamic Bayesian networks

from Eq. (4) that the Bayesian sampling ofP (G, Ṽ|D) can in principle
follow a Gibbs sampling procedure, iteratively sampling the latent variables
from P (Ṽ|G,D), and a new network structure fromP (G|Ṽ,D). The first
step can be accomplished with Fearnhead’s dynamic programming scheme
(Fearnhead, 2006). However, given the comparatively high computational
costs, the overall scheme is computationally inefficient if wefollow
Lèbre (2007); Robinson and Hartemink (2009); Grzegorczyk andHusmeier
(2009); L̀ebreet al. (2010) and stick to a structure MCMC step for updating
G, i.e. if we follow a computationally expensive complete Gibbsstep for
sampling fromP (Ṽ|G,D) by a computationally cheap MH within Gibbs
step for incomplete sampling fromP (G|Ṽ,D). To resolve this issue,
we adapt the sampling scheme proposed in Friedman and Koller (2003),
Eq. (10). Recall that the network structureG is defined by the complete set
of parent sets{πn}1≤n≤N . Having sampled̃V = (Ṽ1, . . . , ṼN ) from
P (Ṽ|G,D) in the previous Gibbs step, we now sampleG fromP (G|Ṽ,D)
by sampling, for all nodesXn, n = 1, . . . , N , new parent configurations
{πn} from

P (πn|D, Ṽn) = Ψ†(Dπn
n [Ṽn])/

∑

π̃n

Ψ†(Dπ̃n
n [Ṽn]) (6)

whereΨ†(Dπn
n [Ṽn]) has been defined in Eq. (3). Eq. (6) entails a complete

enumeration over all parent configurations, which is computationally
expensive. In Grzegorczyk and Husmeier (2009) it was found that
this sampling scheme is computationally inefficient when applied to
inhomogeneous DBNs. We now demonstrate that this scheme is only
inefficient when combined with the RJMCMC scheme for samplingṼ,
but that in combination with the dynamic programming scheme for exact
sampling ofṼ fromP (Ṽ|G,D), an overall gain in computational efficiency
can be achieved. We empirically corroborate this conjecturein Section 5.1.2

For the specificclass 2 model employed in this study (Grzegorczyk and
Husmeier, 2009) we provide the technical details of the traditional RJMCMC
and the novel Gibbs sampling procedures in the supplementary material.

2.3 Information coupling between nodes based on
Bayesian clustering

We instantiate the model from Eq. (4) by following Fearnhead (2006) and
employing the point process prior for the changepoint locations defined in
Eq. (5), i.e. the termsK andKn in Eqn. (1-4) become obsolete. We extend
the model by introducing a cluster functionC(.) that allocates the nodes
X1, . . . , Xn to c (1 ≤ c ≤ N ) non-empty clusters, each characterized by
its own changepoint vectorVC

i , 1 ≤ i ≤ c:

P (G,VC ,D, C) = P (C)P (VC |C)P (G)P (D|G,VC , C) (7)

= P (C)

(

c
∏

i=1

P (VC
i |C)

)

N
∏

n=1

P (πn)Ψ†(Dπn
n [VC

C(n)])

with V
C = (VC

1 , . . . ,V
C
c ), wherec is the number of non-empty node

clusters induced byC. We assume for P(C) a uniform distribution on all
functionsC that givec (1 ≤ c ≤ N ) clusters. The key idea behind the model
of Eq. (7) is to encourage information sharing among nodes withrespect
to changepoint locations. Moreover, nodes that are in the same clusteri
(1 ≤ i ≤ c) share the same allocation vectorV

C
i and will be “penalized”

only once3. Note that the novel model is a generalization that subsumes both
class 1 andclass 2 models as limiting cases. It corresponds toclass 1 for
c = 1 and toclass 2 for c = N . Inference can follow a slightly extended
Gibbs sampling procedure, where we iteratively sample the latent variables

2 For the study in Section 5.1, we used the commonly applied fan-in
restriction of 3. When relaxing the fan-in restriction, the computational costs
related to Eq. (6) increase. However, a set of effective heuristic techniques
for approximate computation at controlled computational complexity are
available, as discussed in Friedman and Koller (2003).
3 Rather than “penalizing” nodes with identical allocation vectors
independently, like the model in Grzegorczyk and Husmeier (2009).

from P (VC
i |G,D, C), a new network structure fromP (G|VC

i ,D, C), and
a new cluster formation fromP (C|VC

i ,D,G). The first two steps follow
the procedure discussed in Section 2.2. For the third step, sampling from
P (C|VC

i ,D,G), we adopt an RJMCMC scheme (Green, 1995) based on
cluster birth (b), death (d), and re-clustering (r) moves.4 In a cluster birth
move we randomly select a node clusteri that contains at least 2 nodes, and
we randomly choose a node contained in it. The move tries to re-cluster this
node from theith cluster to a new clusterc+1. Denote byC⋆ the new cluster
formation thus obtained. For theith cluster and for the new(c+1)th cluster
we propose new changepoint allocation vectorsV

C⋆

i andVC⋆

c+1 by sampling

them from the distributionsP (VC⋆

i |G,D, C⋆) and P (VC⋆

c+1|G,D, C
⋆),

defined in Eq. (9), with the dynamic programming (DP) scheme proposed
in Fearnhead (2006), as discussed in Section 2.2. In a cluster death move we
randomly select one of the clusters that contain only a singlenode, and we
re-allocate this node to one of the other existing clusters,chosen randomly.
The first cluster disappears and for clusterj, which absorbs the node, we
propose a new changepoint allocation vectorV

C⋆

j from P (VC⋆

j |G,D, C⋆)

with DP, whereC⋆ denotes the proposed cluster formation. In a re-clustering
move we randomly choose two clustersi andj (i 6= j) as follows. First,
cluster i is randomly selected among those that contain at least 2 nodes.
Next, clusterj is randomly selected among the remaining clusters. We then
randomly chose one of the nodes from clusteri and re-allocate the selected
node to clusterj. Denote byC⋆ the new cluster formation obtained. (Since
clusteri contains at least 2 nodes, this does not affectc.) For both clustersi
andj we propose new changepoint allocation vectorsV

C⋆

i andV
C⋆

j from

P (VC⋆

i |G,D, C⋆) andP (VC⋆

j |G,D, C⋆) with DP.
The acceptance probabilities of these three RJMCMC moves aregiven by the
product of the likelihood ratio (LR), the prior ratio (PR), the inverse proposal
probability ratio or Hastings factor (HR), and the Jacobian (J) in the standard
way (Green, 1995):A(b,d,r) = min{1, R(b,d,r)}, whereR(b,d,r) =
LR × PR × HR × J . Since this is a discrete problem, the Jacobian is
J = 1, and for the chosen uniform prior onC, the prior ratio isPR = 1.
For a cluster birth move (b), symbolically(C,VC) → (C⋆,VC⋆

), we thus
get:R(b) = LR×HR

R(b)=
P (G,VC⋆

, C⋆,D)

P (G,VC , C,D)
×

c†c‡P (VC
i |G,D, C)

c⋆P (VC⋆

c+1|G,D, C
⋆)P (VC⋆

i |G,D, C⋆)
(8)

wherec† is the number of clusters induced byC with at least two nodes,c‡

is the number of nodes in theith cluster (that was selected), andc⋆ is the
number of clusters induced byC⋆ that contain only a single node. In our
extended model the DP scheme described in Section 2.2 can be employed to
sample thej-th (1 ≤ j ≤ c) allocation vectorVC

j , and we have:

P (VC
j |G,D, C) =

qj(D, C,G,V
C
j )

∑

VC⋆

j
qj(D, C⋆,G,VC⋆

j )
(9)

where

qj(D, C,G,V
C
j ) = P (VC

j |C)
∏

n:C(n)=j

Ψ†(Dπn
n [VC

j ]) (10)

and the sum in Eq. (9) is over all valid allocation vectorsV
C⋆

j for the
variables in thejth cluster ofC⋆.

It follows from Eqn. (7-8) that all factors except for the(c + 1)th in the
nominator and theith ones cancel out in the likelihood ratio:

LR =
qi(D, C

⋆,G,VC⋆

i ) · qc+1(D, C⋆,G,VC⋆

c+1)

qi(D, C,G,VC
i )

(11)

Hence,R(b) = LR×HR in Eq. (8) reduces to:

R(b) =
c†c‡

c⋆
Qi(D, C

⋆,G)Qc+1(D, C⋆,G)

Qi(D, C,G)
(12)

4 Each RJMCMC step was repeated 5 times.
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where the termsQj(D, C,G) =
∑

VC
j
qj(D, C,G,V

C
j ) can be computed

effectively with DP. The acceptance probabilities for death and re-clustering
moves can be derived analogously as shown in the supplementarypaper.

3 DATA

3.1 Synthetic RAF-pathway data
The RAF protein signalling transduction pathway, shown in
Figure 2, plays a pivotal role in the mammalian immune response
and has hence been widely studied in the literature (e.g. Sachs
et al. (2005)). For our simulation study we followed Grzegorczyk
and Husmeier (2009) and generated synthetic network data from
a slightly modified version of the pathway, in which an extra
feedback loop has been added to node ’PIP3’:PIP3(t + 1) =√

1 − ε2PIP3(t) + εφPIP3(t + 1). The realizations of the
other nodes are linear combinations of the realizations of their
parents at the preceding time points plus iid standard Normally
distributed noise injections. E.g. for ’PIP2’:PIP2(t + 1) =
βPIP3(t)PIP3(t) + βPLCG(t)PLCG(t) + cPIP2φPIP2(t + 1),
where the variablesφ.(.) are iid standard Gaussian distributed,
and the coefficientc. can be used to vary the signal-to-noise ratio
(SNR). The regression coefficients are sampled from continuous
uniform distributions on the interval[0.5, 2] with a random sign.
We focus on the medium autocorrelation strengthε = 0.25, the
SNRs 3 and 10, and we generate time series of lengthm =
21. Different from Grzegorczyk and Husmeier (2009) we do not
focus on class 2 data, but distinguish four different scenarios:
(i) homogeneous DBN data with regression coefficients that are
constant in time, e.g.βPIP3(t) = const.; (ii) inhomogeneous
class 1 DBN data whereall regression coefficients of the domain
are re-sampled aftert = 11; (iii) inhomogeneousclass 2 DBN
data with each node having one or two node-specific changepoints,
where the corresponding regression coefficients are re-sampled; (iv)
inhomogeneousregularized class 2 data generated from a DBN
where the coefficients of five nodes are re-sampled aftert = 11,
and the coefficients of the other 5 nodes are re-sampled twice
independently, aftert = 8 and aftert = 13. We also consider
scenario (v): inhomogeneousregularized class 2 datawithout any
autocorrelation:ε = 1. For SNR=3 and SNR=10 we generated 10
independent data instantiations for each scenario (i)-(v).

