

Prosser, P. (2012) Exact algorithms for maximum clique: a computational
study. Algorithms, 5 (4). pp. 545-587. ISSN 1999-4893

Copyright © 2012 The Authors

http://eprints.gla.ac.uk/78684/

Deposited on: 23 April 2013

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/78475/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Algorithms 2012, 5, 545-587; doi:10.3390/a5040545
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Exact Algorithms for Maximum Clique: A Computational Study
Patrick Prosser

Computing Science, University of Glasgow, Glasgow G12 8QQ, UK;
E-Mail: Patrick.Prosser@glasgow.ac.uk; Tel.: +44-141-330 4934; Fax: +44-141-330-4934

Received: 11 September 2012; in revised form: 29 October 2012 / Accepted: 29 October 2012 /
Published: 19 November 2012

Abstract: We investigate a number of recently reported exact algorithms for the maximum
clique problem. The program code is presented and analyzed to show how small changes
in implementation can have a drastic effect on performance. The computational study
demonstrates how problem features and hardware platforms influence algorithm behaviour.
The effect of vertex ordering is investigated. One of the algorithms (MCS) is broken into its
constituent parts and we discover that one of these parts frequently degrades performance. It
is shown that the standard procedure used for rescaling published results (i.e., adjusting run
times based on the calibration of a standard program over a set of benchmarks) is unsafe and
can lead to incorrect conclusions being drawn from empirical data.

Keywords: maximum clique; exact algorithms; empirical study

1. Introduction

The purpose of this paper is to investigate a number of recently reported exact algorithms for the
maximum clique problem. The actual program code used is presented and critiqued. The computational
study aims to show how implementation details, problem features and hardware platforms influence
algorithmic behaviour.

1.1. The Maximum Clique Problem (MCP)

A simple undirected graph G is a pair (V,E) where V is a set of vertices and E a set of edges, where
vertex u is adjacent to vertex v if and only if {u, v} is in E. A clique is a set of vertices C ⊆ V such that
every pair of vertices in C is adjacent in G. Clique is one of the six basic NP-complete problems given
in [1]. It is posed as a decision problem [GT19]: Given a simple undirected graph G = (V,E) and a

Algorithms 2012, 5 546

positive integer k ≤ |V | does G contain a clique of size k or more? The optimization problems is then
to find the maximum clique, where ω(G) is the size of a maximum clique.

A colouring of the graph is an upper bound on the size of the maximum clique. When colouring a
graph any pair of adjacent vertices are given different colours. We do not use colours but use integers to
label the vertices. The minimum number of different colours required is then the chromatic number of
the graph χ(G), and ω(G) ≤ χ(G). Finding the chromatic number is NP-complete.

1.2. Exact Algorithms for MCP

We can address the decision and optimization problems with an exact algorithm, such as a
backtracking search [2–14]. Backtracking search incrementally constructs the set C (initially empty)
by choosing a candidate vertex from the candidate set P (initially all of the vertices in V) and then
adding it to C. Having chosen a vertex the candidate set is then updated, removing vertices that cannot
participate in the evolving clique. If the candidate set is empty then C is maximal (if it is a maximum we
save it) and we then backtrack. Otherwise P is not empty and we continue our search, selecting from P

and adding to C.
There are other scenarios where we can cut off search, i.e., if what is in P is insufficient to unseat

the champion (the largest clique found so far) search can be abandoned. That is, an upper bound can be
computed. Graph colouring can be used to compute an upper bound during search, i.e., if the candidate
set can be coloured with k colours then it can contain a clique no larger than k [4,5,11–14]. There are
also heuristics that can be used when selecting the candidate vertex, different styles of search, different
algorithms to colour the graph and different orders in which to do this.

1.3. Structure of the Paper

In the next section, we present in Java the following algorithms: Fahle’s Algorithm 1 [4], Tomita’s
MCQ [12], MCR [15] and MCS [13] and San Segundo’s BBMC [11]. By using Java and its inheritance
mechanism, algorithms are presented as modifications of previous algorithms. Three vertex orderings are
then presented. Starting with the basic algorithm MC we show how minor coding details can significantly
impact on performance. Section 3 presents a chronological review of exact algorithms, starting at 1990.
Section 4 is the computational study. The study investigates MCS, determines where its speed advantage
comes from, and measures the benefits resulting from the bit encoding of BBMC and the effectiveness of
three vertex orderings. New benchmark problems are then investigated. Finally, an established technique
for calibrating and scaling results is put to the test and is shown to be unsafe. We then conclude.

2. The Algorithms: MC, MCQ, MCR, MCS and BBMC

We start by presenting the simplest algorithm [4] which I will call MC. This sets the scene. It is
presented as a Java class, as are all the algorithms, with instance variables and methods. Each algorithm
is first described textually and then the actual implementation is given in Java. Sometimes a program
trace is given to better expose the workings of the algorithm. It is possible to read this section skipping

Algorithms 2012, 5 547

the Java descriptions, however the Java code makes it explicit how one algorithm differs from another
and shows the details that can severely affect the performance of the algorithm.

MC is essentially a straw man: It is elegant but too simple to be of any practical worth. Nevertheless, it
has some interesting features. MCQ [12] is then presented as an extension to MC, our first algorithm that
uses a tight integration of search algorithm, search order and upper bound cut off. Our implementation of
MCQ allows three different vertex orderings to be used, and one of these corresponds to MCR [15]. The
presentation of MCQ is somewhat laborious but this pays off when we present two variants of MCS [13]
(MCSa and MCSb) as minor changes to MCQ. BBMC [11] is presented as an extension of MCQ, but is
essentially MCSa with sets implemented using bit strings. Figure 1 shows the hierarchical structure for
the algorithms presented. In the code presented, we endeavour to use the same procedure names as in
the original publications.

Figure 1. The hierarchy of algorithms.

MC

MC0 MCQ

MCSa BBMC

MCSb

2.1. MC

MC is similar to Algorithm 1 in [4]. Fahle’s Algorithm 1 uses two sets: C the growing clique (initially
empty) and P the candidate set (initially all vertices in the graph). C is maximal when P is empty and
if |C| is a maximum it is saved, i.e., C becomes the champion. If |C| + |P | is too small to unseat the
champion search can be terminated. Otherwise the search iterates over the vertices in P in turn selecting
a vertex v, creating a new growing clique C ′ where C ′ = C ∪ {v} and a new candidate set P ′ as the
set of vertices in P that are adjacent to v (i.e., P ′ = P ∩ neighbours(v)), and recursing. We will call
this MC.

Algorithms 2012, 5 548

Listing 1. The basic clique solver.�
1 import j a v a . u t i l . ∗ ;
2
3 p u b l i c c l a s s MC {
4 i n t [] d e g r e e ; / / d e g re e o f v e r t i c e s
5 i n t [] [] A; / / 0 / 1 a d j a c e n c y m a t r i x
6 i n t n ; / / n v e r t i c e s
7 long nodes ; / / number o f d e c i s i o n s
8 long t i m e L i m i t ; / / m i l l i s e c o n d s
9 long cpuTime ; / / m i l l i s e c o n d s

10 i n t maxSize ; / / s i z e o f max c l i q u e
11 i n t s t y l e ; / / used t o f l a v o r a l g o r i t h m
12 i n t [] s o l u t i o n ; / / as i t s a y s
13
14 MC (i n t n , i n t [] [] A, i n t [] d e g r e e) {
15 t h i s . n = n ;
16 t h i s .A = A;
17 t h i s . d e g r e e = d e g r e e ;
18 nodes = maxSize = 0 ;
19 cpuTime = t i m e L i m i t = −1;
20 s t y l e = 1 ;
21 s o l u t i o n = new i n t [n] ;
22 }
23
24 void s e a r c h () {
25 cpuTime = System . c u r r e n t T i m e M i l l i s () ;
26 nodes = 0 ;
27 A r r a y L i s t <I n t e g e r > C = new A r r a y L i s t <I n t e g e r >() ;
28 A r r a y L i s t <I n t e g e r > P = new A r r a y L i s t <I n t e g e r >(n) ;
29 f o r (i n t i =0 ; i<n ; i ++) P . add (i) ;
30 expand (C , P) ;
31 }
32
33 void expand (A r r a y L i s t <I n t e g e r > C , A r r a y L i s t <I n t e g e r > P) {
34 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;
35 nodes ++;
36 f o r (i n t i =P . s i z e () −1; i >=0; i−−){
37 i f (C . s i z e () + P . s i z e () <= maxSize) re turn ;
38 i n t v = P . g e t (i) ;
39 C . add (v) ;
40 A r r a y L i s t <I n t e g e r > newP = new A r r a y L i s t <I n t e g e r >() ;
41 f o r (i n t w : P) i f (A[v] [w] == 1) newP . add (w) ;
42 i f (newP . isEmpty () && C . s i z e () > maxSize) s a v e S o l u t i o n (C) ;
43 i f (! newP . isEmpty ()) expand (C , newP) ;
44 C . remove ((I n t e g e r) v) ;
45 P . remove ((I n t e g e r) v) ;
46 }
47 }
48
49 void s a v e S o l u t i o n (A r r a y L i s t <I n t e g e r > C) {
50 Ar ra ys . f i l l (s o l u t i o n , 0) ;
51 f o r (i n t i : C) s o l u t i o n [i] = 1 ;
52 maxSize = C . s i z e () ;
53 }
54 }
� �

Algorithms 2012, 5 549

2.1.1. MC in Java

Listing 1 can be compared with Algorithm 1 in [4]. The constructor, lines 14 to 22, takes three
arguments: n the number of vertices in the graph, A the adjacency matrix where A[i][j] equals 1 if and
only if vertex i is adjacent to vertex j, and degree where degree[i] is the number of vertices adjacent
to vertex i (and is the sum of A[i]). The variables nodes and cpuT ime are used as measures of search
performance, timeLimit is a bound on the run-time, maxSize is the size of the largest clique found so
far, style is used as a flag to customise the algorithm with respect to ordering of vertices (and is not used
till we get to MCQ), and the array solution is the largest clique found such that solution[i] is equal to 1
if and only if vertex i is in the largest clique found.

The method search() finds a largest clique or terminates when having exceeded the allocated
timeLimit. Two sets are produced: The candidate set P and the current clique C. Vertices from P may
be selected and added to the growing clique C. Initially all vertices are added to P and C is empty (lines
27 to 29). The sets P and C are represented using Java’s ArrayList, a resizable-array implementation
of the List interface. Adding an item is an O(1) operation but removing an arbitrary item is of O(n)

cost. This might appear to be a damning indictment of this simple data structure, but as we will see, it is
the cost we pay if we want to maintain order in P , and in many cases we can work around this to enjoy
O(1) performance.

