4,530 research outputs found

    Maximally selected chi-square statistics and umbrella orderings

    Get PDF
    Binary outcomes that depend on an ordinal predictor in a non-monotonic way are common in medical data analysis. Such patterns can be addressed in terms of cutpoints: for example, one looks for two cutpoints that define an interval in the range of the ordinal predictor for which the probability of a positive outcome is particularly high (or low). A chi-square test may then be performed to compare the proportions of positive outcomes in and outside this interval. However, if the two cutpoints are chosen to maximize the chi-square statistic, referring the obtained chi-square statistic to the standard chi-square distribution is an inappropriate approach. It is then necessary to correct the p-value for multiple comparisons by considering the distribution of the maximally selected chi-square statistic instead of the nominal chi-square distribution. Here, we derive the exact distribution of the chi-square statistic obtained by the optimal two cutpoints. We suggest a combinatorial computation method and illustrate our approach by a simulation study and an application to varicella data

    Computing in unipotent and reductive algebraic groups

    Full text link
    The unipotent groups are an important class of algebraic groups. We show that techniques used to compute with finitely generated nilpotent groups carry over to unipotent groups. We concentrate particularly on the maximal unipotent subgroup of a split reductive group and show how this improves computation in the reductive group itself.Comment: 22 page

    Learning Topic Models and Latent Bayesian Networks Under Expansion Constraints

    Full text link
    Unsupervised estimation of latent variable models is a fundamental problem central to numerous applications of machine learning and statistics. This work presents a principled approach for estimating broad classes of such models, including probabilistic topic models and latent linear Bayesian networks, using only second-order observed moments. The sufficient conditions for identifiability of these models are primarily based on weak expansion constraints on the topic-word matrix, for topic models, and on the directed acyclic graph, for Bayesian networks. Because no assumptions are made on the distribution among the latent variables, the approach can handle arbitrary correlations among the topics or latent factors. In addition, a tractable learning method via 1\ell_1 optimization is proposed and studied in numerical experiments.Comment: 38 pages, 6 figures, 2 tables, applications in topic models and Bayesian networks are studied. Simulation section is adde

    Exact Algorithms for Maximum Clique: a computational study

    Get PDF
    We investigate a number of recently reported exact algorithms for the maximum clique problem (MCQ, MCR, MCS, BBMC). The program code used is presented and critiqued showing how small changes in implementation can have a drastic effect on performance. The computational study demonstrates how problem features and hardware platforms influence algorithm behaviour. The minimum width order (smallest-last) is investigated, and MCS is broken into its consituent parts and we discover that one of these parts degrades performance. It is shown that the standard procedure used for rescaling published results is unsafe.Comment: 40 pages, 14 figures, 10 tables, 12 short java program listings, code afailable to download at http://www.dcs.gla.ac.uk/~pat/maxClique/distribution
    corecore