3.2 Gene expression time series from Arabidopsis
thaliana

The Arabidopsis data stem from a study related to circadian
regulation in plants. To this end,Arabidopsis thaliana seedlings
grown under four different artificially controlled light/dark cycles
were transferred to constant light and harvested at 12-13 time points
in 2/4-hour intervals. From these seedlings, RNA was extracted
and assayed on Affymetrix GeneChip oligonucleotide arrays. As
Grzegorczyk and Husmeier (2009) we focus onN = 9 genes,
LHY, TOC1, CCA1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3,
which from previous studies are known to be involved in circadian
regulation (Lockeet al., 2005). Details about the data and their pre-
processing are available from Grzegorczyk and Husmeier (2009).

3.3 Synthetically generated network in Saccharomyces
cerevisiae (yeast)

While systems biology aims to develop a formal understanding
of biological processes via the development of quantitative

mathematical models,synthetic biology aims to use such models
to design unique biological circuits (synthetic networks) in the cell
able to perform specific tasks. Conversely, data from synthetic
biology can be utilised to assess the performance of models from
systems biology. We used a synthetically generated network of
five genes inSaccharomyces cerevisiae (yeast), devised in Cantone
et al. (2009) and depicted in Figure 3, which was obtained from
synthetically designed yeast cells grown with different carbon
sources: galactose (“switch on”) or glucose (“switch off”). We took
the data from Cantoneet al. (2009), which were obtained with
quantitative RT-PCR in intervals of 20 minutes up to 5 hours for
the first, and in intervals of 10 minutes up to 3 hours for the second
condition. In our study, we standardized the data via a log and a
z-score transformation.

4 SIMULATION DETAILS
The two improvements proposed in Section 2 can be applied to
any of the inhomogeneous DBNs recently proposed in the literature
(Lèbre, 2007; Robinson and Hartemink, 2009; Grzegorczyk and
Husmeier, 2009; L̀ebreet al., 2010). In our empirical simulation
study we use the model presented in Grzegorczyket al. (2010) as
class 1 representant. Theclass 2 model representant is taken from
Grzegorczyk and Husmeier (2009). The novel model can be thought
of as a regularized consensus of both models: It is effectively a
class 1 model if it infers only one cluster, and it becomes aclass
2 model if it infersN clusters such that each node has its own node-
specific changepoints. In our simulation study we also include a
standard homogeneous dynamic Bayesian network model based on
the standard BGe score (Geiger and Heckerman, 1994). As in earlier
studies (Grzegorczyk and Husmeier, 2009; Grzegorczyket al.,
2010) we employ a uniform graph prior subject to a maximum fan-
in of 3, and we chose the prior parameter distributions in Eqn. (1)
and (2) maximally uninformative subject to the regularity conditions
in Geiger and Heckerman (1994). We demonstrate in Section 5.1
that inference based on Gibbs sampling/dynamic programming
substantially improves convergence and mixing. Thus, in the
cross-method comparison (see Section 5.2) the inhomogeneous
DBN models have been inferred by Gibbs sampling/dynamic
programming rather than employing the less effective RJMCMC
sampling schemes. As is standard, we discarded a burn-in phase,
and tested for convergence (PSRF≤ 1.1) based on potential scale
reduction factors (PSRF), see (Gelman and Rubin, 1992), resulting
in 200 Gibbs steps per data set and method.

5 RESULTS

5.1 Convergence diagnostics on gene expression time
series from Arabidopsis thaliana

The objective of the first study was to assess the improvement in
convergence and mixing achieved with the dynamic programming
scheme of Section 2.2. To this end, we applied the inhomogeneous
DBN of Eq. (1) to gene expression time series from the model
plantArabidopsis thaliana, described in Subsection 3.2. We aimed
to reconstruct a regulatory network among 9 genes, which from
previous studies are known to be involved in circadian regulation
(Locke et al., 2005). Our model and simulation setup matched
the one described in Grzegorczyk and Husmeier (2009). We
compared the standard MCMC scheme applied in previous work,
MH/RJMCMC (Robinson and Hartemink, 2009; Grzegorczyk and
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Fig. 1. Convergence diagnostics. The graphs show the proportion of edges for which the PSRF lies below the indicated threshold, satisfying the respective
convergence criterion. The horizontal axes represent simulation time, measured in terms of the equivalent number of MH/RJMCMC steps. Four MCMC
schemes for theclass 2 model from Grzegorczyk and Husmeier (2009) are compared; see Section 5.1, where the terms in the legend are explained.

Husmeier, 2009; L̀ebreet al., 2010), which is based on RJMCMC
(Green, 1995) and structure MCMC (Madigan and York, 1995),
with the Gibbs sampling/ dynamic programming scheme discussed
in Section 2.2. For the latter, we compared three different
subschemes, which differ with respect to the prior distribution on
the changepoints. The first subscheme imposes a Poisson prior with
truncation thresholdKn ≤ 10 on the number of components,
P (Kn), and the same even-numbered order statistics prior as
applied in Grzegorczyk and Husmeier (2009); Green (1995) on
the segmentations,P (Vn|Kn). The second subscheme is identical,
except that the truncation threshold has been lowered toKn ≤ 5.
The third subscheme follows Fearnhead (2006) and uses the prior
imposed by the point process prior of Eq. (5) with hyperparameters
p = 0.05 and a = 2. We refer to these four schemes as
MH/RJMCMC, Gibbs(Kmax = 10), Gibbs(Kmax = 5) and
Gibbs-NBIN, respectively. To assess the degree of convergence,we
repeated the MCMC simulations from five different initializations
and computed the PSRFs for all potential edges, as described in
the supplementary paper. Recall that PSRF=1 indicates perfect
convergence, and PSRF≤1.1 is usually taken as an indication of
sufficient convergence. Ideally, we would like to plot the PSRF
values against the MCMC iteration number. However, due to
different computational costs of the individual steps of the MCMC
simulations – a Gibbs step based on dynamic programming is
substantially more expensive than an MH/RJMCMC step – we
plotted the PSRF scores against the simulation time, measured
in terms of conventional MH/RJMCMC steps5. The results are
shown in Figure 1. The proposed Gibbs sampling scheme based on
dynamic programming significantly outperforms the conventional
MH/RJMCMC scheme. When comparing the different dynamic
programming schemes, Gibbs-NBIN performs slightly better than
Gibbs(Kmax = 10) and Gibbs(Kmax = 5), in agreement with
the findings in Fearnhead (2006). For the reconstructed network
topology and the inferred changepoint locations, which in the
absence of a true gold standard cannot be evaluated properly, we
refer to our supplementary paper.

5 1100k MH/RJMCMC (5500 Gibbs-NBIN) steps take 45 min. with our
MATLAB code on a SunFire X4100M2 machine.

5.2 Comparative evaluation on simulated data
For our simulation study we employ the synthetically generated
RAF-pathway data from Section 3.1 to cross-compare the network
reconstruction accuracy of the proposedregularized class 2 model
with three other models: a standard homogeneous Bayesian network
model, aclass 1 model with changepoints that are common to all
nodes (Grzegorczyket al., 2010), and aclass 2 model with node-
specific changepoints (Grzegorczyk and Husmeier, 2009). In our
study we evaluated the network reconstruction accuracy with the
area under the precision-recall curve (AUC) (Davis and Goadrich,
2006); see Section 5.3 for more details. This is standard in systems
biology, with larger scores indicating a better performance.
Figure 2 summarizes the empirical results of our simulation study.
1) Homogeneous data: Except for the highest setting of the
hyperparameterp, the three inhomogeneous DBNs never perform
worse than the homogeneous model, while on the other hand for
inhomogeneous data, the homogeneous model is inappropriate and
performs substantially worse. 2)Class 1 data: The class 1 model
and the proposedregularized class 2 model perform equally well.
Both outperform theclass 2 model, except for high values of
p.6 3) Class 2 data: The class 1 model cannot accommodate the
node-specific changepoints and is outperformed by the proposed
regularized class 2 model (the “NEW” model). Interestingly, the
latter also shows more stability than theclass 2 model with
respect to a variation of the hyperparameterp, indicating increased
robustness as a consequence of the node clustering. 4)Regularized
class 2 data: The results are comparable to those for theclass
2 data. Theclass 1 model is consistently inferior to theclass 2
model, and theclass 2 model is, once again, substantially more
susceptible to a variation ofp. The mean AUC values are – overall
– lower than for the previous case, theclass 2 data. This seems
to be a consequence of spurious interactions resulting from chance
correlations. Setting the autocorrelation of nodePIP3 to zero
(ε = 1, no AC), noticeably increases the mean AUC values. In
summary, this study shows that the proposedregularized class 2

6 Recall that a high value of the hyperparameterp implies a low prior
penalty for changepoints.
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Fig. 2. Network reconstruction accuracy on synthetic data. The figure shows the mean area under the precision-recall curves (AUC) in dependence on
the hyperparameterp of the negative binomial point process prior of Eq. (5). For the RAF pathway (bottom right panel) we implemented 5 scenarios of
inhomogeneity as explained in Section 5.2. For each scenariothere is a panel for SNR=3 and SNR=10; “noAC” stands for “no autocorrelation”. The following
models were applied to the data, each representing a particular class: (i) homogeneous model: the standard DBN model based onthe BGe score, (ii) theclass
1 model was taken from Grzegorczyket al. (2010), (iii) theclass 2 model was taken from Grzegorczyk and Husmeier (2009), and (iv)theregularized class 2
model was generated from theclass 2 model in Grzegorczyk and Husmeier (2009) as explained in Section 3.1. The mean AUC scores were computed from 10
independent data instantiations.

model, which implements the method of Section 2.3, is always
among the best-scoring models. It shows more robustness than the
competing schemes both with respect to a variation of the type of
data, and a variation of the prior knowledge (inherent in Eq. (5) via
p).

5.3 Synthetic biology in Saccharomyces cerevisiae
In the final application we compare the proposed model with other
state-of-the art techniques on a topical data set from synthetic
biology. We used a synthetically generated network of five genes
in Saccharomyces cerevisiae (yeast), depicted in Figure 3, which
was used in Cantoneet al. (2009) to evaluate two state-of-the-
art network reconstruction methods: BANJO, a conventional DBN,
trained with simulated annealing; and TSNI, an approach based on
ordinary differential equations. Both methods, which are described
in more detail in Cantoneet al. (2009), were applied to gene
expression time series obtained from synthetically designed yeast
cells grown with different carbon sources: galactose (“switch
on”) or glucose (“switch off”). BANJO and TSNI were then

applied to infer a network (see Cantoneet al. (2009) for details),
from which, by comparison with the known gold standard, the
precision (proportion of correctly predicted interactions out of the
total number of predicted interactions) and recall (percentage of
true interactions that have been correctly identified) scores were
determined. In our study, we used the data described in Section
3.3, applied the proposedregularized class 2 model as described in
Sections 2.3, and sampled networks from the posterior distribution
with the Gibbs sampling scheme described in Section 2.2. This
gives us an ordering of interactions, ranked by their marginal
posterior probability, and by plotting precision against recall scores
for different thresholds, we obtain the precision-recall (PR) curves
(Davis and Goadrich, 2006) shown in Figure 3. Larger areas under
the PR curve are indicative of a better reconstruction accuracy;
hence in agreement with Cantoneet al. (2009) we find that the
“switch on” data are more informative than their “switch off”
counterpart. The scores for BANJO and TSNI, which we took from
Cantoneet al. (2009), lie clearly and consistently below the “switch
on” PR curve, for different choices of the changepoint process prior
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Fig. 3. Network reconstruction accuracy evaluated with synthetic biology. The centre panel shows the true gene regulatory network inSaccharomyces
cerevisiae, designed in Cantoneet al. (2009). The outer panels show the precision-recall curves for the proposedregularized class 2 model (NEW). Results
were obtained for both experimental conditions: the “switchon” and the “switch off” time series described in Cantoneet al. (2009). The symbols at fixed
positions (triangle, star and square) mark the precision/recall results obtained in Cantoneet al. (2009) for two state-of-the-art network reconstruction methods:
BANJO (conventional homogeneous DBN) and TSNI (ODE based approach).