The search is performed in method expand. In line 34, a test is performed to determine if the CPU
time limit has been exceeded, and if so search terminates. Otherwise we increment the number of nodes,
i.e., a count of the size of the backtrack search tree explored. The method then iterates over the vertices
in P (line 36), starting with the last vertex in P down to the first vertex in P . This form of iteration over
the ArrayList, getting entries with a specific index, is necessary when entries are deleted (line 45) as part
of that iteration. A vertex v is selected from P (line 38), added to C (line 39), and a new candidate set
newP is then created (line 40) where newP is the set of vertices in P that are adjacent to vertex v (line
41). Consequently all vertices in newP are adjacent to all vertices in C and all pairs of vertices in C
are adjacent (i.e., C is a clique). If newP is empty C is maximal and if it is the largest clique found it
is saved (line 42). If newP is not empty then C is not maximal and search can proceed via a recursive
call to expand (line 43). On returning from the recursive call v is removed from P and from C (lines 44
and 45).

There is one “trick” in expand and that is at line 37: If the combined size of the current clique and
the candidate set cannot unseat the champion, this branch of the backtrack tree can be abandoned. This
is the simplest upper bound cut-off and corresponds to line 3 from Algorithm 1 in [4]. The method
saveSolution saves off the current maximal clique and records its size.

2.1.2. Observations on MC

There are several points of interest. First, there is the search process itself. If we commented out lines
37 and changed line 41 to add to newP all vertices in P other than v, method expand would produce
the power set of P and at each depth k in the backtrack tree we would have

(
n
k

)
calls to expand. That

is, expand produces a binomial backtrack search tree of size O(2n) (see pages 6 and 7 of [17]). This
can be compared to a bifurcating search process where on one side we take an element and make a

Algorithms 2012, 5 550

recursive call, and on the other side reject it and make a recursive call, terminating when P is empty
(i.e., generating a binary backtrack tree such as in [6,8,18]). This generates the power set on the leaf
nodes of the backtrack tree and explores 2n+1− 1 nodes. This is also O(2n) but in practice is often twice
as slow as the binomial search. In Figure 2 we see a binomial search produced by a simplification of
MC, generating the power set of {0, 1, 2, 3}. Each node in the tree contains two sets: The set that will
be added to the power set and the set that can be selected from at the next level. We see 16 nodes and at
each depth k we have

(
n
k

)
nodes. The corresponding tree for the bifurcating search (not shown) has 31

nodes with the power set appearing on the 16 leaf nodes at depth 4.

Figure 2. A binomial search tree producing the power set of {0, 1, 2, 3}.

[] [0,1,2,3]

[0] [1,2,3]

[0,1] [2,3] [0,2] [3] [0,3] []

[1] [2,3]

[1,2] [3] [1,3] []

[2] [3] [3] []

[2,3] []

[0,1,2] [3] [0,1,3] [] [0,2,3] [] [1,2,3] []

[0,1,2,3] []

The second point of interest is the actual Java implementation. Java gives us an elegant construct for
iterating over collections, the for-each loop, used in line 41 of Listing 1. This is rewritten in class MC0
(extending MC, overwriting the expand method) Listing 2 lines 15 to 18: One line of code is replaced
with 4 lines. MC0 gets the jth element of P , calls it w (line 16 of Listing 2) and if it is adjacent to v it
is added to newP (line 17 of Listing 2). In MC (line 41 of Listing 1) the for-each statement implicitly
creates an iterator object and uses that for selecting elements. This typically results in a 10% reduction
in runtime for MC0.

Our third point is how we create our sets. In MC0 line 14 the new candidate set is created with
a capacity of i. Why do that when we can just create newP with no size and let Java work it out
dynamically? And why size i?

Algorithms 2012, 5 551

Listing 2. Inelegant but 50% faster, MC0 extends MC.�
1 import j a v a . u t i l . ∗ ;
2
3 p u b l i c c l a s s MC0 ex tends MC {
4
5 MC0 (i n t n , i n t [] [] A, i n t [] d e g r e e) { super (n , A, d e g r e e) ;}
6
7 void expand (A r r a y L i s t <I n t e g e r > C , A r r a y L i s t <I n t e g e r > P) {
8 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;
9 nodes ++;

10 f o r (i n t i =P . s i z e () −1; i >=0; i−−){
11 i f (C . s i z e () + P . s i z e () <= maxSize) re turn ;
12 i n t v = P . g e t (i) ;
13 C . add (v) ;
14 A r r a y L i s t <I n t e g e r > newP = new A r r a y L i s t <I n t e g e r >(i) ;
15 f o r (i n t j =0 ; j <=i ; j ++){
16 i n t w = P . g e t (j) ;
17 i f (A[v] [w] == 1) newP . add (w) ;
18 }
19 i f (newP . isEmpty () && C . s i z e () > maxSize) s a v e S o l u t i o n (C) ;
20 i f (! newP . isEmpty ()) expand (C , newP) ;
21 C . remove (C . s i z e ()−1) ;
22 P . remove (i) ;
23 }
24 }
25 }
� �

In the loop of line 10 i counts down from the size of the candidate set, less one, to zero. Therefore at
line 14 P is of size i + 1 and we can set the maximum size of newP accordingly. If we do not set the
size Java will give newP an initial size of 10 and when additions exceed this newP will be re-sized. By
grabbing this space we avoid that. This results in yet another measurable reduction in run-time.

Our fourth point is how we remove elements from our sets. In MC we remove the current vertex v
from C and P (lines 44 and 45) whereas in MC0 we remove the last element in C and P (lines 21 and
22). Clearly v will always be the last element in C and P . The code in MC results in a sequential scan
to find and then delete the last element, i.e., O(n), whereas in MC0 it is a simple O(1) task. This raises
another question: P and C are really stacks so why not use a Java Stack? The Stack class is represented
using an ArrayList and cannot be initialised with a size, but has a default initial size of 10. When the
stack grows and exceeds its current capacity, the capacity is doubled and the contents are copied across.
Experiments showed that using a Stack increased run time by a few percentage points.

Typically MC0 is 50% faster than MC. In many cases a 50% improvement in run time would be
considered a significant gain, usually brought about by changes in the algorithm. Here, such a gain
can be achieved by moderately careful coding. And this is our first lesson: When comparing published
results, we need to be cautious as we may be comparing programmer ability as much as differences
in algorithms.

The fifth point is that MC makes more recursive calls than it needs to. At line 37 |C|+ |P | is sufficient
to proceed but at line 43 it is possible that |C|+ |newP | is actually too small and will generate a failure
at line 37 in the next recursive call. We should have a richer condition at line 43 but as we will soon see,
the algorithms that follow do not need this.

Algorithms 2012, 5 552

The sixth point is a question of space: Why is the adjacency matrix an array of integers when we could
have used booleans, surely that would have been more space efficient? In Java a boolean is represented
as an integer with 1 being true, everything else false. Therefore there is no saving in space and only a
minuscule saving in time (more code is generated to test if A[i][j] equals 1 than to test if a boolean is
true). Furthermore, by representing the adjacency matrix as integers, we can sum a row to get the degree
of a vertex.

Finally, Listing 1 shows exactly what is measured. Our run time starts at line 25, at the start of search.
This will include the times to set up the data structures peculiar to an algorithm, and any reordering of
vertices. It does not include the time to read in the problem or the time to write out a solution. There is
also no doubt about what we mean by a node: A call to expand counts as one more node.

2.1.3. A Trace of MC

We now present two views of the MC search process over a simple problem. The problem is referred
to as g10–50, and is a randomly generated graph with 10 vertices with edge probability 0.5. This is
shown in Figure 3 and has at top a cartoon of the search process, to be read from left to right and top to
bottom. Green coloured vertices are in P , blue vertices are those in C and red vertices are those removed
from P and C in lines 44 and 45 of Listing 1. Also shown is the backtrack tree. The boxes correspond
to calls to expand and contain C and P . On arcs we have numbers with a down arrow ↓ if that vertex
is added to C and an up arrow ↑ if that vertex is removed from C and P , therefore C represent the path
from the root to the current node. A clear white box is a call to expand that is an interior node of the
backtrack tree leading to further recursive calls or the creation of a new champion. The green “shriek!”
is a champion clique and a red “shriek!” is a failure because |C| + |P | was too small to unseat the
champion. The blue boxes correspond to calls to expand that fail first time on entering the loop at line
36 of Listing 1. By looking at the backtrack tree we get a feel for the nature of binomial search.

2.2. MCQ and MCR

We now present Tomita’s algorithm MCQ [12] as Listings 3–7. MCQ is at heart an extension of MC,
performing a binomial search, with two significant advances. First, the graph induced by the candidate
set is coloured using a greedy sequential colouring algorithm. This gives an upper bound on the size of
the clique in P that can be added to C. Vertices in P are then selected in decreasing colour order, that
is, P is ordered in non-decreasing colour order (highest colour last). And this is the second advance.
Assume we select the ith entry in P and call it v. We then know that we can colour all the vertices in P
corresponding to the 0th entry up to and including the ith entry using no more than the colour number of
v. Consequently that sub-graph can contain a clique no bigger than the colour number of v, and if this is
too small to unseat the largest clique, the search can be abandoned.

Algorithms 2012, 5 553

Figure 3. Cartoon, trace and backtrack-tree for MC on graph g10–50.

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

[] [0,1,2,3,4,5,6,7,8,9]

[9] [0,6,8]

[9,8] [6]

[8] [3,6]

[3] [1,2]

[9,8,6] []

[9] [0,6]

[6] [4,5]

[5] [0,3]

[4] [1,2]

[7] [3,4]

[] [0,1,2]

8↑
7↓

9↑
8↓

7↑
6↓

6↑
5↓

5↑
4↓

4↑
3↓

3↑

9↓

8↓

6↓

8↑

2.2.1. MCQ in Java

MCQ extends MC, Listing 3 line 3, and has an additional instance variable colourClass (line 5) such
that colourClass[i] is an ArrayList of integers (line 15) and will contain all the vertices of colour i + 1

and is used when sorting vertices by their colour (lines 45 to 64, Listing 4). At the top of search (method
search, lines 12 to 21, Listing 3) vertices are sorted (call to orderV ertices(P) at line 19) into some
order, and this is described later.

Method expand (line 23 to 43 Listing 3) corresponds to the method of the same name in Figure 2
of [12]. The array colour is local to the method and holds the colour of the ith vertex in P . The candidate
set P is then sorted in non-decreasing colour order by the call to numberSort in line 28, and colour[i]

Algorithms 2012, 5 554

is then the colour of integer vertex P.get(i). The search then begins in the loop at line 29. We first test
to see if the combined size of the candidate set plus the colour of vertex v is sufficient to unseat the
champion (line 30). If it is insufficient, the search terminates. Note that the loop starts at m − 1 (line
29), the position of the last element in P , and counts down to zero. The ith element of P is selected and
assigned to v. As in MC we create a new candidate set newP , the set of vertices (integers) in P that are
adjacent to v (lines 33 to 37). We then test to see if C is maximal (line 38) and if it unseats the champion.
If the new candidate set is not empty, we recurse (line 39). Regardless, v is removed from P and from C

(lines 40 and 41).

