15,140 research outputs found

    QuASeR -- Quantum Accelerated De Novo DNA Sequence Reconstruction

    Full text link
    In this article, we present QuASeR, a reference-free DNA sequence reconstruction implementation via de novo assembly on both gate-based and quantum annealing platforms. Each one of the four steps of the implementation (TSP, QUBO, Hamiltonians and QAOA) is explained with simple proof-of-concept examples to target both the genomics research community and quantum application developers in a self-contained manner. The details of the implementation are discussed for the various layers of the quantum full-stack accelerator design. We also highlight the limitations of current classical simulation and available quantum hardware systems. The implementation is open-source and can be found on https://github.com/prince-ph0en1x/QuASeR.Comment: 24 page

    Anticoncentration theorems for schemes showing a quantum speedup

    Get PDF
    One of the main milestones in quantum information science is to realise quantum devices that exhibit an exponential computational advantage over classical ones without being universal quantum computers, a state of affairs dubbed quantum speedup, or sometimes "quantum computational supremacy". The known schemes heavily rely on mathematical assumptions that are plausible but unproven, prominently results on anticoncentration of random prescriptions. In this work, we aim at closing the gap by proving two anticoncentration theorems and accompanying hardness results, one for circuit-based schemes, the other for quantum quench-type schemes for quantum simulations. Compared to the few other known such results, these results give rise to a number of comparably simple, physically meaningful and resource-economical schemes showing a quantum speedup in one and two spatial dimensions. At the heart of the analysis are tools of unitary designs and random circuits that allow us to conclude that universal random circuits anticoncentrate as well as an embedding of known circuit-based schemes in a 2D translation-invariant architecture.Comment: 12+2 pages, added applications sectio

    Modeling and manufacturability assessment of bistable quantum-dot cells

    Get PDF
    We have investigated the behavior of bistable cells made up of four quantum dots and occupied by two electrons, in the presence of realistic confinement potentials produced by depletion gates on top of a GaAs/AlGaAs heterostructure. Such a cell represents the basic building block for logic architectures based on the concept of Quantum Cellular Automata (QCA) and of ground state computation, which have been proposed as an alternative to traditional transistor-based logic circuits. We have focused on the robustness of the operation of such cells with respect to asymmetries deriving from fabrication tolerances. We have developed a 2-D model for the calculation of the electron density in a driven cell in response to the polarization state of a driver cell. Our method is based on the one-shot Configuration-Interaction technique, adapted from molecular chemistry. From the results of our simulations, we conclude that an implementation of QCA logic based on simple ``hole-arrays'' is not feasible, because of the extreme sensitivity to fabrication tolerances. As an alternative, we propose cells defined by multiple gates, where geometrical asymmetries can be compensated for by adjusting the bias voltages. Even though not immediately applicable to the implementation of logic gates and not suitable for large scale integration, the proposed cell layout should allow an experimental demonstration of a chain of QCA cells.Comment: 26 pages, Revtex, 13 figures, title and some figures changed and minor revision

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Compressive Mining: Fast and Optimal Data Mining in the Compressed Domain

    Full text link
    Real-world data typically contain repeated and periodic patterns. This suggests that they can be effectively represented and compressed using only a few coefficients of an appropriate basis (e.g., Fourier, Wavelets, etc.). However, distance estimation when the data are represented using different sets of coefficients is still a largely unexplored area. This work studies the optimization problems related to obtaining the \emph{tightest} lower/upper bound on Euclidean distances when each data object is potentially compressed using a different set of orthonormal coefficients. Our technique leads to tighter distance estimates, which translates into more accurate search, learning and mining operations \textit{directly} in the compressed domain. We formulate the problem of estimating lower/upper distance bounds as an optimization problem. We establish the properties of optimal solutions, and leverage the theoretical analysis to develop a fast algorithm to obtain an \emph{exact} solution to the problem. The suggested solution provides the tightest estimation of the L2L_2-norm or the correlation. We show that typical data-analysis operations, such as k-NN search or k-Means clustering, can operate more accurately using the proposed compression and distance reconstruction technique. We compare it with many other prevalent compression and reconstruction techniques, including random projections and PCA-based techniques. We highlight a surprising result, namely that when the data are highly sparse in some basis, our technique may even outperform PCA-based compression. The contributions of this work are generic as our methodology is applicable to any sequential or high-dimensional data as well as to any orthogonal data transformation used for the underlying data compression scheme.Comment: 25 pages, 20 figures, accepted in VLD

    Universal Quantum Computation with the Exchange Interaction

    Full text link
    Experimental implementations of quantum computer architectures are now being investigated in many different physical settings. The full set of requirements that must be met to make quantum computing a reality in the laboratory [1] is daunting, involving capabilities well beyond the present state of the art. In this report we develop a significant simplification of these requirements that can be applied in many recent solid-state approaches, using quantum dots [2], and using donor-atom nuclear spins [3] or electron spins [4]. In these approaches, the basic two-qubit quantum gate is generated by a tunable Heisenberg interaction (the Hamiltonian is Hij=J(t)SiSjH_{ij}=J(t){\vec S}_i\cdot{\vec S}_j between spins ii and jj), while the one-qubit gates require the control of a local Zeeman field. Compared to the Heisenberg operation, the one-qubit operations are significantly slower and require substantially greater materials and device complexity, which may also contribute to increasing the decoherence rate. Here we introduce an explicit scheme in which the Heisenberg interaction alone suffices to exactly implement any quantum computer circuit, at a price of a factor of three in additional qubits and about a factor of ten in additional two-qubit operations. Even at this cost, the ability to eliminate the complexity of one-qubit operations should accelerate progress towards these solid-state implementations of quantum computation.Comment: revtex, 2 figures, this version appeared in Natur
    corecore