– defined byp in Eq. (5). This suggests that the method proposed
in the present paper achieves a genuine and significant improvement
over state-of-the-art schemes reported in the recent systems biology
literature.

6 CONCLUSION
We have proposed two improvements for time-varying DBNs: a
Gibbs sampling (GS) scheme based on dynamic programming (DP)
as an alternative to RJMCMC, and information coupling between
nodes based on Bayesian clustering. The evaluation on a real gene
expression data set fromArabidopsis thaliana suggests that GS-
DP shows faster mixing and convergence than MH/RJMCMC. A
comparative evaluation on synthetic data demonstrates that the new
model based on information coupling between nodes compares
favourably with earlier models that either employ network-wide
(class 1) or node-specific (class 2) changepoints. On gene
expression time series from a recent study of synthetic biology in
Saccharomyces cerevisiae the proposed model has outperformed
two state-of-the-art network reconstruction methods. These findings
suggest that the proposed method makes important contributions
both to inference and performance of network reconstruction
methods, and hence adds a valuable new tool to the kit of
computational systems biology. In our future work we will
investigate different choices for the prior on node cluster formations,
introduced in Section 2.3, exploring methods from Bayesian non-
parametrics based on Dirichlet process priors.
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Abstract: This paper is a supplement to our main paper ’Improvements in the reconstruction of time-

varying gene regulatory networks: dynamic programming and regularization by information sharing among

genes’ (submitted to Bioinformatis, 2010). It contains the algorithmic details of the proposed model im-

provements and provides further results obtained for the circadian genes in Arabidopsis thaliana data.

Section 1 gives a comprehensive description of the dynamic programming schemes, the cpBGe model, and

the novel regularized cpBGe model. In Section 2 the inferred network topology and the inferred changepoint

locations for circadian genes in Arabidopsis thaliana are presented and discussed.

1 Methodology

1.1 The homogeneous dynamic BGe network

DBNs are flexible models for representing probabilistic relationships between interacting variables
(nodes) X1, . . . ,XN via a directed graph G. In most applications first-order DBNs are considered
so that all interactions are subject to a time delay τ = 1. An edge pointing from Xj to Xn,
symbolically G(j, n) = 1, in a DBN with τ = 1 indicates that the realization of Xn at time point
t, symbolically: Xn(t), is conditionally dependent on the realization of Xj at time point t − 1,
symbolically: Xj(t − 1). See Figure 1 for an example of a DBN consisting of two nodes X and
Y . The parent node set of node Xn in G, πn = πn(G), is the set of all nodes from which an edge
points to node Xn in G. Note that there is a one-to-one mapping between the graph G and the
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(a) recurrent network (b) unfolded dynamic network

Figure 1: State space graph and corresponding dynamic Bayesian network of order
τ = 1. Panel (a) shows a recurrent state space graph containing two nodes. Node X has a
recurrent feedback loop and acts as a regulator of node Y . Panel (b) shows the same graph
unfolded in time.

N parent node sets πn; i.e. G(j, n) = 1 if and only if Xj ∈ πn; and vice-versa G(j, n) = 0 if and
only if Xj /∈ πn. Given a data set D, where Dn,t and D(πn,t) are the tth realizations Xn(t) and
πn(t) of Xn and πn, respectively, and 1 ≤ t ≤ m represents time, DBNs are based on the following
homogeneous Markov chain expansion:

P (D|G,θ) =
N
∏

n=1

m
∏

t=2

P
(

Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θn

)

(1)

where θ is the total parameter vector, composed of node-specific subvectors θn, which specify the
local conditional distributions in the factorization. From Eq. (1) and under the assumption of
parameter independence, P (θ|G) =

∏

n P (θn|πn), the marginal likelihood is given by

P (D|G) =

∫

P (D|G,θ)P (θ|G)dθ =

N
∏

n=1

Ψ(Dπn
n ) (2)

Ψ(Dπn
n ) =

∫ m
∏

t=2

P
(

Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θn

)

P (θn|πn)dθn (3)

where Dπn
n := {(Dn,t,Dπn,t−1) : 2 ≤ t ≤ m} is the subset of data pertaining to node Xn and parent

set πn. We will refer to Ψ(Dπn
n ) as local score of Xn. For the local scores Ψ(Dπn

n ) various modelling
frameworks, such as sparse Bayesian regression models (e.g. see Rogers and Girolami (2005)), have
been proposed and applied in the literature. In this study we focus on the BGe model, which was
proposed by Geiger and Heckerman (1994). That is, a linear Gaussian distribution is chosen
for the local conditional distribution P (Xn|πn,θn) in Eq.(3), and the conjugate normal-Wishart
distribution is assigned to the local prior distributions P (θn|πn). Under fairly weak regularity
conditions discussed in Geiger and Heckerman (1994) (parameter modularity), the integral in
Eq. (3) has a closed form solution, given by Eq. (24) in Geiger and Heckerman (1994). The
resulting expression is called the (local) BGe score.

1.2 The inhomogeneous dynamic changepoint BGe model (cpBGe)

To obtain a inhomogeneous DBN, we generalize Eq. (1) with a node-specific mixture model:

P (D|G,V,K,θ) =

N
∏

n=1

m
∏

t=2

Kn
∏

k=1

P
(

Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θ
k
n

)δVn(t),k

(4)
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where δVn(t),k is the Kronecker delta, V is a matrix of latent variables Vn(t), Vn(t) = k indicates
that the realization of node Xn at time t, Xn(t), has been generated by the kth component of
a mixture with Kn components, and K = (K1, . . . ,Kn). Note that the matrix V divides the
data into several disjoined subsets, each of which can be regarded as pertaining to a separate BGe
model with parameters θ

k
n. The vectors Vn are node-specific, i.e. different nodes can have different

changepoints so that the proposed model has a higher flexibility in modelling nonlinear relationships
than the BGM model proposed in Grzegorczyk et al. (2008). The probability model defined in
Eq. (4) is effectively a mixture model with local probability distributions P (Xn|πn,θk

n) and it can
hence, under a free allocation of the latent variables, approximate any probability distribution
arbitrarily closely. But different from the free allocation of latent variables in Grzegorczyk et al.
(2008), in the present work, we change the assignment of data points to mixture components from
a free allocation to a changepoint process. This allocation scheme provides the approximation
of a nonlinear regulation process by a piecewise linear process under the assumption that the
temporal processes are sufficiently smooth. Employing a changepoint process effectively reduces
the complexity of the latent variable space and incorporates our prior belief that, in a time series,
adjacent time points are likely to be assigned to the same component. From Eq. (4), the marginal
likelihood conditional on the latent variables V is given by

P (D|G,V,K) =

∫

P (D|G,V,K,θ)P (θ)dθ =

N
∏

n=1

Ψ†(Dπn
n [Kn,Vn]) (5)

Ψ†(Dπn
n [Kn,Vn]) =

Kn
∏

k=1

Ψ(Dπn
n [k,Vn]) (6)

where the factors in Eq. (6) are given by:

Ψ(Dπn
n [k,Vn]) =

∫ m
∏

t=2

P
(

Xn(t) = Dn,t|πn(t − 1) = D(πn,t−1),θ
k
n

)δVn(t),k

P (θk
n|πn)dθ

k
n (7)

Eq. (7) is similar to Eq. (3), and can be interpreted as a local BGe score restricted to the data
subset Dπn

n [k,Vn] := {(Dn,t,Dπn,t−1) : Vn(t) = k, 2 ≤ t ≤ m}. The product Ψ†(Dπn
n [Kn,Vn]) in

Eq. (6) is the local cpBGe score of Xn. Note that there is a factor for each mixture component
k and that each factor Ψ(Dπn

n [k,Vn]) can be interpreted as a local BGe score for the data subset
Dπn

n [k,Vn].

When the regularity conditions defined in Geiger and Heckerman (1994) are satisfied, then the
expression in Eq. (7) has a closed-form solution: it is given by Eq. (24) in Geiger and Heckerman
(1994) restricted to the subset of the data pertaining to node Xn and its parents πn that has been
assigned to the kth mixture component (or kth segment).

The joint probability distribution of the proposed cpBGe model is given by:

P (G,V,K,D) = P (G)P (V|K)P (K)P (D|G,V,K) (8)

We restrict on graph prior distributions that can be factorized into node-specific factors, symbol-
ically: P (G) =

∏N
n=1 P (πn) and in the absence of genuine prior knowledge about the regulatory

network structure, we assume for P (πn) a uniform distribution. As done in our earlier work (Grze-
gorczyk and Husmeier, 2009) and in other Bayesian network studies (e.g. Friedman and Koller
(2003) or Grzegorczyk and Husmeier (2008)) we impose a fan-in restriction on the cardinality of the
parent node sets, symbolically: |πn| ≤ 3, to ensure sparsity of the inferred graph structures. More-
over, we assume that the distributions of the node-specific numbers of mixture components and
allocation vectors P (Vn|Kn)P (Kn) are independent (n = 1, . . . , N) so that the joint probability
distribution in Eq. (8) can be factorized:

P (G,V,K,D) =
N
∏

n=1

P (πn)P (Vn|Kn)P (Kn)Ψ†(Dπn
n [Kn,Vn]) (9)
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Accordingly, the posterior distribution P (G,V,K|D) can be factorized into independent node-
specific posterior distributions:

P (G,V,K|D) =

N
∏

n=1

P (πn,Vn,Kn|D
1:N
n ) (10)

where D1:N
n := {(Dn,t,D1,t−1, . . . ,DN,t−1) : 2 ≤ t ≤ m} contains the last m − 1 observations

Dn,2, . . . ,Dn,m of Xn and the first m − 1 observations Dj,1, . . . ,Dj,m−1 of all potential parent
nodes Xj (j = 1, . . . , N) of Xn. We note that each factor P (πn,Vn,Kn|D