Listing 3. MCQ (part 1), Tomita 2003.�
1 import j a v a . u t i l . ∗ ;
2
3 c l a s s MCQ ex tends MC {
4
5 A r r a y L i s t [] c o l o u r C l a s s ;
6
7 MCQ (i n t n , i n t [] [] A, i n t [] degree , i n t s t y l e) {
8 super (n , A, d e g r e e) ;
9 t h i s . s t y l e = s t y l e ;

10 }
11
12 void s e a r c h () {
13 cpuTime = System . c u r r e n t T i m e M i l l i s () ;
14 nodes = 0 ;
15 c o l o u r C l a s s = new A r r a y L i s t [n] ;
16 A r r a y L i s t <I n t e g e r > C = new A r r a y L i s t <I n t e g e r >(n) ;
17 A r r a y L i s t <I n t e g e r > P = new A r r a y L i s t <I n t e g e r >(n) ;
18 f o r (i n t i =0 ; i<n ; i ++) c o l o u r C l a s s [i] = new A r r a y L i s t <I n t e g e r >(n) ;
19 o r d e r V e r t i c e s (P) ;
20 expand (C , P) ;
21 }
22
23 void expand (A r r a y L i s t <I n t e g e r > C , A r r a y L i s t <I n t e g e r > P) {
24 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;
25 nodes ++;
26 i n t m = P . s i z e () ;
27 i n t [] c o l o u r = new i n t [m] ;
28 numberSor t (C , P , P , c o l o u r) ;
29 f o r (i n t i =m−1; i >=0; i−−){
30 i f (C . s i z e () + c o l o u r [i] <= maxSize) re turn ;
31 i n t v = P . g e t (i) ;
32 C . add (v) ;
33 A r r a y L i s t <I n t e g e r > newP = new A r r a y L i s t <I n t e g e r >(i) ;
34 f o r (i n t j =0 ; j <=i ; j ++){
35 i n t u = P . g e t (j) ;
36 i f (A[u] [v] == 1) newP . add (u) ;
37 }
38 i f (newP . isEmpty () && C . s i z e () > maxSize) s a v e S o l u t i o n (C) ;
39 i f (! newP . isEmpty ()) expand (C , newP) ;
40 C . remove (C . s i z e ()−1) ;
41 P . remove (i) ;
42 }
43 }
� �

Algorithms 2012, 5 555

Listing 4. MCQ (part 1 continued), Tomita 2003.�
44
45 void numberSor t (A r r a y L i s t <I n t e g e r > C , A r r a y L i s t <I n t e g e r > ColOrd , A r r a y L i s t <I n t e g e r > P , i n t [] c o l o u r) {
46 i n t c o l o u r s = 0 ;
47 i n t m = ColOrd . s i z e () ;
48 f o r (i n t i =0 ; i<m; i ++) c o l o u r C l a s s [i] . c l e a r () ;
49 f o r (i n t i =0 ; i<m; i ++){
50 i n t v = ColOrd . g e t (i) ;
51 i n t k = 0 ;
52 whi le (c o n f l i c t s (v , c o l o u r C l a s s [k])) k ++;
53 c o l o u r C l a s s [k] . add (v) ;
54 c o l o u r s = Math . max (c o l o u r s , k +1) ;
55 }
56 P . c l e a r () ;
57 i n t i = 0 ;
58 f o r (i n t k =0; k<c o l o u r s ; k ++)
59 f o r (i n t j =0 ; j<c o l o u r C l a s s [k] . s i z e () ; j ++){
60 i n t v = (I n t e g e r) (c o l o u r C l a s s [k] . g e t (j)) ;
61 P . add (v) ;
62 c o l o u r [i ++] = k +1;
63 }
64 }
65
66 boolean c o n f l i c t s (i n t v , A r r a y L i s t <I n t e g e r > c o l o u r C l a s s) {
67 f o r (i n t i =0 ; i<c o l o u r C l a s s . s i z e () ; i ++){
68 i n t w = c o l o u r C l a s s . g e t (i) ;
69 i f (A[v] [w] == 1) re turn true ;
70 }
71 re turn f a l s e ;
72 }
� �

Listing 5. Vertex.�
1 import j a v a . u t i l . ∗ ;
2
3 p u b l i c c l a s s V er t e x implements Comparable<Vertex> {
4
5 i n t index , degree , nebDeg ;
6
7 p u b l i c V er t e x (i n t index , i n t d e g r e e) {
8 t h i s . i n d e x = i n d e x ;
9 t h i s . d e g r e e = d e g r e e ;

10 nebDeg = 0 ;
11 }
12
13 p u b l i c i n t compareTo (V er t e x v) {
14 i f (d e g r e e < v . d e g r e e | | d e g r e e == v . d e g r e e && i n d e x > v . i n d e x) re turn 1 ;
15 re turn −1;
16 }
17 }
� �

Algorithms 2012, 5 556

Listing 6. MCRComparator.�
1 import j a v a . u t i l . ∗ ;
2
3 p u b l i c c l a s s MCRComparator implements Compara tor {
4
5 p u b l i c i n t compare (O b j e c t o1 , O b j e c t o2) {
6 Ve r t ex u = (Ve r t e x) o1 ;
7 Ve r t ex v = (Ve r t e x) o2 ;
8 i f (u . d e g r e e < v . d e g r e e | |
9 u . d e g r e e == v . d e g r e e && u . nebDeg < v . nebDeg | |

10 u . d e g r e e == v . d e g r e e && u . nebDeg == v . nebDeg && u . i n d e x > v . i n d e x) re turn 1 ;
11 re turn −1;
12 }
13 }
� �

Listing 7. MCQ (part 2), Tomita 2003.�
73
74 void o r d e r V e r t i c e s (A r r a y L i s t <I n t e g e r > ColOrd) {
75 Ve r t ex [] V = new V er t e x [n] ;
76 f o r (i n t i =0 ; i<n ; i ++) V[i] = new V er t e x (i , d e g r e e [i]) ;
77 f o r (i n t i =0 ; i<n ; i ++)
78 f o r (i n t j =0 ; j<n ; j ++)
79 i f (A[i] [j] == 1) V[i] . nebDeg = V[i] . nebDeg + d e g r e e [j] ;
80 i f (s t y l e == 1) A r r ay s . s o r t (V) ;
81 i f (s t y l e == 2) minWidthOrder (V) ;
82 i f (s t y l e == 3) A r r ay s . s o r t (V, new MCRComparator ()) ;
83 f o r (V e r t e x v : V) ColOrd . add (v . i n d e x) ;
84 }
85
86 void minWidthOrder (Ve r t e x [] V) {
87 A r r a y L i s t <Vertex> L = new A r r a y L i s t <Vertex >(n) ;
88 Stack<Vertex> S = new Stack<Vertex >() ;
89 f o r (V e r t e x v : V) L . add (v) ;
90 whi le (! L . i sEmpty ()) {
91 Ve r t ex v = L . g e t (0) ;
92 f o r (V e r t e x u : L) i f (u . d e g r e e < v . d e g r e e) v = u ;
93 S . push (v) ; L . remove (v) ;
94 f o r (V e r t e x u : L) i f (A[u . i n d e x] [v . i n d e x] == 1) u . degree−−;
95 }
96 i n t k = 0 ;
97 whi le (! S . i sEmpty ()) V[k ++] = S . pop () ;
98 }
99 }
� �

Method numberSort (Listing 4) can be compared to the method of the same name in Figure 3
of [12]. numberSort takes as arguments the current cliqueC, an orderedArrayList of integersColOrd
corresponding to vertices to be coloured in that order, an ArrayList of integers P that will correspond
to the coloured vertices in non-decreasing colour order, and an array of integers colour such that if
v = P.get(i) (v is the ith vertex in P) then the colour of v is colour[i]. Lines 45 to 64 (Listing 4)
differs from Tomita’s NUMBER-SORT method because we use the additional arguments ColOrd and
the growing clique C as this allows us to easily implement our next algorithm MCS (clique C is not used
in numberSort until we get to MCSb, therefore we carry it for convenience only.)

Algorithms 2012, 5 557

Rather than assigning colours to vertices explicitly, numberSort places vertices into colour classes,
i.e., if a vertex is not adjacent to any of the vertices in colourClass[i] then that vertex can be placed into
that class and given colour number i+ 1 (i+ 1 so that colours range from 1 upwards). The vertices can
then be sorted into colour order via a pigeonhole sort, where colour classes are the pigeonholes.
numberSort starts by clearing out the colour classes that might be used (line 48). In lines 49 to 55

vertices are selected from ColOrd and placed into the first colour class in which there are no conflicts,
i.e., a class in which the vertex is not adjacent to any other vertex in that class (lines 51 to 53, and method
conflicts). The variable colours records the number of colours used. Lines 56 to 63 is a pigeonhole sort,
starting by clearing P and then iterating over the colour classes (loop start at line 58) and in each colour
class adding those vertices into P (lines 59 to 63). The boolean method conflicts, lines 66 to 72, takes
a vertex v and an ArrayList of vertices colourClass where vertices in colourClass are not pair-wise
adjacent and have the same colour, i.e., the vertices are an independent set. If vertex v is adjacent to
any vertex in colourClass, the method returns true (lines 67 to 70), otherwise false. Note that if vertex
v needs to be added into a new colour class in numberSort, the size of that colourClass will be zero,
and the for loop of lines 67 to 70 will not be performed and conflicts returns true. The complexity of
numberSort is quadratic in the size of P .

Vertices need to be sorted at the top of search, line 19. To do this we use the class Vertex in Listing 5
and the comparator MCRComparator in Listing 6. If i is a vertex in P then the corresponding Vertex
v has an integer index equal to i. The Vertex also has attributes degree and nebDeg. degree is the
degree of the vertex index and nebDeg is the sum of the degrees of the vertices in the neighbourhood
of vertex index. Given an array V of class Vertex, this can be sorted using Java’s Arrays.sort(V)

method in O(n. log(n)) time, and is ordered by default using the compareTo method in class Vertex.
Our method forces a strict ordering of V by non-increasing degree, tie-breaking on index. This ensures
reproducibility of results. If we allowed the compareToMethod to deliver 0 when two vertices have
the same degree, then Arrays.sort would break ties. If the sort method was unstable, i.e., it did not
maintain the relative order of objects with equal keys [19], results may be unpredictable.

The class MCRComparator (Listing 6) allows us to sort vertices by non-increasing degree, tie
breaking on the sum of the neighbourhood degree nebDeg and then on index, giving again a strict
order. This is the MCR order given in [15], where MCQ uses the simple degree ordering and MCR is
MCQ with tie-breaking on neighbourhood degree.

Vertices can also be sorted into a minimum-width order. Given an ordered set of vertices, the width of
a vertex is the number of edges that lead from that vertex to previous vertices in the order, and the width
of the ordering is the maximum width of its vertices. The minimum width order (mwo) was proposed
by Freuder [20] and also by Matula and Beck [21] where it was called “smallest last”, and more recently
in [16] as a degeneracy ordering. The method minWidthOrder, lines 86 to 98 of Listing 7, sorts the
array V of Vertex into an “mwo”. The vertices of V are copied into an ArrayList L (lines 87 and 89).
The while loop starting at line 90 selects the vertex in L with smallest degree (lines 91 and 92) and calls
it v. Vertex v is pushed onto the stack S and removed from L (line 93) and all vertices in L that are
adjacent to v have their degree reduced (line 94). On termination of the while loop, vertices are popped
off the stack and placed back into V , giving a minimum width (smallest last) ordering.