1:N
n ) in Eq. (10) can be

infered independently.
As prior probability distributions on the node-specific numbers of mixture components Kn, P (Kn),
we take iid truncated Poisson distributions with shape parameter λ = 1, restricted to 1 ≤ Kn ≤
KMAX (we set KMAX = 10 in our simulations). The prior distribution on the node-specific
latent variable vectors, P (Vn|Kn), is implicitly defined via a changepoint process. We identify Kn

components with Kn − 1 changepoints bn = (bn,1, . . . , bn,Kn−1) on the discrete set {2, . . . ,m − 1}.
For node Xn the observation at time point t is assigned to the kth component, symbolically Vn(t) =
k, if and only if bn,k−1 < t ≤ bn,k, where bn,k is the kth changepoint implied by Vn, and bn,0 = 1
and bn,Kn

= m are two pseudo changepoints. There is a one-to-one mapping between allocation
vectors and changepoints: For t = 2, . . . ,m and k = 1, . . . ,Kn: bn,k−1 < t ≤ bn,k ⇔ Vn(t) = k.
To make that more specific, we henceforth use the notation bVn

= (bVn,1, . . . , bVn,Kn−1) for the
changepoint vector implied by Vn. Following Green (1995) we assume that the changepoints are
distributed as the even-numbered order statistics of L := 2(Kn−1)+1 points u1, . . . , uL uniformly
and independently distributed on the set {2, . . . ,m − 1}. The even-numbered order statistics prior
on the discrete changepoint locations induces the following prior distribution on the node-specific
allocation vectors P (Vn|Kn):

P (Vn|Kn) =
1

(

m − 2
2(Kn − 1) + 1

)

Kn−1
∏

k=0

(bVn,k+1 − bVn,k − 1) (11)

where bVn,0 = 1 and bVn,Kn
= m. We note that the even-numbered order statistics prior avoids

changepoints at neighbouring time points t and t + 1, and we have: |bVn,k+1 − bVn,k| > 1 for
k = 0, . . . ,Kn − 1.

In the following sections we discuss Metropolis-Hastings and Gibbs MCMC sampling schemes
for sampling from the local posterior distributions P (πn,Vn,Kn|D

1:N
n ) (n = 1, . . . , N). The

Metropolis-Hastings samplers employ local changepoint birth, death and reallocation moves on
(Kn,Vn), and the acceptance probabilities depend on P (Kn)P (Vn|Kn) ratios, which are straight-
forward to compute. For the Gibbs samplers, which include dynamic programming schemes
to sample the changepoints from the correct posterior distribution, closed-form expressions for
P (Kn)P (Vn|Kn) are crucial.

1.3 MCMC based model inference

1.3.1 Metropolis-Hastings sampling schemes

We now describe a Metropolis-Hastings (MH) MCMC algorithm to obtain a sample
{Gi,Vi,Ki}i=1,...,I from the posterior distribution P (G,V,K|D) ∝ P (G,V,K,D) of Eq. (10).
Our MH samplers combine the structure MCMC algorithm for Bayesian networks (Giudici and
Castelo, 2003; Madigan and York, 1995) with the reversible jump MCMC sampling scheme for
changepoints presented in Green (1995). This can be done straightforwardly, since conditional on
the node-specific allocation vectors Vn the model parameters can be integrated out to obtain the
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local cpBGe scores Ψ†(Dπn
n [Kn,Vn]) in closed form, as shown in the previous Section 1.2. The re-

sulting algorithm is effectively an RJMCMC scheme (Green, 1995) in the discrete space of network
structures and latent allocation vectors, where the Jacobian in the acceptance criterion is always
1 and can be omitted. With probability pG = 0.5 we perform a single edge move on the current
graph Gi and leave the latent variable matrix and the numbers of mixture components unchanged,
symbolically: Vi+1 = Vi and Ki+1 = Ki. The new candidate graph is obtained by randomly
selecting one of the domain nodes Xn and changing its parent set πi

n by either adding or removing
a parent node. There are |πi

n| nodes that can be removed from πi
n and there are N − |πi

n| nodes
that can be added to πi

n, unless the maximal fan-in F is reached; for |πi
n| = F no more edges can

be added. This gives a set N (πi
n) of new candidate parent sets with |N (πi

n)| ∈ {F , N} from which
we randomly select a new candidate parent set πi+1

n . The MH sampler proposes the new candidate
graph Gi+1 which results from Gi by replacing πi

n by πi+1
n , and the new graph is accepted with

probability:

A(Gi+1|Gi) = min

{

1,
Ψ†(D

πi+1
n

n [Ki
n,Vi

n])

Ψ†(D
πi

n
n [Ki

n,Vi
n])

P (πi+1
n )

P (πi
n)

|N (πi
n)|

|N (πi+1
n )|

}

(12)

where |.| is the cardinality, and the local Ψ†(.) scores have been specified in Eq. (6). The graph is
left unchanged, symbolically Gi+1 := Gi, if the move is not accepted.

With the complementary probability 1− pG we leave the graph Gi unchanged and perform a move
on (Vi,Ki), where Vi

n is the latent variable vector of Xn in Vi, and Ki = (Ki
1, . . . ,K

i
N ). We

randomly select a node Xn and change its current number of components Ki
n and its allocation

vector Vi
n via a changepoint birth or death move, or we keep Ki

n and change its latent variable
vector Vi

n by a changepoint re-allocation move along the lines of the RJMCMC algorithm of Green
(1995).
The changepoint birth (death) move increases (decreases) Ki

n by 1 and changes Vi
n correspondingly.

The changepoint reallocation move leaves Ki
n unchanged and modifies Vi

n only. If with probability
(1 − pG)/N a changepoint move on (Ki

n,Vi
n) is performed, we randomly draw the move type.

Under fairly mild regularity conditions (ergodicity), the MH MCMC sampling scheme converges
to the desired posterior distribution (Green, 1995) if the acceptance probabilities for the three
changepoint moves (Ki

n,Vi
n) → (Ki+1

n ,Vi+1
n ) are chosen of the form min(1, R), with

R =
Ψ†(Dπn

n [Ki+1
n ,Vi+1

n ])

Ψ†(Dπn
n [Ki

n,Vi
n])

× A × B =

∏Ki+1
n

k=1 Ψ(Dπn
n [k,Vi+1

n ])
∏Ki

n

k=1 Ψ(Dπn
n [k,Vi

n])
× A × B (13)

where A = P (Vi+1
n |Ki+1

n )P (Ki+1
n )/P (Vi

n|K
i
n)P (Ki

n) is the prior probability ratio, B is the inverse
proposal probability ratio, and the Ψ(.)†- and Ψ(.)-terms have been specified in Eqn. (6) and (7).

In our implementation we choose Ki
n-dependent proposal probabilities bKi

n
, dKi

n
, and rKi

n
for birth

(b), death (d) and re-allocation (r) moves. Like Green (1995) we set: bKi
n

= c min{1,
P (Ki

n+1)
P (Ki

n) }

and dKi
n

= c min{1,
P (Ki

n−1)
P (Ki

n) } with the constant c as large as possible subject to the constraint

bKi
n

+dKi
n
≤ 0.9 for all i so that the ratio of the proposal probabilities for birth versus death moves

d(Ki
n+1)/bKi

n
cancels out against the prior ratio P (Ki

n + 1)/P (Ki
n). The proposal probability for a

changepoint (re-)allocation move is given by: rKi
n

= 1 − bKi
n
− dKi

n
.

(i) For a changepoint reallocation (r) we randomly select one of the existing changepoints bVi
n,j from

the vector (bVi
n,1, . . . , bVi

n,Kn−1), and the replacement value b† is drawn from a uniform distribution

on the discrete set
{

bVi
n,j−1 + 2, . . . , bVi

n,j+1 − 2
}

where bV i
n,0 = 1 and bVi

n,Kn
= m. The proposal

probability ratio is one and the prior probabilities P (Ki+1
n ) = P (Ki

n) cancel out, Br = 1. From
Eq. (11) it can be seen that the remaining prior probability ratio is P (Vi+1

n |Ki+1
n )/P (Vi

n|K
i
n) is

given by:

Ar =
(bVi

n,j+1 − b† − 1)(b† − bVi
n,j−1 − 1)

(bVi
n,j+1 − bVi

n,j − 1)(bVi
n,j − bVi

n,j−1 − 1)
, (14)
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If there is no changepoint (Ki
n = 1) the move is rejected and the Markov chain is left unchanged.

(ii) If a changepoint birth move (b) on (Ki
n,Vi

n) is proposed, the location of the new changepoint
b† is randomly drawn from a uniform distribution on the set of all valid new changepoint locations:

B†(Vi
n) :=

{

b : 2 ≤ b ≤ m − 1 ∧ ∀j ∈ {1, . . . ,Kn − 1} : |b − bVi
n,j | > 1

}

(15)

The new candidate changepoint b† with bVi
n,j < b† < bVi

n,j+1 yields Ki+1
n = Ki

n + 1 mixture

components and a new candidate allocation vector Vi+1
n in which one segment has been subdivided

into 2 segments. The proposal probability for this move is bKi
n
/|B†(Vi

n)|, where |B†(Vi
n)| is the

number of valid changepoint locations for b†. The reverse death move, which is selected with
probability d(Ki

n+1), consists in discarding randomly one of the (Ki
n + 1) − 1 = Ki

n changepoints

from (Ki+1
n ,Vi+1

n ). The prior probability ratio Ab can be computed with Eq. (11):

Ab =
P (Ki

n + 1)

P (Ki
n)

(2Ki
n + 1)(2Ki

n)

(m − 2Ki
n − 1)(m − 2Ki

n − 2)

(bVi
n,j+1 − b† − 1)(b† − bVi

n,j − 1)

(bVi
n,j+1 − bVi

n,j − 1)
, (16)

and the inverse proposal probability ratio is Bb =
d
(Ki

n+1)
|B†(Vi

n)|

(b
Ki

n
Ki

n) . This can be simplified to:

AbBb =
(2Ki

n + 1)(2Ki
n)

(m − 2Ki
n − 1)(m − 2Ki

n − 2)

(bVi
n,j+1 − b† − 1)(b† − bVi

n,j − 1)

(bVi
n,j+1 − bVi

n,j − 1)

|B†(Vi
n)|

Ki
n

(17)

For Ki
n = Kmax the birth of a new changepoint is invalid and the Markov chain is left unchanged.

(iii) A changepoint death move (d) on the current state (Ki
n,Vi

n) is the reverse of the birth move.
There are Ki

n − 1 changepoints and we randomly select and delete one of them. Let b† = bVi
n,j be

the selected changepoint and let Vi+1
n be the new candidate allocation vector after deletion of the

selected changepoint b†. We obtain for the product of the prior probability ratio and the inverse
proposal probability ratio:

AdBd =
(m − 2Ki

n − 3)(m − 2Ki
n − 4)

(2Ki
n − 1)(2Ki

n − 2)

(bVi
n,j+1 − bVi

n,j−1 − 1)

(bVi
n,j+1 − b† − 1)(b† − bVi

n,j−1 − 1)

Ki
n − 1

|B†(Vi+1
n )|

(18)

where |B†(Vi+1
n )| is the number of valid new changepoint locations that can be added during a

birth move. For Ki
n = 1 there is no changepoint that can be deleted during a death move and the

Markov chain is left unchanged.

1.4 Sampling parent node sets from the Boltzmann distribution

The Metropolis-Hastings (MH) sampler presented in Section 1.3.1 changes the current graph G by
single-edge operations. An improvement can be achieved by sampling new parent node sets π⋆

n for
each node Xn directly from the posterior distribution:

P (π⋆
n|D

1:N
n ) =

Ψ(D
π⋆

n
n )

∑

πn:|πn|≤F Ψ(Dπn
n )

(19)

where the local Ψ(.)-scores of the standard (homogeneous) DBN were specified in Eq. (3) and the
sum is over all valid parent node sets πn subject to a fan-in restrition F . Eq. (19) is similar to
Eq. (10) in Friedman and Koller (2003). The main difference is that Friedman and Koller (2003)
apply this scheme to static Bayesian networks subject to an order constraint, where the latter has
to be imposed on the system to render it modular. A DBN without intra-time-slice connectivities,
on the other hand, is intrinsically modular, i.e. Eq. (19) exploits modularities that already exist
and do not need to be enforced via an additional constraint.
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In standard (homogeneous) DBNs the Boltzmann distributions can be pre-computed and stored
for each node so that sampling from them may become computationally very effective and superior
to MH samplers that are based on single edge operations. For our changepoint model it turns
out that sampling from the Boltzmann distribution is ineffective, as the local scores depend on
the node-specific changepoints and would have to be re-computed in every single MCMC step. In
our cpBGe model we have the following node-specific Boltzmann distributions conditional on the
number of changepoints Kn and the allocation vector Vn:

P (π⋆
n|Kn,Vn,D1:N

n ) =
Ψ†(D

π⋆
n

n [Kn,Vn])
∑

πn:|πn|≤F Ψ†(Dπn
n [Kn,Vn])

=

∏Kn

k=1 Ψ(D
π⋆

n
n [k,Vn])

∑

πn:|πn|≤F

∏Kn

k=1 Ψ(Dπn
n [k,Vn])

(20)

where the local cpBGe scores Ψ†(Dπn
n [Kn,Vn]) and the local BGe scores Ψ(Dπn

n [k,Vn]) can be
computed with Eqn. (6) and (7). Although the three changepoint moves affect only two local BGe
scores in the products, the re-computation of the Boltzmann distribution after each changepoint
move becomes computationally expensive. The bottleneck becomes obvious when taking into
consideration that the three changepoint moves give relatively small steps in the configuration
space of the allocation vector Vn so that a large amount of re-computations is required.
In Sections 1.5 and 1.6 we will discuss a dynamic programming scheme for sampling the node-
specific numbers of changepoints Kn and the node-specific allocation vectors Vn directly from the
conditional posterior distribution: P (Vn,Kn|πn,Dπn

n ). This dynamic programming scheme for
sampling from P (Vn,Kn|πn,Dπn

n ) in combination with sampling parent node configurations πn

from the Boltzmann distribution P (πn|Kn,Vn,D1:N
n ) can be used to construct a Gibbs MCMC

sampling scheme.

1.5 Sampling changepoints by dynamic programming

In the proposed cpBGe model we have a parent node set πn, a number of components Kn, and an
allocation vector Vn for each domain node Xn (n = 1, . . . , N). Kn can be identified with Kn − 1
changepoints on the discrete set {2, . . . ,m − 1} and there is a one-to-one mapping between Vn and
the changepoint vector bVn

:= (bVn,0, . . . , bVn,Kn
) where bVn,0 = 1 and bVn,Kn

= m are pseudo
changepoints.
We now want to apply a dynamic programming scheme to sample for each domain node Xn from
the joint posterior distribution of (Kn,Vn) conditional on the parent node set πn:

P (Kn,Vn|πn,Dπn
n ) = P (Kn|πn,Dπn

n )P (Vn|Kn, πn,Dπn
n ) (21)

where Dπn
n denotes the set of observations {(Dn,i,Dπn,i−1) : 2 ≤ i ≤ m} pertaining to node Xn

and its parent node set πn. Accordingly, let Dπn
n [s : t] denote the sub-segment {(Dn,i,Dπn,i−1) :

s ≤ i ≤ t} of adjacent observations, and we also define Dn,s:t = {Dn,i : s ≤ i ≤ t} and Dπn,s:t =
{Dπn,i : s − 1 ≤ i ≤ t − 1}

The local cpBGe score Ψ†(Dπn
n [Kn,Vn]) of Xn is the probability of the observations Dn,2:m of Xn

given the parent set πn and its observations Dπn,2:m, Kn mixture components, and the allocation
vector Vn. The local score of Xn can be factorized using Eq. (6). Mapping the allocation vector
Vn onto the changepoint vector bVn

we obtain as alternative representation:

Ψ†(Dπn
n [Kn,Vn]) = P (Dn,2:m|Dπn,2:m,Kn,bVn

) =

Kn−1
∏

k=0

Ψ(Dπn
n [(bVn,k + 1) : bVn,k+1]) (22)

When just conditioning on Kn with Kn > 1, we obtain the following marginal distribution:

P (Dn,2:m|Dπn,2:m,Kn) =
∑

bn∈B(Kn)

P (bn)

Kn−1
∏

k=0

Ψ(Dπn
n [(bn,k + 1) : bn,k+1]) (23)
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where B(Kn) is the set of all valid changepoint vectors bn = (bn,0, . . . , bn,Kn
) of cardinality Kn +1

with bn,i+1 − bn,i > 1, bn,0 = 1 and bn,Kn
= m, and P (bn) = P (Vn(bn)) is the prior probability

of the unique allocation vector Vn(bn) and can be computed with Eq. (11) after having extracted
the allocation vector Vn(bn) from bn. Now we additionally fix the j-th changepoint location,
symbolically: bn,j = t − 1, and restrict on the data sub-segment Dπn

n [t : m]:

P (Dn,t:m|Dπn,t:m,Kn, bn,j = t − 1) =
∑

b
j
n∈Bj(Kn|bn,j=t−1)

P (bj
n)

Kn−1
∏

k=j

Ψ(Dπn
n [(bn,k + 1) : bn,k+1]) (24)

where Bj(Kn|bn,j = t − 1) is the set of all valid changepoint vectors bj
n = (bn,j+1, . . . , bn,Kn

) on
the discrete interval {t+1, . . . ,m− 2} with bn,i+1 − bn,i > 1, bn,j = t− 1 and bn,Kn

= m. Different
from Eq. (23) the prior probability P (bj

n) of the changepoint subset bj
n cannot be computed in

closed-form for j > 0.

For Kn > 1 and j = 0, . . . ,Kn − 1 we set QKn

j (t|n, πn) = P (Dn,t:m|Dπn,t:m,Kn, bn,j = t − 1) for

t = 2(j + 1), . . . ,m − 2(Kn − j) + 1 and let QKn

j (t|n, πn) be zero otherwise, i.e. for t < 2(j + 1)
and t > m − 2(Kn − j) + 1.

It can be seen from Eq. (23) that QKn

0 (2|n, πn) is equal to P (Dn,2:m|Dπn,2:m,Kn), since bn,0 = 1
is a fixed pseudo changepoint, and we have for t = 2Kn, . . . ,m − 1:

QKn

Kn−1(t|n, πn) = Ψ(Dπn
n [t : m]) (25)

so that the Q terms can be computed straightforwardly for j = Kn − 1 .

Afterwards – as a special case of the recursions given in Fearnhead (2006) – we obtain the following
recursions: For Kn > 1, j = 0, . . . ,Kn − 2 and t = 2(j + 1), . . . ,m − 2(Kn − j) + 1:

QKn

j (t|n, πn) =

m−2(Kn−j−1)
∑

s=t+1

Ψ(Dπn
n [t : s])QKn

j+1(s + 1|n, πn)P (bn,j = t − 1|bn,j+1 = s,Kn) (26)

where the bounds of t as well as the upper summation index allow for the changepoints that still
need to be included1.
In our changepoint model the probability distribution P (bn,j = t−1|bn,j+1 = s,Kn) of changepoint
bn,j conditional on Kn changepoints and the bn,j+1 changepoint being located at time point s cannot
be computed in closed-form. Following Fearnhead (2006) we set:

P (bn,j = t − 1|bn,j+1 = s,Kn) = P (m,Kn, s, t) :=
s − t

(

m − 2
2(Kn − 1) + 1

) (27)

This is a ’computational trick’ which also yields: QKn

0 (2|n, πn) = P (Dπn
n |Kn) (Fearnhead, 2006).

Thus, the modified recursions can be employed to compute: P (Dn,2:m|Dπn,2:m,Kn) for Kn =
2, . . . ,KMAX . Note that there is no changepoint for Kn = 1 so that the local cpBGe score (see
Eq. (6)) is equal to the local BGe score of Xn (see Eq. (3)).

P (Dn,2:m|Dπn,2:m,Kn = 1) = Ψ(Dπn
n ) (28)

Subsequently, the marginal posterior probability of the number of mixture components Kn can be
computed as follows:

P (Kn = k⋆|Dn,2:m,Dπn,2:m) =
P (Kn = k⋆)P (Dn,2:m|Dπn,2:m,Kn = k⋆)

∑KMAX

k=1 P (Kn = k)P (Dn,2:m|Dπn,2:m,Kn = k)
(29)

1Note that there must be room for including j−1 changepoints bn,1, . . . , bn,j−1 on the locations 2, . . . , t−2 with
bn,j − bn,j−1 > 1 (j = 1, . . . , j), bn,0 = 1 and bn,j = t − 1. And there must be room for Kn − 1 − j changepoints
bn,j+1, . . . , bn,Kn−1 on the locations t, . . . , m − 1 with bn,j − bn,j−1 > 1 (j = j + 1, . . . ,Kn), bn,j = t − 1 and
bn,Kn

= m.
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where P (Kn) is a Poisson distribution with λ = 1 truncated to 1 ≤ Kn ≤ KMAX in our cpBGe
model.
After having sampled Kn = k from P (Kn|Dn,2:m,Dπn,2:m), we can sample an allocation vector Vn

from P (Vn|Kn = k,Dn,2:m,Dπn,2:m) by sampling the j-th changepoint bVn,j conditional on the
(j − 1)-th changepoint bVn,j−1 for j = 1, . . . , k − 1 from the following distribution:

P (bVn,j = s|bVn,j−1,Dπn
n ,Kn = k) =

Ψ(Dπn
n [(bVn,j−1 + 1) : s])Qk

j
(s + 1|n, πn)P (m, k, s, bVn,j−1 + 1)

Qk
j−1(bVn,j−1 + 1|n, πn)

(30)

as shown in Fearnhead (2006). The dynamic programming scheme works as follows: (i) We sam-
ple Kn = k from Eq. (29). (ii) For k = 1 we have no changepoints and for k > 1 we can
subsequently employ Eq. (30) to sample the locations of the k − 1 changepoints. Because of
the one-to-one mapping between changepoints and allocation vectors, the sampled changepoints
bVn,1, . . . , bVn,k−1 give a unique allocation vector Vn which can be seen as directly sampled from
P (Vn|Kn = k,Dn,2:m,Dπn,2:m).
As a summary: By employing the dynamic programming scheme presented in this Section for each
node Xn with parent set πn, the number of mixture components Kn and the allocation vector Vn

can be sampled from the conditional posterior distribution of P (Kn,Vn|πn,Dπn
n ).