Algorithms 2012, 5 558

Method orderV ertices (Listing 7 lines 74 to 84) is then called once, at the top of search. The array of
Vertex V is created for sorting in lines 75 and 76, and the sum of the neighbourhood degrees is computed
in lines 77 to 79. ColOrd is then sorted in one of three orders: style == 1 in non-increasing degree
order, style == 2 in minimum width order, style == 3 in non-increasing degree tie-breaking on sum of
neighbourhood degree. MCQ then uses the ordered candidate set P for colouring, initially in one of the
initial orders, thereafter in the order resulting from numberSort and that is non-decreasing colour order.
In [12] it is claimed that this is an improving order (however, no evidence was presented for this claim).
In [15] Tomita proposes a new algorithm, MCR, where MCR is MCQ with a different initial ordering of
vertices, i.e., MCQ with style == 3.

2.2.2. A Trace of MCQ

Figure 4 shows a cartoon and trace of MCQ over graph g10-50. Print statements were placed
immediately after the call to expand (Listing 3 line 24), after the selection of a vertex v (line 31) and
just before v is rejected from P and C (line 40). Each picture in the cartoon gives the corresponding line
numbers in the trace immediately below. Line 0 of the trace is a print-out of the ordered array V just after
line 83 in method orderV ertices in Listing 7. This shows for each vertex the pair < index, degree >:
the first call to expand has P = {3, 0, 4, 6, 1, 2, 5, 8, 9, 7}, i.e., non-decreasing degree order. MCQ makes
3 calls to expand whereas MC makes 9 calls, and the MCQ colour bound cut-off in line 30 of Listing 3
is satisfied twice (Figure 4 lines 9 and 11).

Figure 4. Trace of MCQ1 on graph g10–50.

1

0

2 3

4

5

6
7

8

9

Line 1 & 2 Line 3 & 4 Line 5 & 6 Top of search

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

1

0

2 3

4

5

6
7

8

9

0 <3,5> <0,4> <4,4> <6,4> <1,3> <2,3> <5,3> <8,3> <9,3> <7,2>

1 > expand(C:[],P:[3, 0, 4, 6, 1, 2, 5, 8, 9, 7]

2 > select 9 C:[] P:[3, 0, 4, 6, 1, 2, 7, 5, 8, 9] -> C:[9] & newP:[0, 6, 8]

3 > > expand(C:[9],P:[0, 6, 8]

4 > > select 8 C:[9] P:[0, 6, 8] -> C:[9, 8] & newP:[6]

5 > > > expand(C:[9, 8],P:[6]

6 > > > select 6 C:[9, 8] P:[6] -> SAVE: [9, 8, 6]

7 > > > reject 6 C:[9, 8, 6] P:[6]

8 > > reject 8 C:[9, 8] P:[0, 6, 8]

9 > > select 6 C:[9] P:[0, 6] -> FAIL: vertex 6 colour too small (colour = 1)

10 > reject 9 C:[9] P:[3, 0, 4, 6, 1, 2, 7, 5, 8, 9]

11 > select 8 C:[] P:[3, 0, 4, 6, 1, 2, 7, 5, 8] -> FAIL: vertex 8 colour too small (colour = 3)

Algorithms 2012, 5 559

2.2.3. Observations on MCQ

We noted above that MC can make recursive calls that immediately fail. Can this happen in MCQ?
Looking at lines 39 of Listing 3, |C| + |newP | must be greater than maxSize. Since the colour of the
vertex selected colour[i] was sufficient to satisfy the condition of line 30, it must be that integer vertex
v (line 31) is adjacent to at least colour[i] vertices in P and thus in newP , therefore the next recursive
call will not immediately fail. Consequently each call to expand corresponds to an internal node in the
backtrack tree.

We also see again exactly what is measured as CPU time: It includes the creation of our data
structures, the reordering of vertices at the top of search and all recursive calls to expand (lines 12
to 20).

Why is colourClass an ArrayList[] rather than an ArrayList<ArrayList<Integer>>? That would
have done away with the explicit cast in line 60. When using an ArrayList<ArrayList<Integer>> Java
generates an implicit cast, so nothing is gained—it is merely syntactic sugar.

Tomita’s presentation of MCQ [12] differs from Listing 3 in that it initially colours the sorted vertices
prior to calling expand and thereafter colour-sorts the new candidate set immediately before making a
recursive call to expand. Appendix 1 explains this in detail and investigates the effect on performance.

2.3. MCS

In [13] MCS is presented as two modifications to MCQ. The first modification is to use “... an adjunct
ordered set of vertices for approximate coloring”. This is an ordered list of vertices to be used in the
sequential colouring, and was called Va. This order is static, set at the top of search. Therefore, rather
than using the order in the candidate set P for colouring the vertices in P , the vertices in P are coloured
in the order of vertices in Va.

The second modification is to use a repair mechanism when colouring vertices (this is called a
Re-NUMBER in Figure 1 of [13]). When colouring vertices, an attempt is made to reduce the colours
used by performing exchanges between vertices in different colour classes. In [13] a recolouring of a
vertex v occurs when a new colour class is about to be opened for v and that colour class exceeds the
search bound, i.e., if the number of colours can be reduced, this could result in search being cut off. In
the context of colouring, I will say that vertex u and v conflict if they are adjacent, and that v conflicts
with a colour class C if there exists a vertex u ∈ C that is in conflict with v. Assume vertex v is in
colour class Ck. If there exists a lower colour class Ci (i < k − 1) and v conflicts with only a single
vertex w ∈ Ci and there also exists a colour class Cj , where i < j < k, and w does not conflict with any
vertex in Cj , then we can place v in Ci and w in Cj , freeing up colour class Ck. This is given in Figure 1
of [13] and the procedure is named Re-NUMBER.

Figure 5 illustrates this procedure. The boxes correspond to colour classes i, j and k where i < j < k.
The circles correspond to vertices in that colour class and the red arrowed lines as conflicts between pairs
of vertices. Vertex v has just been added to colour class k, v conflicts only with w in colour class i, and w
has no conflicts in colour class j. We can then move w up to colour class j and v down to colour class i.

Algorithms 2012, 5 560

Figure 5. A repair scenario with colour classes i, j and k.

v w … … i j k

Experiments were then presented in [13] comparing MCR against MCS in which MCS is always the
champion. But it is not clear where the advantage of MCS comes from: Does it come from the static
colour order (the “adjunct ordered set”) or does it come from the colour repair mechanism?

I now present two versions of MCS. The first, which I call MCSa, uses the static colouring order. The
second, MCSb, uses the static colouring ordering and the colour repair mechanism (so MCSb is Tomita’s
MCS). Consequently, we will be able to determine where the improvement in MCS comes from: Static
colour ordering or colour repair.

2.3.1. MCSa in Java

In Listing 8 we present MCSa as an extension to MCQ. Method search creates an explicit colour
ordering ColOrd and the expand method is called with this in line 18 (compare this to line 20 of MCQ).
Method expand now takes three arguments: The growing cliqueC, the candidate set P and the colouring
order ColOrd. In line 26 numberSort is called using ColOrd (compare with line 28 in MCQ) and lines
27 to 45 are essentially the same as lines 29 to 42 in MCQ with the exception that ColOrd must also
be copied and updated (lines 32, 36 and 37) prior to the recursive call to expand (line 40) and then
down-dated after the recursive call (line 43). Therefore, MCSa is a simple extension of MCQ and, like
MCQ, has three styles of ordering.

2.3.2. MCSb in Java

In Listing 9 we present MCSb as an extension to MCSa: The difference between MCSb and MCSa
is in numberSort, with the addition of lines 10 and 20. At line 10 we compute delta as the minimum
number of colour classes required to match the search bound. At line 20, if we have exceeded the
number of colour classes required to exceed the search bound and a new colour class k has been opened
for vertex v and we can repair the colouring such that one less colour class is used, we can decrement
the number of colours used. This repair is done in the boolean method repair of lines 43 to 57. The
repair method returns true if vertex v in colour class k can be recoloured into a lower colour class,
false otherwise, and can be compared to Tomita’s Re-NUMBER procedure. We search for a colour
class i, where i < k − 1, in which there exists only one vertex in conflict with v and we call this w
(line 45). The method getSingleConflictV ariable, lines 32 to 41, searches for such a vertex. It takes as
arguments a vertex v and a colour class colourClass. If v is adjacent to only one vertex in colourClass
the index of that vertex is returned (line 40), where 0 ≤ conflicV ar < n, otherwise a negative number
is returned (line 39). The repair method then proceeds at line 46 if a single conflicting vertex w was

Algorithms 2012, 5 561

found, searching for a colour class j above i (for loop of line 47) in which there are no conflicts with w.
If that was found (line 48), vertex v is removed from colour class k, w is removed from colour class i,
v is added to colour class i and w to colour class j (lines 49 to 52), and repair delivers true (line 53).
Otherwise, no repair occurred (line 56).

Listing 8. MCSa, Tomita 2010.�
1 import j a v a . u t i l . ∗ ;
2
3 c l a s s MCSa ex tends MCQ {
4
5 MCSa (i n t n , i n t [] [] A, i n t [] degree , i n t s t y l e) {
6 super (n , A, degree , s t y l e) ;
7 }
8
9 void s e a r c h () {

10 cpuTime = System . c u r r e n t T i m e M i l l i s () ;
11 nodes = 0 ;
12 c o l o u r C l a s s = new A r r a y L i s t [n] ;
13 A r r a y L i s t <I n t e g e r > C = new A r r a y L i s t <I n t e g e r >(n) ;
14 A r r a y L i s t <I n t e g e r > P = new A r r a y L i s t <I n t e g e r >(n) ;
15 A r r a y L i s t <I n t e g e r > ColOrd = new A r r a y L i s t <I n t e g e r >(n) ;
16 f o r (i n t i =0 ; i<n ; i ++) c o l o u r C l a s s [i] = new A r r a y L i s t <I n t e g e r >(n) ;
17 o r d e r V e r t i c e s (ColOrd) ;
18 expand (C , P , ColOrd) ;
19 }
20
21 void expand (A r r a y L i s t <I n t e g e r > C , A r r a y L i s t <I n t e g e r > P , A r r a y L i s t <I n t e g e r > ColOrd) {
22 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;
23 nodes ++;
24 i n t m = ColOrd . s i z e () ;
25 i n t [] c o l o u r = new i n t [m] ;
26 numberSor t (C , ColOrd , P , c o l o u r) ;
27 f o r (i n t i =m−1; i >=0; i−−){
28 i n t v = P . g e t (i) ;
29 i f (C . s i z e () + c o l o u r [i] <= maxSize) re turn ;
30 C . add (v) ;
31 A r r a y L i s t <I n t e g e r > newP = new A r r a y L i s t <I n t e g e r >(i) ;
32 A r r a y L i s t <I n t e g e r > newColOrd = new A r r a y L i s t <I n t e g e r >(i) ;
33 f o r (i n t j =0 ; j <=i ; j ++){
34 i n t u = P . g e t (j) ;
35 i f (A[u] [v] == 1) newP . add (u) ;
36 i n t w = ColOrd . g e t (j) ;
37 i f (A[v] [w] == 1) newColOrd . add (w) ;
38 }
39 i f (newP . isEmpty () && C . s i z e () > maxSize) s a v e S o l u t i o n (C) ;
40 i f (! newP . isEmpty ()) expand (C , newP , newColOrd) ;
41 C . remove (C . s i z e ()−1) ;
42 P . remove (i) ;
43 ColOrd . remove ((I n t e g e r) v) ;
44 }
45 }
46 }
� �

Algorithms 2012, 5 562

Listing 9. MCSb, Tomita 2010.�
1 import j a v a . u t i l . ∗ ;
2
3 c l a s s MCSb ex tends MCSa {
4
5 MCSb (i n t n , i n t [] [] A, i n t [] degree , i n t s t y l e) {
6 super (n , A, degree , s t y l e) ;
7 }
8
9 void numberSor t (A r r a y L i s t <I n t e g e r > C , A r r a y L i s t <I n t e g e r > ColOrd , A r r a y L i s t <I n t e g e r > P , i n t [] c o l o u r) {

10 i n t d e l t a = maxSize − C . s i z e () ;
11 i n t c o l o u r s = 0 ;
12 i n t m = ColOrd . s i z e () ;
13 f o r (i n t i =0 ; i<m; i ++) c o l o u r C l a s s [i] . c l e a r () ;
14 f o r (i n t i =0 ; i<m; i ++){
15 i n t v = ColOrd . g e t (i) ;
16 i n t k = 0 ;
17 whi le (c o n f l i c t s (v , c o l o u r C l a s s [k])) k ++;
18 c o l o u r C l a s s [k] . add (v) ;
19 c o l o u r s = Math . max (c o l o u r s , k +1) ;
20 i f (k+1 > d e l t a && c o l o u r C l a s s [k] . s i z e () == 1 && r e p a i r (v , k)) c o l o u r s −−;
21 }
22 P . c l e a r () ;
23 i n t i = 0 ;
24 f o r (i n t k =0; k<c o l o u r s ; k ++)
25 f o r (i n t j =0 ; j<c o l o u r C l a s s [k] . s i z e () ; j ++){
26 i n t v = (I n t e g e r) (c o l o u r C l a s s [k] . g e t (j)) ;
27 P . add (v) ;
28 c o l o u r [i ++] = k +1;
29 }
30 }
31
32 i n t g e t S i n g l e C o n f l i c t V a r i a b l e (i n t v , A r r a y L i s t <I n t e g e r > c o l o u r C l a s s) {
33 i n t c o n f l i c t V a r = −1;
34 i n t c o u n t = 0 ;
35 f o r (i n t i =0 ; i<c o l o u r C l a s s . s i z e () && count <2; i ++){
36 i n t w = c o l o u r C l a s s . g e t (i) ;
37 i f (A[v] [w] == 1){ c o n f l i c t V a r = w; c o u n t ++;}
38 }
39 i f (c o u n t > 1) re turn −c o u n t ;
40 re turn c o n f l i c t V a r ;
41 }
42
43 boolean r e p a i r (i n t v , i n t k) {
44 f o r (i n t i =0 ; i<k−1; i ++){
45 i n t w = g e t S i n g l e C o n f l i c t V a r i a b l e (v , c o l o u r C l a s s [i]) ;
46 i f (w >= 0)
47 f o r (i n t j = i +1 ; j<k ; j ++)
48 i f (! c o n f l i c t s (w, c o l o u r C l a s s [j])) {
49 c o l o u r C l a s s [k] . remove ((I n t e g e r) v) ;
50 c o l o u r C l a s s [i] . remove ((I n t e g e r)w) ;
51 c o l o u r C l a s s [i] . add (v) ;
52 c o l o u r C l a s s [j] . add (w) ;
53 re turn true ;
54 }
55 }
56 re turn f a l s e ;
57 }
58 }
� �

Algorithms 2012, 5 563

2.3.3. Observations on MCS

Tomita did not investigate where MCS’s improvement comes from and neither did [2], coding up
MCS in Python in one piece. However San Segundo did [10], incrementally adding colour repair to
BBMC. We can also tune MCS. In MCSb we repair colourings when we open a new colour class that
exceeds the search bound. We could instead repair unconditionally every time we open a new colour
class, attempting to maintain a compact colouring. We do not investigate this here.

2.4. BBMC

San Segundo’s BB-MaxClique algorithm [11] (BBMC) is similar to the earlier algorithms in that
vertices are selected from the candidate set to add to the current clique in non-increasing colour order,
with a colour cut-off within a binomial search. BBMC is at heart a bit-set encoding of MCSa with the
following features.

1. The “BB” in “BB-MaxClique” is for “Bit Board”. Sets are represented using bit strings.
2. BBMC colours the candidate set using a static sequential ordering, the ordering set at the top of

search, the same as MCSa.
3. BBMC represents the neighbourhood of a vertex and its inverse neighbourhood as bit strings,

rather than using a row of an adjacency matrix and its complement.
4. When colouring takes place, a colour class perspective is taken, determining what vertices can

be placed in a colour class together, before moving on to the next colour class. Other algorithms
(e.g., [12,13]) takes a vertex perspective, deciding on the colour of a vertex.

2.4.1. BBMC in Java

We implement sets using Java’s BitSet class (a vector of bits with associated methods) and from now
on we refer to P as the candidate BitSet and an ordered array of integers U as the ordered candidate
set. In Listing 10, lines 5 to 7, we have an array of BitSet N for representing neighbourhoods, invN
as the inverse neighbourhoods (the complement of N) and V an array of Vertex. N [i] is then a BitSet
representing the neigbourhood of the ith vertex in the array V , and invN [i] as its complement. The array
V is used at the top of search for renaming vertices (and we discuss this later).

The search method (lines 16 to 30) creates the candidate BitSet P , current clique (as a BitSet) C,
and Vertex array V . The orderV ertices method renames the vertices and will be discussed later. The
method BBMaxClique corresponds to the procedure in Figure 3 of [11] and can be compared to the
expand method in Listing 8. In a BitSet we use cardinality rather than size (line 35, 40 and 44). The
integer array U (same name as in [11]) is essentially the colour ordered candidate set such that if v = U [i]

then colour[i] corresponds to the colour given to v and colour[i] ≤ colour[i + 1]. The method call of
line 38 colours the vertices and delivers those colours in the array colour and the sorted candidate set in
U . The for loop, lines 39 to 47 (again, counting down from m− 1 to zero), first tests to see if the colour
cut-off occurs (line 40) and if it does the method returns.

Algorithms 2012, 5 564

Listing 10. San Segundo’s BB-MaxClique in Java (part 1).�
1 import j a v a . u t i l . ∗ ;
2
3 p u b l i c c l a s s BBMC ex tends MCQ {
4
5 B i t S e t [] N; / / ne ighbourhood
6 B i t S e t [] invN ; / / i n v e r s e ne ighbourhood
7 Ve r t ex [] V; / / mapping b i t s t o v e r t i c e s
8
9 BBMC (i n t n , i n t [] [] A, i n t [] degree , i n t s t y l e) {

10 super (n , A, degree , s t y l e) ;
11 N = new B i t S e t [n] ;
12 invN = new B i t S e t [n] ;
13 V = new V er t e x [n] ;
14 }
15
16 void s e a r c h () {
17 cpuTime = System . c u r r e n t T i m e M i l l i s () ;
18 nodes = 0 ;
19 B i t S e t C = new B i t S e t (n) ;
20 B i t S e t P = new B i t S e t (n) ;
21 f o r (i n t i =0 ; i<n ; i ++){
22 N[i] = new B i t S e t (n) ;
23 invN [i] = new B i t S e t (n) ;
24 V[i] = new V er t e x (i , d e g r e e [i]) ;
25 }
26 o r d e r V e r t i c e s () ;
27 C . s e t (0 , n , f a l s e) ;
28 P . s e t (0 , n , t rue) ;
29 BBMaxClique (C , P) ;
30 }
31
32 void BBMaxClique (B i t S e t C , B i t S e t P) {
33 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;
34 nodes ++;
35 i n t m = P . c a r d i n a l i t y () ;
36 i n t [] U = new i n t [m] ;
37 i n t [] c o l o u r = new i n t [m] ;
38 BBColour (P , U, c o l o u r) ;
39 f o r (i n t i =m−1; i >=0; i−−){
40 i f (c o l o u r [i] + C . c a r d i n a l i t y () <= maxSize) re turn ;
41 B i t S e t newP = (B i t S e t) P . c l o n e () ;
42 i n t v = U[i] ;
43 C . s e t (v , t rue) ; newP . and (N[v]) ;
44 i f (newP . isEmpty () && C . c a r d i n a l i t y () > maxSize) s a v e S o l u t i o n (C) ;
45 i f (! newP . isEmpty ()) BBMaxClique (C , newP) ;
46 P . s e t (v , f a l s e) ; C . s e t (v , f a l s e) ;
47 }
48 }
� �

Otherwise a new candidate BitSet is created, newP on line 41, as a clone of P . The current vertex
v is then selected (line 42) and in line 43 v is added to the growing clique C and newP becomes the
BitSet corresponding to the vertices in the candidate BitSet that are in the neighbourhood of v. The
operation newP.and(N [v]) (line 43) is equivalent to the for loop in lines 34 to 37 of Listing 3 of MCQ.
If the current clique is both maximal and a maximum, it is saved via BBMC’s specialised save method
(described later), otherwise if C is not maximal (i.e., newP is not empty) a recursive call is made to

Algorithms 2012, 5 565

BBMaxClique. Regardless, v is removed from the current candidate BitSet and the current clique
(line 46) and the for loop continues.

MethodBBColour (Listing 11) corresponds to the procedure of the same name in Figure 2 of [11] but
differs in that it does not explicitly represent colour classes and therefore does not require a pigeonhole
sort as in San Segundo’s description. Our method takes the candidate BitSet P (see line 38), ordered
candidate set U and array of colour as parameters. Due to the nature of Java’s BitSet the and operation
is not functional but actually modifies bits, consequently cloning is required (line 51 Listing 11) and we
take a copy of P . In line 52 colourClass records the current colour class, initially zero, and i is used
as a counter for adding coloured vertices into the array U . The while loop, lines 54 to 64, builds up
colour classes whilst consuming vertices in copyP . The BitSet Q (line 56) is the candidate BitSet as we
are about to start a new colour class. The while loop of lines 57 to 64 builds a colour class: The first
vertex in Q is selected (line 58) and is removed from the candidate BitSet copyP (line 59) and BitSet
Q (line 60), Q then becomes the set of vertices that are in the current candidate BitSet (Q) and in the
inverse neighborhood of v (line 61), i.e., Q becomes the BitSet of vertices that can join the same colour
class with v. We then add v to the ordered candidate set U (line 62), record its colour and increment our
counter (line 63). When Q is exhausted (line 57) the outer while loop (line 54) starts a new colour class
(lines 55 to 64).