1.6 Sampling changepoints from a point process prior

As shown by Fearnhead (2006) the computational costs of the dynamic programming scheme can
be reduced by a slightly modified prior distribution for (Kn,Vn). Instead of modelling P (Kn), and
afterwards the allocation vectors Vn conditional on Kn, a point process prior can be used to model
the distances between successive changepoints. In the point process model g(t) (t = 1, 2, 3, . . .)
denotes the prior probability that there are t time points between two successive changepoints
bn,j−1 and bn,j on the discrete interval {2, . . . ,m−1}. The prior probability of Kn−1 changepoints
being located at time points bn,1, . . . , bn,Kn−1 is:

P (bn,1, . . . , bn,Kn−1) = g0(bn,1)





Kn−1
∏

j=2

g(bn,j − bn,j−1)



 (1 − G(bn,Kn
− bn,Kn−1)) (31)

where bn,0 = 1 and bn,Kn
= m are again pseudo changepoints, G(t) =

∑t
s=1 g(t), and g0(.) is

the prior distribution for the first changepoint bn,1. For g(.) the probability mass function of the
negative binomial distribution NBIN(p,a) with parameters p and a can be used:

g(t) =

(

t − 1
a − 1

)

pk(1 − p)t−a (32)

In a point process model on the positive and negative integers the probability mass function of the
first changepoint bn,1 ∈ {2, . . . ,m − 1} is a mixture of k negative binomial distributions:

g0(bn,1) =
1

k

k
∑

i=1

(

(bn,1 − 1) − 1
i − 1

)

pi(1 − p)(bn,1−1)−i (33)

For each node Xn we define Q(t|n, πn) as the probability of its observations Dn,t:m given the
observations Dπn,(t−1):(m−1) of πn and a changepoint b† at time point t − 1 (t = 2, . . . ,m):

Q(t|n, πn) = P (Dn,t:m|Dπn,(t−1):(m−1), b
† = t − 1) (34)

Q(m|n, πn) is then equal to Ψ(Dπn
n [m : m]), defined below Eq. (21). For t = 3, . . . ,m − 1 the

following recursion can be used:

Q(t|n, πn) =

(

m−1
∑

s=t

Ψ(Dπn
n [t : s])Q(s + 1|n, πn)g(s + 1 − t)

)

+ Ψ(Dπn
n [t : m])(1 − G(m − t)) (35)
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and

Q(2|n, πn) =

(

m−1
∑

s=2

Ψ(Dπn
n [2 : s])Q(s + 1|n, πn)g0(s − 1)

)

+ Ψ(Dπn
n )(1 − G0(m − 2)) (36)

where G0(t) =
∑t

s=1 g0(s). The posterior distribution of the first changepoint bn,1 given the parent
set πn is:

P (bn,1 = t|Dπn
n ) = Ψ(Dπn

n [2 : t])Q(t + 1|n, πn)
g0(t − 1)

Q(2|n, πn)
(37)

for t = 2, . . . ,m − 1 and the probability of no changepoint (P (Kn = 1)) is given by:

P (Kn = 1|πn,Dπn
n ) = Ψ(Dπn

n [2 : m])
1 − G0(m − 2)

Q(2|n, πn)
(38)

The posterior distribution of the j-th changepoint bn,j given the parent node set πn and the
previous changepoint bn,j−1 is:

Pt := P (bn,j = t|bn,j−1,D
πn
n ) = Ψ(Dπn

n [(bn,j−1 + 1) : t])Q(t + 1|n, πn)
g(t − bn,j−1)

Q(bn,j−1 + 1|n, πn)
(39)

for t = bn,j−1 + 1, . . . ,m − 1 and the probability of no further changepoint is given by:

P≥m := Ψ(Dπn
n [(bn,j−1 + 1) : m])

1 − G0(m − bn,j−1 − 1)

Q(bn,j−1 + 1|n, πn)
(40)

Consequently, if there is a changepoint at bn,j−1 = t, then the location of the next changepoint can
be sampled from the discrete mass probability distribution [Pbn,j−1+1, . . . , Pm−1, P≥m] where P≥m

is the probability for no further changepoints. Having sampled changepoints bn,1, . . . , bn,k−1 from
these conditional distributions, the number of mixture components is Kn = k and the allocation
vector Vn can be computed from the changepoints.
As a summary: For each node Xn with parent set πn, (Kn,Vn) can be sampled from
P (Kn,Vn|πn,Dπn

n ) when the prior distribution P (Kn,Vn) is replaced by a point-process model as
described above.

1.7 Sampling changepoints from a point process prior for the regularized
cpBGe model

The dynamic programming scheme presented in Section 1.6 can also be used to sample changepoints
for the novel regularized cpBGe model. In this Section we describe the modifications that have
to be made. We employ the same point process prior for cluster-specific changepoints. The prior
probability that there are Ki − 1 changepoints being located at time points bi,1, . . . , bi,Ki−1 for the
nodes in the ith cluster is given by:

P (bi,1, . . . , bi,Ki−1) = g0(bi,1)





Ki−1
∏

j=2

g(bi,j − bi,j−1)



 (1 − G(bi,Ki
− bi,Ki−1)) (41)

where g(.), G(.), g0(.) have been specified in Section 1.6 (see Eqn. (32)-(33)).

Different from the original cpBGe model we now have changepoints for each of c clusters of nodes
induced by the clustering C rather than node-specific changepoints for each individual node. We
want to sample changepoints for each cluster, which are then common to all the nodes in that
cluster. We consider the ith cluster (1 ≤ i ≤ c), that is the set of nodes {Xn : C(n) = i}. The
nodes in the ith cluster share Ki components and there is a set of changepoints bi,1, . . . , bi,Ki−1
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that can be mapped onto the allocation vector of the ith cluster VC
i : VC

i (t) = k ⇔ bi,k−1 < t ≤ bi,k

(t = 2, . . . ,m and k = 1, . . . ,Ki).

We define Q(t|i, C,G) as the probability of the observations for the nodes in the ith cluster Dn,t:m

(n : C(n) = i) conditional on the corresponding realisations of the parent nodes Dπn,(t−1):(m−1)

(n : C(n) = i) and a changepoint b† at time point t − 1 (t = 2, . . . ,m).

For t = m we have:
Q(m|i, C,G) =

∏

n:C(n)=i

Ψ(Dπn
n [m : m]) (42)

and for t = 3, . . . ,m − 1 the same recursion as in Section 1.6 can be used:

Q(t|i, C,G) =
m−1
∑

s=t





∏

n:C(n)=i

Ψ(Dπn
n [t : s])



Q(s + 1|i, C,G)g(s + 1 − t) (43)

+





∏

n:C(n)=i

Ψ(Dπn
n [t : m])



 (1 − G(m − t)) (44)

and

Q(2|i, C,G) =
m−1
∑

s=2





∏

n:C(n)=i

Ψ(Dπn
n [2 : s])Q(s + 1|i, C,G)



 g0(s − 1) (45)

+





∏

n:C(n)=i

Ψ(Dπn
n )



 (1 − G0(m − 2)) (46)

where G0(t) =
∑t

s=1 g0(s). The posterior distribution of the first changepoint bi,1 of cluster
i given the graph G that implies the parent sets for the nodes in the ith cluster, symbolically
{πn|n : C(n) = i}, is:

P (bi,1 = t|G, C, i) =





∏

n:C(n)=i

Ψ(Dπn
n [2 : t])



Q(t + 1|i, C,G)
g0(t − 1)

Q(2|i, C,G)
(47)

for t = 2, . . . ,m − 1 and the probability of no changepoint for the ith cluster (P (Ki = 1)) is given
by:

P (Ki = 1|i, C,G) =





∏

n:C(n)=i

Ψ(Dπn
n [2 : m])





1 − G0(m − 2)

Q(2|i, C,G)
(48)

The posterior distribution of the j-th changepoint for the ith cluster bi,j given the parent node
sets πn ({n : C(n) = i}) and the previous changepoint bi,j−1 is:

Pt := P (bi,j = t|bi,j−1, i, C,G) =





∏

n:C(n)=i

Ψ(Dπn
n [(bi,j−1 + 1) : t])



Q(t+1|i, C,G)
g(t − bi,j−1)

Q(bi,j−1 + 1|i, C,G)

(49)
for t = bi,j−1 + 1, . . . ,m − 1 and the probability of no further changepoint is given by:

P≥m :=





∏

n:C(n)=i

Ψ(Dπn
n [(bi,j−1 + 1) : m])





1 − G0(m − bi,j−1 − 1)

Q(bi,j−1 + 1|i, C,G)
(50)
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We note that Eqn. (49-50) are the regularized cpBGe equivalents of Eqn. (39-40) in Section 1.6. If
there is a changepoint at bi,j−1 = t, then the location of the next changepoint can be sampled from
the discrete mass probability distribution [Pbi,j−1+1, . . . , Pm−1, P≥m] where P≥m is the probability
for no further changepoints. Having sampled changepoints bi,1, . . . , bi,k−1 from these conditional
distributions, the number of mixture components for the ith cluster of nodes is Ki = k and the
allocation vector for the nodes in the ith cluster VC

i can be extracted from the changepoints:
VC

i (t) = k ⇔ bi,k−1 < t ≤ bi,k (t = 2, . . . ,m and k = 1, . . . ,Ki).

As a summary: Conditional on the graph G for each cluster i (1 ≤ i ≤ c) the number of change-
points and the changepoint locations, symbolically (Ki,V

C
i ) can be sampled from P (Ki,V

C
i |i, C,G).

With regard to Section 1.9 we note that Q(t|i, C,G) was defined such that we have for t = 2:

Q(2|i, C,G) =
∑

VC

j

P (VC
j |C)

∏

n:C(n)=j

Ψ†(Dπn
n [VC

j ]) (51)

where the sum is over all possible allocation vectors VC
j for the jth cluster induced by the clustering

C. The probability of the observations for the nodes in the jth cluster Dn,2:m (n : C(n) = j)
conditional on the corresponding realisations of the parent nodes Dπn,1:m−1 (n : C(n) = j) can
be thought of as the marginal distribution over all possible allocation vectors. In Section 1.9 and
in the main paper we refer to Q(2|j, C,G) as Qj(D, C,G), and as we have seen in this section
Qj(D, C,G) = Q(2|j, C,G) can be computed efficiently by applying the recursions of Fearnhead
(2006).