Listing 11. San Segundo’s BB-MaxClique in Java (part 1 continued).�
49
50 void BBColour (B i t S e t P , i n t [] U, i n t [] c o l o u r) {
51 B i t S e t copyP = (B i t S e t) P . c l o n e () ;
52 i n t c o l o u r C l a s s = 0 ;
53 i n t i = 0 ;
54 whi le (copyP . c a r d i n a l i t y () != 0){
55 c o l o u r C l a s s ++;
56 B i t S e t Q = (B i t S e t) copyP . c l o n e () ;
57 whi le (Q. c a r d i n a l i t y () != 0){
58 i n t v = Q. n e x t S e t B i t (0) ;
59 copyP . s e t (v , f a l s e) ;
60 Q. s e t (v , f a l s e) ;
61 Q. and (invN [v]) ;
62 U[i] = v ;
63 c o l o u r [i ++] = c o l o u r C l a s s ;
64 }
65 }
66 }
� �

Listing 12 shows how the candidate BitSet is renamed/reordered. In fact it is not the candidate
BitSet that is reordered, rather it is the description of the neighbourhood N and its inverse invN that
is reordered. Again, as in MCQ and MCSa, a Veretx array is created (lines 69 to 73) and is sorted into
one of three possible orders (lines 74 to 76). Once sorted, a bit in position i of the candidate BitSet P
corresponds to the integer vertex v = V [i].index. The neighbourhood and its inverse are then reordered
in the loop of lines 77 to 83. For all pairs (i, j), we select the corresponding vertices u and v from V

(lines 79 and 80) and if they are adjacent then the jth bit of N [i] is set true, otherwise false (line 81).
Similarly, the inverse neighbourhood is updated in line 82. The loop could be made twice as fast by

Algorithms 2012, 5 566

exploiting symmetries in the adjacency matrix A. In any event, this method is called once at the top of
search and is generally an insignificant contribution to run time.

Listing 12. San Segundo’s BB-MaxClique in Java (part 2).�
67
68 void o r d e r V e r t i c e s () {
69 f o r (i n t i =0 ; i<n ; i ++){
70 V[i] = new V er t e x (i , d e g r e e [i]) ;
71 f o r (i n t j =0 ; j<n ; j ++)
72 i f (A[i] [j] == 1) V[i] . nebDeg = V[i] . nebDeg + d e g r e e [j] ;
73 }
74 i f (s t y l e == 1) A r r ay s . s o r t (V) ;
75 i f (s t y l e == 2) minWidthOrder (V) ;
76 i f (s t y l e == 3) A r r ay s . s o r t (V, new MCRComparator ()) ;
77 f o r (i n t i =0 ; i<n ; i ++)
78 f o r (i n t j =0 ; j<n ; j ++){
79 i n t u = V[i] . i n d e x ;
80 i n t v = V[j] . i n d e x ;
81 N[i] . s e t (j ,A[u] [v] == 1) ;
82 invN [i] . s e t (j ,A[u] [v] == 0) ;
83 }
84 }
85
86 void s a v e S o l u t i o n (B i t S e t C) {
87 Ar ra ys . f i l l (s o l u t i o n , 0) ;
88 f o r (i n t i =0 ; i<C . s i z e () ; i ++) i f (C . g e t (i)) s o l u t i o n [V[i] . i n d e x] = 1 ;
89 maxSize = C . c a r d i n a l i t y () ;
90 }
91 }
� �

BBMC requires its own saveSolution method (lines 86 to 90 of Listing 12) due to C being a BitSet.
Again the solution is saved into the integer array solution and again we need to use the Vertex array V
to map bits to vertices. This is done in line 88: If the ith bit of C is true then integer vertex V [i].index is
in the solution. This explains why V is global to the BBMC class.

2.4.2. Observations on BBMC

In our Java implementation, we might expect a speedup if we did away with the in-built BitSet and
did our own bit-string manipulations explicitly. It is also worth noting that in [10] comparisons are made
with Tomita’s results in [13] by rescaling tabulated results, i.e., Tomita’s code was not actually run, but
this is not unusual.

2.5. Summary of MCQ, MCR, MCS and BBMC

Putting aside the chronology [11–13,15], MCSa is the most general algorithm presented here. BBMC
is in essence MCSa with a BitSet encoding of sets. MCQ is MCSa except that we do away with the static
colour ordering and allow MCQ to colour and sort the candidate set using the candidate set, somewhat
in the manner of Uroborus the serpent that eats itself. And MCSb is MCSa with an additional colour
repair step.

Algorithms 2012, 5 567

3. Exact Algorithms for Maximum Clique: A Brief History

We now present a brief history of complete algorithms for the maximum clique problems, starting
from 1990. The algorithms are presented in chronological order.

1990: In 1990 [3] Carraghan and Pardalos present a branch and bound algorithm. Vertices are ordered
in non-decreasing degree order at each depth in the binomial search with a cut-off based on the size of
the largest clique found so far. Their algorithm is presented in Fortran 77 along with code to generate
random graphs; consequently, their empirical results are entirely reproducible. Their algorithm is similar
to MC (Listing 1) but sorts the candidate set P using current degree in each call to expand.

1992: In [8] Pardalos and Rodgers present a zero-one encoding of the problem where a vertex v is
represented by a variable xv that takes the value 1 if search decides that v is in the clique and 0 if it is
rejected. Pruning takes place via the constraint ¬adjacent(u, v) → xu + xv ≤ 1 (Rule 4). In addition,
a candidate vertex adjacent to all vertices in the current clique is forced into the clique (Rule 5) and
a vertices of degree too low to contribute to the growing clique is rejected (Rule 7). The branch and
bound search selects variables dynamically based on current degree in the candidate set: A non-greedy
selection chooses a vertex of lowest degree and greedy selects highest degree. The computational results
showed that greedy was good for (easy) sparse graphs and non-greedy was good for (hard) dense graphs.

1994: In [22] Pardalos and Xue reviewed algorithms for the enumeration problem (counting maximal
cliques) and exact algorithms for the maximum clique problem. Although dated, it continues to be an
excellent review.

1997: In [14] graph colouring and fractional colouring is used to bound search. Comparing again to MC
(Listing 1) the candidate set is coloured greedily, and if the size of the current clique plus the number
of colours used is less than or equal to the size of the largest clique found so far, that branch of search
is cut off. In [14] vertices are selected in non-increasing degree order, the opposite of that proposed
by [8]. We can get a similar effect to [14] in MC if we allow free selection of vertices, colour newP
between lines 42 and 43 and make the recursive call to expand in line 43 conditional on the colour bound.

2002: Patric R. J. Östergård proposed an algorithm that has a dynamic programming flavour [7]. The
search process starts by finding the largest clique containing vertices drawn from the set Sn = {vn} and
records it size in c[n]. Search then proceeds to find the largest clique in the set Si = {vi, vi+1, ..., vn}
using the value in c[i + 1] as a bound. The vertices are ordered at the top of search in colour order,
i.e., the vertices are coloured greedily and then ordered in non-decreasing colour order, similar to that
in numberSort Listing 4. Östergård’s algorithm is available as Cliquer [7]. In the same year, Torsten
Fahle [4] presented a simple algorithm (Algorithm 1) that is essentially MC but with a free selection
of vertices rather than the fixed iteration in line 36 of Listing 1 and dynamic maintenance of vertex
degree in the candidate set. This is then enhanced (Algorithm 2) with forced accept and forced reject
steps similar to Rules 4, 5 and 7 of [8] and the algorithm is named DF (Domain Filtering). DF is then

Algorithms 2012, 5 568

enhanced to incorporate a colouring bound, similar to that in Wood [14].

2003: Jean-Charles Régin proposed a constraint programming model for the maximum clique
problem [9]. His model uses a matching in a duplicated graph to deliver a bound within search, a Not Set
as used in the Bron Kerbosch enumeration Algorithm 457 [23] and vertex selection using the pivoting
strategy similar to that in [16,23–25]. That same year Tomita reported MCQ [12].

2004: Faisal N. Abu-Khzam et al. [26] presented a number of kernelization steps to reduce a graph
before and during search in the vertex cover problem, where a minimum vertex cover of the complement
graph is a maximal clique in the original graph. Some of the kernelization steps are similar to the
pruning rules in [4,8] although Crown Reduction appears to be novel and effective.

2007: Tomita proposed MCR [15] and in the same year Janez Konc and Dus̆anka Janez̆ic̆ proposed
the MaxCliqueDyn algorithm [5]. The algorithm is essentially MCQ [12] with dynamic reordering of
vertices in the candidate set, using current degree, prior to colouring. This reordering is expensive and
takes place high up in the backtrack tree and is controlled by a parameter Tlimit. Varying this parameter
influences the cost of the search process and Tlimit must be tuned on an instance-by-instance basis.

2010: Pablo San Segundo and Cristóbal Tapia presented an early version of BBMC (BB-MCP) [27]
and Tomita presented MCS [13]. In the same year Li and Quan proposed new max-SAT encodings for
maximum clique [6,18].

2011: Pablo San Segundo proposed BBMC [11] and BBMCR [10], where BBMCR includes
a colour repair step. In [10] it is noted that in [13] “... the concrete contribution of
recolouring is unfortunately not made explicit.” San Segundo’s colour repair, BB ReCol

differs from that in Listing 9 in that a single swap can occur after a double swap
(as in lines 49 to 52 of Listing 9). This cannot occur in Listing 9 because repair (line 43) is
called only when a new colour class k is opened for vertex v (line 20); consequently v must have been
adjacent to at least one vertex in each colour class less than k and therefore count (line 34) cannot be
equal to zero at line 40.

2012: Renato Carmo and Alexandre P. Züge [2] reported an empirical study of 8 algorithms including
those from [3] and [4] along with MCQ, MCR, MCS and MaxCliqueDyn. The claim is made that the
Bron Kerbosch algorithm provides a unified framework for all the algorithms studied, although a Not
Set is not used. Neither do they use pivoting as described in [16,23–25]. All algorithms are coded
in Python, therefore the study is objective (the authors include none of their own algorithms) and fair
(all algorithms are coded by the authors and run in the same environment). BBMC is not include in
the study, MCS is not broken into its constituent parts (MCSa and MCSb), and the study uses only the
DIMACS benchmarks.

Algorithms 2012, 5 569

4. The Computational Study

The computational study attempts to answer the following questions.

1. Where does the improvement in MCS come from? By comparing MCQ with MCSa we can
measure the contribution due to static colouring, and by comparing MCSa with MCSb we can
measure the contribution due to colour repair.

2. How much benefit can be obtained from the BitSet encoding? We compare MCSa with BBMC
over a variety of problems.

3. We have three possible initial orderings (styles). Is any one of them better than the others and is
this algorithm independent?

4. Most papers use only random problems and the DIMACS benchmarks. What other problems might
we use in our investigation?

5. Is it safe to recalibrate published results?

Throughout our study we use a reference machine (named Cyprus), a machine with two Intel
E5620 2.4 GHz quad-core processors with 48 GB memory, running Linux CentOS 5.3 and Java
version 1.6.0 07.

4.1. MCQ vs. MCS: Static Ordering and Colour Repair

Is MCS faster than MCQ, and if so, why? MCSa is MCQ with a static colour ordering set at the top
of search, and MCSb is MCSa with the colour repair mechanism. By comparing these algorithms, we
can determine if indeed MCSb is faster than MCQ and where that gain comes from—the static colouring
order or the colour repair. We start our investigation with Erdós–Rënyi random graphs G(n, p) where
n is the number of vertices and each edge is included in the graph with probability p independent from
every other edge.

The first experiments are on random G(n, p), first with n = 100, 0.40 ≤ p ≤ 0.99, p varying in steps
of 0.01, sample size of 100, then with n = 150, 0.50 ≤ p ≤ 0.95, p varying in steps of 0.05, sample size
of 100, and n = 200, 0.55 ≤ p ≤ 0.95, p varying in steps of 0.05, sample size of 100. Unless otherwise
stated, all experiments are carried out on our reference machine. The algorithms MCQ, MCSa and
MCSb all use style = 1 (i.e., MCQ1, MCSa1, MCSb1). Figure 6 shows on the left the average number
of nodes against the edge probability and on the right the average run time in milliseconds against the
edge probability, for MCQ1, MCSa1 and MCSb1. The top row has n = 100, middle row n = 150 and
bottom row n = 200. For MCQ1 the sample size at G(200, 0.95) was reduced to 28, i.e., the MCQ1-200
job was terminated after 60 hours. As we apply the modifications to MCQ, we see a reduction in nodes
with MCSb1 exploring less states than MCSa1 and MCSa1 less than MCQ1. However, on the right we
see that reduction in search space does not always result in reduction in run time. MCSb1 is always
slower than MCSa1, i.e., the colour repair is too expensive and when n = 100 MCSb1 is often more
expensive to run than MCQ! Therefore, it appears that MCS gets its advantage just from the static colour
ordering and that the colour repair slows it down.

Algorithms 2012, 5 570

Figure 6. G(n, p), sample size 100. MCQ vs. MCS, where is the win? (left) Search effort in
nodes visited (i.e., decisions made by the search process); (right) run time in milliseconds.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.4 0.5 0.6 0.7 0.8 0.9 1

no
de

s

edge probability

Mean Nodes: G(100,p)

MCQ1
MCSa1
MCSb1

 0

 50

 100

 150

 200

 250

 0.4 0.5 0.6 0.7 0.8 0.9 1
m

ill
is

ec
on

ds
edge probability

Mean Time: G(100,p)

MCQ1
MCSa1
MCSb1

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

no
de

s

edge probability

Mean Nodes: G(150,p)

MCQ1
MCSa1
MCSb1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

m
ill

is
ec

on
ds

edge probability

Mean Time: G(150,p)

MCQ1
MCSa1
MCSb1

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

no
de

s

edge probability

Mean Nodes: G(200,p)

MCQ1
MCSa1
MCSb1

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

m
ill

is
ec

on
ds

edge probability

Mean Time: G(200,p)

MCQ1
MCSa1
MCSb1

Algorithms 2012, 5 571

Table 1. DIMACS instances: MCQ vs. MCS, nodes, run time in seconds and (clique size).

instance MCQ1 MCSa1 MCSb1
brock200-1 868,213 7 (21) 524,723 4 (21) 245,146 3 (21)
brock400-1 342,473,950 4,471 (27) 198,359,829 2,888 (27) 142,253,319 2,551 (27)
brock400-2 224,839,070 2,923 (29) 145,597,994 2,089 (29) 61,327,056 1,199 (29)
brock400-3 194,403,055 2,322 (31) 120,230,513 1,616 (31) 70,263,846 1,234 (31)
brock400-4 82,056,086 1,117 (33) 54,440,888 802 (33) 68,252,352 1,209 (33)
brock800-1 1,247,519,247 — (23) 1,055,945,239 — (23) 911,465,283 — (21)
brock800-2 1,387,973,191 — (21) 1,171,057,646 — (24) 914,638,570 — (21)
brock800-3 1,332,309,827 — (21) 1,159,165,900 — (21) 914,235,793 — (21)
brock800-4 804,901,115 — (26) 640,444,536 12,568 (26) 659,145,642 13,924 (26)
hamming10-4 636,203,658 — (40) 950,939,457 — (37) 858,347,653 — (37)
johnson32-2-4 10,447,210,976 — (16) 8,269,639,389 — (16) 7,345,343,221 — (16)
keller5 603,233,453 — (27) 596,150,386 — (27) 523,346,613 — (27)
keller6 285,704,599 — (48) 226,330,037 — (52) 240,958,450 — (54)
MANN-a27 38,019 9 (126) 38,019 6 (126) 38,597 8 (126)
MANN-a45 2,851,572 4,989 (345) 2,851,572 3,766 (345) 2,545,131 4,118 (345)
MANN-a81 550,869 — (1100) 631,141 — (1100) 551,612 — (1100)
p-hat1000-1 237,437 2 (10) 176,576 2 (10) 151,033 2 (10)
p-hat1000-2 466,616,845 — (45) 34,473,978 1,401 (46) 166,655,543 7,565 (46)
p-hat1000-3 440,569,803 — (52) 345,925,712 — (55) 298,537,771 — (56)
p-hat1500-1 1,642,981 16 (12) 1,184,526 14 (12) 990,246 14 (12)
p-hat1500-2 414,514,960 — (52) 231,498,292 — (60) 259,771,137 — (57)
p-hat1500-3 570,637,417 — (56) 220,823,126 — (69) 176,987,047 — (69)
p-hat300-3 3,829,005 74 (36) 624,947 13 (36) 713,107 21 (36)
p-hat500-2 1,022,190 23 (36) 114,009 3 (36) 137,568 5 (36)
p-hat500-3 515,071,375 — (47) 39,260,458 1,381 (50) 104,684,054 4,945 (50)
p-hat700-2 18,968,155 508 (44) 750,903 27 (44) 149,0522 74 (44)
p-hat700-3 570,423,439 — (48) 255,745,746 — (62) 243,836,191 — (62)
san1000 302,895 20 (15) 150,725 10 (15) 53,215 3 (15)
san200-0.9-2 1,149,564 20 (60) 229,567 5 (60) 62,776 1 (60)
san200-0.9-3 8,260,345 154 (44) 6,815,145 111 (44) 1,218,317 32 (44)
san400-0.7-1 55,010 1 (40) 119,356 2 (40) 134,772 3 (40)
san400-0.7-2 606,159 14 (30) 889,125 19 (30) 754,146 16 (30)
san400-0.7-3 582,646 11 (22) 521,410 10 (22) 215,785 5 (22)
san400-0.9-1 523,531,417 — (56) 4,536,723 422 (100) 582,445 54 (100)
sanr200-0.7 206,262 1 (18) 152,882 1 (18) 100,977 1 (18)
sanr200-0.9 44,472,276 892 (42) 14,921,850 283 (42) 9,730,778 245 (42)
sanr400-0.5 380,151 2 (13) 320,110 2 (13) 190,706 2 (13)
sanr400-0.7 101,213,527 979 (21) 64,412,015 711 (21) 46,125,168 650 (21)

We also see a region where problems are hard for all our algorithms, at n = 100 and n = 150, both
in terms of nodes and run time, and in [10] it is suggested that this behaviour is a “... phase transition to
triviality ...”. However at n = 200 there is a different picture. We see a hard region in terms of nodes but
an ever-increasing run time. That is, even though nodes are falling, CPU time is climbing. This agrees
with the tabulated results in [11] (Tables 4 and 5 on page 580) for BB-MaxClique. It is a conjecture that
run time increases because the cost of each node (call to expand) incurs more cost in the colouring of

Algorithms 2012, 5 572

the relatively larger candidate set. In going from G(200, 0.90) to G(200, 0.95), the maximum clique size
increased on average from 41 to 62, a 50% increase, and for MCSa1 the average number of nodes fell by
20% (30% for MCSb1). The search space has fallen and the clique size has increased, which increases
the cost of colouring and results in an overall increase in run time. Therefore it does not appear to be a
phase transition in the sense of [28–30], i.e., a feature of the problem that is algorithm independent.

We now report on the 66 DIMACS instances [31] in Table 1. For each algorithm, we have 3 entries:
The number of nodes, CPU time in seconds, and in brackets the size of the largest clique found. Each
algorithm was allowed 14,400 CPU seconds and if that was exceeded we have a table entry of “—”. The
best CPU time in a row is in bold font, and when CPU time limit is exceeded, the largest maximum
clique size is emboldened. Easy instances are not tabulated, i.e., those that took less than a second.
Overall, we see that MCQ1 is rarely the best choice with MCSa1 or MCSb1 performing better. There
are 11 problems where MCSb1 beats MCSa1 and 9 problems where MCSa1 beats MCSb1. Therefore,
the DIMACS benchmarks do not significantly separate the behaviour of these two algorithms.

These results conflict somewhat with those in [10]. There it is claimed that colour repair, when added
to BBMC, results in a performance gain in dense graphs (p ≥ 0.8). Results are presented for a subset of
the DIMACS instances with some of the difficult instances absent (brock800-*, hamming10-4, keller5,
keller6, johnson32-2-4, MANN-a81, p-hat1000-3, p-hat1500-2, p-hat1500-3) and for random graphs
with a sample size of 10.

4.2. BBMC vs. MCSa: A Change of Representation

What advantage is to be obtained from the change of representation between MCSa and BBMC, i.e.,
representing sets as ArrayList in MCSa and as a BitSet in BBMC? MCSa and BBMC are at heart the
same algorithm. They both produce the same colourings, order the candidate set in the same way and
explore the same backtrack tree.

Figure 7. Run time of MCSa1 against BBMC1, on the left (G100, p) and on the right
G(200, p).

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

B
B

M
C

1

MCSa1

CPU time for MCS1a versus BBMC1 on G(100,p)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

B
B

M
C

1

MCSa1

CPU time for MCS1a versus BBMC1 on G(200,p)

Figure 7 shows on the left the run time of MCSa1 (x-axis) against the run time of BBMC1 (y-axis)
in milliseconds on each of the G(100, p) random instances and on the right for G(200, p). The dotted

Algorithms 2012, 5 573

line is the reference x = y. If points are below the line then BBMC1 is faster than MCSa1. BBMC1 is
typically twice as fast as MCSa1.