1.8 MCMC convergence

For our Matlab implementation of the cpBGe model we observed for the Arabidopsis data sets with
N = 9 variables and m = 49 data points that the computational costs of 2000 MCMC iterations of
the Metropolis-Hastings (MH) RJMCMC sampling scheme are comparable to the computational
costs of approximately 1 Gibbs sampling step, when the same Poisson/changepoint process prior
is used and the maximal number of components is set to KMAX = 10. Each single Metropolis-
Hastings step proposes the change of either a parent node set πn or a node-specific allocation vector
Vn. Each Gibbs iteration consists of two steps, i.e. a new parent node set πn and a new node-
specific allocation vector Vn are sampled. We refer to this Gibbs sampler as Gibbs(K = 10). We
tried two other variants of this Gibbs sampling scheme, with the objective to increase the number
of Gibbs steps at the same computational costs. (i) Setting KMAX = 5 approximately halves
the computational costs of the Gibbs sampler, so that 2 moves are approximately as expensive
as 2000 MH iterations. We refer to this version of the Gibbs sampler as Gibbs(K=5). (ii) For
the Poisson/changepoint process prior with the hyperparameters p = 0.05 and a = 2 of the
negative binomial distribution gained a tenfold increase in the number of Gibbs steps at the same
computational costs. We will refer to this version of the Gibbs sampler as Gibbs-NBIN, and we
note that performing 10 Gibbs-NBIN steps required the same computational costs as 2000 MH
steps.
During the sampling phase the cpBGe model outputs a graph sample G1, . . . ,GI from the posterior
distribution from which marginal edge posterior probabilities can be computed. For a network
domain with N nodes an estimator en,j for the marginal posterior probability of the individual
edge Xn → Xj (G(n, j)) is given by:

en,j =
1

I

I
∑

i=1

Gi(n, j) (52)
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where Gi(n, j) is an indicator function which is 1 if the ith graph in the sample contains the edge
Xn → Xj , and 0 otherwise (n, j ∈ {1, . . . , N}). A standard diagnostic that we apply to evaluate
convergence is based on potential scale reduction factors (PSRFs), which are usually monitored
along the number of MCMC iterations. In the following representation we assume that H in-
dependent MCMC simulations with 2s iterations each have been performed on the same single
data set. Discarding the first s iterations as burn-in phase, Is graph samples can be taken from
the remaining s MCMC iterations. Note that the number of samples Is that can be taken in the
sampling-phase is limited by the number of MCMC iterations s and the distance (no. of iterations)
between samples.
For each of the H independent MCMC simulations h = 1, . . . ,H we compute the posterior prob-
abilities of all edges en,j,h (n, j ∈ {1, . . . , N}) from the graph samples Gh,1, . . . ,Gh,Is as described
above. For each individual edge Xn → Xj the ’between-chain’ variance B(n, j) and the ’within-
chain’ variance W(n, j) of its edge posterior probability are defined as (see Brooks and Gelman
(1998)):

B(n, j) =
1

H − 1

H
∑

h=1

(en,j,h − en,j,.)
2 (53)

where en,j,. is the mean of en,j,1, . . . , en,j,H , and:

W(n, j) =
1

H(Is − 1)

H
∑

h=1

Is
∑

i=1

(Gh,i(n, j) − en,j,h)2 (54)

where Gh,i(n, j) is 1 if the ith graph in the sample taken in the hth simulation contains the edge
Xn → Xj , and 0 otherwise. Following Brooks and Gelman (1998) the PSRF (n, j) of the individual
edge Xn → Xj is then given by:

PSRF (n, j) =
(1 − 1

Is
)W(n, j) + (1 + 1

H
)B(n, j)

W(n, j)
(55)

where PSRF values near 1 indicate that each of the H MCMC simulations is close to the stationary
distribution. In our study we use as PSRF-based convergence diagnostic the fraction of edges C(ξ)
whose PSRF is lower than a pre-defined threshold value ξ:

C(ξ) =
1

N2

N
∑

n=1

N
∑

j=1

ZPSRF<ξ(PSRF (n, j)) (56)

where ZPSRF<ξ(PSRF (n, j)) is 1 if PSRF (n, j) < ξ and 0 otherwise.

For the Arabidopsis thaliana data 2s = 1100k MCMC iterations were performed. From the last
s = 550k iterations we sampled Is = 550 graphs by sampling every 1000th iteration. The focus
of our study is on the convergence of the four MCMC sampling schemes for the cpBGe model.
We perform H = 10 independent MCMC simulations and consider three different thresholds for ξ
(ξ = 1.02, 1.05, 1.1).

1.9 Information coupling between nodes based on Bayesian clustering
(Extended version of the main paper)

We instantiate the class 2 model from Eq. (4) of the main paper by following Fearnhead (2006)
and employing the point process prior for the changepoint locations defined in Eq. (5) of the main
paper, i.e. the terms K and Kn in Eqn. (1-4) become obsolete. We extend the class 2 model by
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introducing a cluster function C(.) that allocates the nodes X1, . . . ,Xn to c (1 ≤ c ≤ N) non-empty
clusters, each characterized by its own changepoint vector VC

i , 1 ≤ i ≤ c:

P (G,VC ,D, C) =P (C)P (VC |C)P (G)P (D|G,VC , C) (57)

=P (C)

(

c
∏

i=1

P (VC
i |C)

)

N
∏

n=1

P (πn)Ψ†(Dπn
n [VC

C(n)])

with VC = (VC
1 , . . . ,VC

c ), where c is the number of non-empty node clusters induced by C. We
assume for P(C) a uniform distribution on all functions C that give c (1 ≤ c ≤ N) clusters. The key
idea behind the model of Eq. (57) is to encourage information sharing among nodes with respect
to changepoint locations. Moreover, nodes that are in the same cluster i (1 ≤ i ≤ c) share the
same allocation vector VC

i and will be “penalized” only once2. Note that the novel model is a
generalization that subsumes both class 1 and class 2 models as limiting cases. It corresponds
to class 1 for c = 1 and to class 2 for c = N . Inference can follow a slightly extended Gibbs
sampling procedure, where we iteratively sample the latent variables from P (VC

i |G,D, C), a new
network structure from P (G|VC

i ,D, C), and a new cluster formation from P (C|VC
i ,D,G). The first

two steps follow the procedure discussed in Section 2.2 of the main paper.

For the third step, sampling from P (C|VC
i ,D,G), we adopt an RJMCMC (Green, 1995) scheme

based on cluster birth (b), death (d), and re-clustering (r) moves.3 In a cluster birth move we
randomly select a node cluster i that contains at least 2 nodes, and we randomly choose a node
contained in it. The move tries to re-cluster this node from the ith cluster to a new cluster
c + 1. Denote by C⋆ the new cluster formation thus obtained. For the ith cluster and for the new
(c + 1)th cluster we propose new changepoint allocation vectors VC⋆

i and VC⋆

c+1 by sampling them

from the distributions P (VC⋆

c+1|G,D, C⋆) and P (VC⋆

i |G,D, C⋆), defined in Eq. (59), with Fearnhead’s
dynamic programming scheme (Fearnhead, 2006), as discussed in Section 2.2 of the main paper.
In a cluster death move we randomly select one of the clusters that contain only a single node, and
we re-allocate this node to one of the other existing clusters, chosen randomly. The first cluster
disappears and for cluster j, which absorbs the node, we propose a new changepoint allocation
vector VC⋆

j from P (VC⋆

j |G,D, C⋆) with dynamic programming (Fearnhead, 2006), where C⋆ denotes
the proposed cluster formation. In a re-clustering move we randomly choose two clusters i and j
(i 6= j) as follows. First, cluster i is randomly selected among those that contain at least 2 nodes.
Next, cluster j is randomly selected among the remaining clusters. We then randomly chose one of
the nodes from cluster i and re-allocate the selected node to cluster j. Denote by C⋆ the new cluster
formation obtained. (Since cluster i contains at least 2 nodes, this does not affect c.) For both
clusters i and j we propose new changepoint allocation vectors VC⋆

i and VC⋆

j from P (VC⋆

i |G,D, C⋆)

and P (VC⋆

j |G,D, C⋆) with Fearnhead’s dynamic programming scheme (Fearnhead, 2006).
The acceptance probabilities of these three RJMCMC moves are given by the product of the
likelihood ratio (LR), the prior ratio (PR), the inverse proposal probability ratio or Hastings
factor (HR), and the Jacobian (J ) in the standard way (Green, 1995): A(b,d,r) = min{1, R(b,d,r)},
where R(b,d,r) = LR × PR × HR × J . Since this is a discrete problem, the Jacobian is J = 1,
and for the chosen uniform prior on C, the prior ratio is PR = 1. For a cluster birth move (b),
symbolically (C,VC) → (C⋆,VC⋆

), we thus get: R(b) = LR × HR

R(b)=
P (G,VC⋆

, C⋆,D)

P (G,VC , C,D)
×

c†c‡P (VC
i |G,D, C)

c⋆P (VC⋆

c+1|G,D, C⋆)P (VC⋆

i |G,D, C⋆)
(58)

where c† is the number of clusters induced by C with at least two nodes, c‡ is the number of nodes
in the ith cluster (that was selected), and c⋆ is the number of clusters induced by C⋆ that contain
only a single node. In our regularized class 2 model the recursions of Fearnhead (2006) can be

2Rather than “penalizing” nodes with identical allocation vectors independently, like the model in Grzegorczyk
and Husmeier (2009).

3Each RJMCMC step was repeated 5 times.
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employed as described in Section 1.7 to sample the j-th (1 ≤ j ≤ c) allocation vector VC
j . We

have:

P (VC
j |G,D, C) =

qj(D, C,G,VC
j )

∑

VC⋆

j
qj(D, C⋆,G,VC⋆

j )
(59)

where
qj(D, C,G,VC

j ) = P (VC
j |C)

∏

n:C(n)=j

Ψ†(Dπn
n [VC

j ]) (60)

and the sum in Eq. (59) is over all valid allocation vectors VC⋆

j for the variables in the jth cluster
of C⋆.

It follows from Eqn. (57-58) that all factors except for the (c + 1)th in the nominator and the ith
ones cancel out in the likelihood ratio:

LR =
qi(D, C⋆,G,VC⋆

i ) · qc+1(D, C⋆,G,VC⋆

c+1)

qi(D, C,G,VC
i )

(61)

Hence, R(b) = LR × HR in Eq. (58) reduces to:

R(b) =
c†c‡

c⋆

Qi(D, C⋆,G)Qc+1(D, C⋆,G)

Qi(D, C,G)
(62)

where the terms
Qj(D, C,G) =

∑

VC

j

qj(D, C,G,VC
j ) (63)

can be computed efficiently with Fearnhead’s dynamic programming scheme as described in Sec-
tion 1.7. More precisely, as explained in the paragraph below Eq. (51) we have

Qj(D, C,G) = Q(2|j, C,G) (64)

where Q(2|j, C,G) was specified in Section 1.7 (see Eq. (45)) and can be computed efficiently with
Fearnhead’s recursions.

The acceptance probabilities for cluster death and re-clustering moves can be derived as follows:
For the cluster death move (d), (C,VC) → (C⋆,VC⋆

), we assume that c† is the number of clusters
induced by C with one single node and that the ith cluster belongs to this group and is selected.
Removing the single node from the ith cluster, such that the ith cluster is unoccupied and can be
removed, and adding this node to the jth (i 6= j) cluster induced by C gives a new clustering C⋆.
We then get: R(d) = LR × HR

R(d)=
P (G,VC⋆

, C⋆,D)

P (G,VC , C,D)
×

c⋆P (VC
j |G,D, C)P (VC

i |G,D, C)

c†(c‡ − 1)P (VC⋆

j |G,D, C⋆)
(65)

where c† is the number of clusters induced by C that contain only one single node, c‡ is the number
of clusters induced by C, and c⋆ is the number of clusters induced by C⋆ with at least two nodes.

It follows from Eqn. (57) and(65) that all factors except for the ith ones and the jth ones in the
denominator cancel out in the likelihood ratio:

LR =
qi(D, C⋆,G,VC⋆

i )

qi(D, C,G,VC
j )qj(D, C,G,VC

j )
(66)

Hence, Eq. (65) reduces to:

R(d) =
c⋆

c†c‡
Qi(D, C⋆,G)

Qi(D, C,G)Qj(D, C,G)
(67)
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where the Q(.) terms defined in Eq. (63) can be computed efficiently as described in Section 1.7.

For the re-clustering move (r), (C,VC) → (C⋆,VC⋆

), we assume that C induces c clusters, and we
further assume there are c† clusters with at least two nodes and that the ith cluster belongs to
this group and is selected. One of the nodes from the ith cluster is randomly selected and moved
to the jth (i 6= j) cluster of C. Let ni and nj be the numbers of nodes in the ith and jth cluster
of C. We obtain: R(r) = LR × HR

R(r)=
P (G,VC⋆

, C⋆,D)

P (G,VC , C,D)
×

c†ni(c − 1)P (VC
i |G,D, C)P (VC

j |G,D, C)

c⋄(nj + 1)(c − 1)P (VC⋆

i |G,D, C⋆)P (VC⋆

j |G,D, C⋆)
(68)

where c⋄ is the number of clusters induced by C⋆ that contain at least 2 nodes.

It follows from Eqn. (57) and (68) that all factors except for the ith and the jth ones cancel out
in the likelihood ratio:

LR =
qi(D, C⋆,G,VC⋆

i )qj(D, C⋆,G,VC⋆

j )

qi(D, C,G,VC
j )qj(D, C,G,VC

j )
(69)

Hence, Eq. (68) reduces to:

R(r) =
c†ni

c⋄(nj + 1)

Qi(D, C⋆,G)Qj(D, C⋆,G)

Qi(D, C,G)Qj(D, C,G)
(70)

where the Q(.) terms can be computed effiviently as described in Section 1.7.

2 Arabidopsis thaliana gene expression time series

Plants assimilate carbon via photosynthesis during the day, but have a negative carbon balance
at night. They buffer these daily alternations in their carbon budget by storing some of the
assimilated carbon as starch in their leaves in the light, and utilising it as a carbon supply during
the night. In order to synchronize these processes with the external 24 hour photo period, plants
possess a circadian clock that can potentially provide predictive, temporal regulation of metabolic
processes over the day/night cycle. The proper working of this circadian regulation is paramount
to biomass production and growth, and considerable research efforts are therefore underway to
elucidate its underlying molecular mechanism. In the present article, we aim to reconstruct the
regulatory network of nine circadian genes in the model plant Arabidopsis thaliana.
We apply our method to microarray gene expression time series related to the study of circadian
regulation in plants. Arabidopsis thaliana seedlings, grown under artificially controlled Te-hour-
light/Te-hour-dark cycles, were transferred to constant light and harvested at 13 time points in
τ -hour intervals. From these seedlings, RNA was extracted and assayed on Affymetrix GeneChip
oligonucleotide arrays. The data were background-corrected and normalized according to standard
procedures4, using the GeneSpring c© software (Agilent Technologies).

We combine four time series, which differed with respect to the pre-experiment entrainment con-
dition and the time intervals: Te ∈ {10h, 12h, 14h}, and τ ∈ {2h, 4h}. The data, with detailed
information about the experimental protocols, can be obtained from Edwards et al. (2006), Grze-
gorczyk et al. (2008), and Mockler et al. (2007). For an overview see Table 1. We focus our analysis
on 9 circadian genes: LHY, TOC1, CCA1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3, and we
merge all four time series into one single data set. The objective is to employ the cpBGe model
(Grzegorczyk and Husmeier, 2009), a (class 2 ) model with node-specific changepoints, to detect
the different experimental phases. Since the gene expression values at the first time point of a

4We used RMA rather than GCRMA for reasons discussed in Lim et al. (2007).
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Segment 1 Segment 2 Segment 3 Segment 4

Source Mockler Edwards Grzegorcyk Grzegorcyk
et al.(2007) et al. (2006) et al. (2008) et al. (2008)

Time points 12 13 13 13
Time interval 4h 4h 2h 2h
Pretreatment 12h:12h 12h:12h 10h:10h-dark 14h:14h
entrainment light:dark cycle light:dark cycle light:dark cycle light:dark cycle
Measurements Constant Constant Constant Constant

light light light light
Laboratory Kay Lab Millar Lab Millar Lab Millar Lab

Table 1: Gene expression time series segments for Arabidopsis. The table contains an
overview of the experimental conditions under which each of the gene expression experiments was
carried out.

time series segment have no relation with the expression values at the last time point of the pre-
ceding segment, the corresponding boundary time points are appropriately removed from the data
as described in Grzegorczyk and Husmeier (2009). This ensures that for all pairs of consecutive
time points a proper conditional dependence relation determined by the nature of the regulatory
cellular processes is given.

We elected to use these data as a test case for evaluating the efficiency of different sampling schemes
for the cpBGe model (Grzegorczyk and Husmeier, 2009). Figure 1 of the main paper shows that the
three Gibbs sampling schemes outperform the original RJMCMC sampler proposed in Grzegorczyk
and Husmeier (2009) in terms of convergence and mixing. Since it appears that the GIBBS-NBIN
algorithm performs slightly better than the other two Gibbs sampling schemes (see Figure 1 of the
main paper), we report the results obtained with the GIBBS-NBIN algorithm:

Figure 2 shows the marginal posterior probability of the changepoint locations (right panel), and
the posterior probability of the co-allocation of two time points to the same component (left panel).
It is seen that, overall, the true segment boundaries tend to be detected. Different genes tend to be
affected by the concatenation of the expression time series differently, though. For two genes (TOC1
and PRR9), all true changepoints are correctly predicted. Gene PRR9 shows various additional
changepoints; this might indicate that it is affected by additional heterogeneities beyond the four
experimental phases. Three of the genes (CCA1, ELF3, GI) show two changepoints, at the true
locations (GI) or with a short time lag (CCA1). For genes LHY and ELF4 only one changepoint is
predicted, at the location of the first or second concatenation point. A comparison of Table 1 with
the locations of the peaks in Figure 2 suggests that gene CCA1 is mainly affected by a change of
the entrainment condition, gene ELF4 is mainly affected by factors associated with the laboratory
context, and genes ELF3 and PRR3 are mainly affected by a change of the sampling time interval (2
versus 4 hours). This deviation indicates that the genes are affected by the changing experimental
conditions (entrainment, time interval) in different ways and that the node-specific changepoint
model can be exploited as an exploratory tool for hypothesis generation.

Figure 3 shows the gene interaction network that is predicted when keeping all edges with marginal
posterior probability above 0.5. There are two groups of genes. Empty circles in the figure repre-
sent morning genes (i.e. genes whose expression peaks in the morning), shaded circles represent
evening genes (i.e. genes whose expression peaks in the evening). There are several directed edges
pointing from the group of morning genes to the evening genes, mostly originating from gene CCA1.
This result is consistent with the findings in McClung (2006), where the morning genes were found
to activate the evening genes, with CCA1 and/or its partially redundant homologue LHY (Miwa
et al., 2007) being central regulators. E.g. Alabadi et al. (2001) found that CCA1 (and/or LHY)
repress TOC1 and potentially other evening genes, and Kikis et al. (2005) report that CCA1 (and
LHY) act negatively on ELF4 expression. Our reconstructed network also contains edges pointing
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(b) Transition probabilities

Figure 2: Results on the Arabidopsis gene expression time series. Panel (a): Co-allocation
matrices for the nine circadian genes. The axes represent time. The grey shading indicates the
posterior probability of two time points being assigned to the same mixture component, ranging
from 0 (black) to 1 (white). Panel (b): Average posterior probability of a changepoint (vertical
axis) at a specific transition time plotted against the transition time (horizontal axis) for the nine
circadian genes. The vertical dotted lines indicate the boundaries of the time series segments,
which are related to different experimental conditions (see Table 1).

Figure 3: Circadian gene regulatory network in Arabidopsis learnt from gene expression
time series. Predicted regulatory network of nine circadian genes in Arabidopsis thaliana. Empty
circles represent morning genes. Shaded circles represent evening genes. Edges indicate predicted
interactions with a marginal posterior probability greater than 0.5.
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into the opposite direction, from the evening genes back to the morning genes. This finding is also
consistent with McClung (2006), where the evening genes were found to inhibit the morning genes
via a negative feedback loop. E.g. the edges ELF3 → CCA1 and ELF3 → LHY in Figure 3 are
consistent with the biological finding in Kikis et al. (2005) that ELF3 is necessary for light-induced
CCA1 and LHY expression. Moreover, it is also known that GI and ELF3 play important roles in
the circadian clock network and in that they are involved in the regulatory interactions between
the morning genes LHY/CCA1 and the evening gene TOC1 (Miwa et al., 2006). Within the group
of evening genes, the reconstructed network contains a feedback loop between GI and TOC1, sym-
bolically GI ↔ TOC1. This feedback loop has also been found in Locke et al. (2005) and is an
improvement on our earlier work (Grzegorczyk and Husmeier, 2009), where only a unidirectional
interaction GI → TOC1 was extracted.
Hence while a proper evaluation of the reconstruction accuracy is currently unfeasible – like Robin-
son and Hartemink (2009) and many related studies, we lack a gold-standard owing to the unknown
nature of the true interaction network – our study suggests that the essential features of the re-
constructed network are biologically plausible and consistent with the literature.
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