In Table 2 we tabulate Goldilocks instances from the DIMACS benchmark suite: We remove the
instances that are too easy (take less than a second) and those that are too hard (take more than 4 h),
leaving those that are “just right” for both algorithms. Under each algorithm, we have: Nodes visited
(and this is the same for both algorithms), run time (in seconds), and in brackets the size of the maximum
clique. The column on the far right is the ratio of MCSa1’s run time over BBMC1’s run time, and a value
greater than 1 shows that BBMC1 was faster by that amount. Again, we see similar behaviour to that
observed over the random problems: BBMC1 is typically twice as fast as MCSa1.

Table 2. DIMACS Goldilocks instances: MCSa1 vs. BBMC1, nodes, run time in seconds
and clique size.

instance MCSa1 BBMC1 MCSa1/BBMC1
brock200-1 524,723 4 (21) 524,723 2 (21) 2.03
brock400-1 198,359,829 2,888 (27) 198,359,829 1,421 (27) 2.03
brock400-2 145,597,994 2,089 (29) 145,597,994 1,031 (29) 2.03
brock400-3 120,230,513 1,616 (31) 120,230,513 808 (31) 2.00
brock400-4 54,440,888 802 (33) 54,440,888 394 (33) 2.03
brock800-4 640,444,536 12,568 (26) 640,444,536 6,908 (26) 1.82
MANN-a27 38,019 6 (126) 38,019 1 (126) 4.12
MANN-a45 2,851,572 3,766 (345) 2,851,572 542 (345) 6.94
p-hat1000-1 176,576 2 (10) 176,576 1 (10) 1.80
p-hat1000-2 34,473,978 1,401 (46) 34,473,978 720 (46) 1.95
p-hat1500-1 1,184,526 14 (12) 1,184,526 9 (12) 1.52
p-hat300-3 624,947 13 (36) 624,947 5 (36) 2.36
p-hat500-2 114,009 3 (36) 114,009 1 (36) 2.56
p-hat500-3 39,260,458 1,381 (50) 39,260,458 606 (50) 2.28
p-hat700-2 750,903 27 (44) 750,903 12 (44) 2.20
san1000 150,725 10 (15) 150,725 5 (15) 1.76
san200-0.9-2 229,567 5 (60) 229,567 2 (60) 2.36
san200-0.9-3 6,815,145 111 (44) 6,815,145 50 (44) 2.20
san400-0.7-1 119,356 2 (40) 119,356 1 (40) 2.04
san400-0.7-2 889,125 19 (30) 889,125 9 (30) 2.12
san400-0.7-3 521,410 10 (22) 521,410 5 (22) 2.10
san400-0.9-1 4,536,723 422 (100) 4,536,723 125 (100) 3.37
sanr200-0.9 14,921,850 283 (42) 14,921,850 123 (42) 2.30
sanr400-0.5 320,110 2 (13) 320,110 1 (13) 1.85
sanr400-0.7 64,412,015 711 (21) 64,412,015 365 (21) 1.95

Algorithms 2012, 5 574

Figure 8. The effect of style on MCQ, MCSa and MCSb. On the left G(100, p) and on the
right G(150, p). Plotted is search effort in nodes against edge probability. The top two plots
are for MCQ, middle plots MCSa and bottom MCSb.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0.4 0.5 0.6 0.7 0.8 0.9 1

no
de

s

edge probability

Mean Nodes: MCQ on G(100,p)

MCQ1
MCQ2
MCQ3

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

no
de

s

edge probability

Mean Nodes: MCQ on G(150,p)

MCQ1
MCQ2
MCQ3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0.4 0.5 0.6 0.7 0.8 0.9 1

no
de

s

edge probability

Mean Nodes: MCSa on G(100,p)

MCSa1
MCSa2
MCSa3

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

no
de

s

edge probability

Mean Nodes: MCSa on G(150,p)

MCSa1
MCSa2
MCSa3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.4 0.5 0.6 0.7 0.8 0.9 1

no
de

s

edge probability

Mean Nodes: MCSb on G(100,p)

MCSb1
MCSb2
MCSb3

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

no
de

s

edge probability

Mean Nodes: MCSb on G(150,p)

MCSb1
MCSb2
MCSb3

4.3. MCQ and MCS: The Effect of Initial Ordering

What effect does the initial ordering of vertices have on performance? First, we investigate MCQ,
MCSa and MCSb with our three orderings: Style 1 being non-decreasing degree, style 2 a minimum

Algorithms 2012, 5 575

width ordering, style 3 non-decreasing degree tie-breaking on the accumulated degree of neighbours. At
this stage, we do not consider BBMC, as it is just a BitSet encoding of MCSa. We use random problems
G(n, p) with n equal to 100 and 150 with a sample size of 100. This is shown graphically in Figure 8: On
the left G(100, p) and on the right G(150, p) with average nodes visited plotted against edge probability.
Plots on the first row are for MCQ, middle row MCSa and bottom MCSb. For MCQ style 3 is the
winner and style 2 is worst, whereas in MCSa and MCSb style 2 is always best. Why is this? In MCQ,
the candidate set is ordered as the result of colouring and this order is then used in the next colouring.
Therefore, MCQ gradually disrupts the initial minimum width ordering, but MCSa and MCSb do not
(and neither does BBMC). The minimum width ordering (style 2) is best for MCSa, MCSb and BBMC.
Note that MCQ3 is Tomita’s MCR [15] and our experiments on G(n, p) show that MCR (MCQ3) beats
MCQ (MCQ1).

Table 3. DIMACS instances: The effect of style on run time in seconds.

MCQ MCSa MCSb BBMC
instance s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

brock200-1 7 5 4 4 3 3 3 3 3 2 1 1
brock400-1 4,471 3,640 5,610 2,888 1,999 3,752 2,551 3,748 2,152 1,421 983 1,952
brock400-2 2,923 4,573 1,824 2,089 2,415 1,204 1,199 2,695 2,647 1,031 1,230 616
brock400-3 2,322 2,696 1,491 1,616 1,404 1,027 1,234 2,817 2,117 808 711 534
brock400-4 1,117 574 1,872 802 338 1,283 1,209 1,154 607 394 158 651
brock800-1 — — — — — — — — — — — —
brock800-2 — — — — — — — — — — — —
brock800-3 — — — — — — — — — — 9,479 12,815
brock800-4 — — — 12,568 13,502 — 13,924 — — 6,908 7,750 12,992
hamming10-4 — — — — — — — — — — — —
johnson32-2-4 — — — — — — — — — — — —
keller5 — — — — — — — — — — — —
keller6 — — — — — — — — — — — —
MANN-a27 9 9 9 6 7 6 8 7 8 1 1 1
MANN-a45 4,989 5,369 4,999 3,766 3,539 3,733 4,118 3,952 4,242 542 580 554
MANN-a81 — — — — — — — — — — — —
p-hat1000-1 2 2 1 2 2 2 2 2 2 1 1 1
p-hat1000-2 — — — 1,401 861 1,481 7,565 8,459 6,606 720 431 763
p-hat1000-3 — — — — — — — — — — — —
p-hat1500-1 16 16 15 14 15 15 14 14 16 9 9 10
p-hat1500-2 — — — — — — — — — — — —
p-hat300-3 74 127 69 13 10 12 21 24 18 5 4 5
p-hat500-3 — — — 1,381 660 1,122 4,945 6,982 5,167 606 282 500
p-hat700-2 508 551 353 27 25 24 74 93 108 12 11 11
p-hat700-3 — — — — 12,244 — — — — 6,754 5,693 7,000
san1000 20 19 18 10 10 10 3 3 3 5 5 5
san200-0.9-2 20 73 35 5 1 5 1 1 1 2 0 2
san200-0.9-3 154 4 59 111 0 65 32 3 8 50 0 27
san400-0.7-1 1 5 2 2 17 4 3 0 1 1 8 1
san400-0.7-2 14 47 16 19 26 23 16 9 4 9 11 10
san400-0.7-3 11 38 41 10 22 39 5 13 19 5 9 18
san400-0.9-1 — — — 422 — 8,854 54 0 — 125 — 3,799
sanr200-0.7 1 2 1 1 1 1 1 1 1 0 0 0
sanr200-0.9 892 1,782 1,083 283 229 364 245 227 444 123 104 164
sanr400-0.5 2 2 2 2 2 2 2 2 2 1 1 1
sanr400-0.7 979 1,075 975 711 608 719 650 660 674 365 326 369

We now report on the 66 DIMACS instances [31], Tables 3 and 4. Table 3 gives run times in
seconds. An entry of “—” corresponds to the CPU time limit of 14,400 s being exceeded and the

Algorithms 2012, 5 576

search terminating early. Problems that took less than a second have been excluded from the tables.
For each algorithm we have three columns, one for each style: First column s1 is style 1 with vertices
in non-increasing degree order, s2 is style 2 with vertices in minimum width order, s3 is style 3 with
vertices in non-increasing degree order tie-breaking on sum of neighbouring degrees.

Table 4. DIMACS instances: The effect of style on search nodes in 1,000,000’s.

MCQ MCSa MCSb BBMC
instance s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3

brock200-1 0.86 0.59 0.51 50.52 0.30 0.32 0.24 0.26 0.27 0.52 0.30 0.32
brock400-1 342.5 266.2 455.3 198.4 132.8 278.9 142.3 208.6 114.8 198.4 132.8 278.9
brock400-2 224.8 381.9 125.2 145.6 178.5 76.4 61.3 151.8 154.3 145.6 178.5 76.4
brock400-3 194.4 214.0 114.7 120.2 101.6 72.8 70.3 163.5 125.5 120.2 101.6 72.8
brock400-4 82.1 36.5 148.3 54.4 19.3 90.9 68.3 62.7 31.9 54.4 19.3 90.9
brock800-1 — — — — — — — — — — — —
brock800-2 — — — — — — — — — — — —
brock800-3 — — — — — — — — — — 949.4 1,369.1
brock800-4 — — — 640.4 773.3 — 659.1 — — 640.4 773.3 1,440.8
hamming10-4 — — — — — — — — — — — —
johnson32-2-4 — — — — — — — — — — — —
keller5 — — — — — — — — — — — —
keller6 — — — — — — — — — — — —
MANN-a27 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.034 0.038 0.038 0.038 0.038
MANN-a45 2.9 2.9 2.9 2.9 2.9 2.8 2.5 2.4 2.5 2.9 2.9 2.8
MANN-a81 — — — — — — — — — — — —
p-hat1000-1 2.4 2.5 2.4 1.8 1.7 1.8 1.5 1.48 1.48 1.8 1.7 1.8
p-hat1000-2 — — — 34.5 19.2 36.9 166.7 177.9 142.0 34.5 19.2 36.9
p-hat1000-3 — — — — — — — — — — — —
p-hat1500-1 1.6 1.8 1.9 1.2 1.2 1.4 1.0 0.9 1.2 1.2 1.2 1.4
p-hat1500-2 — — — — — — — — — — — —
p-hat300-3 3.8 7.1 4.0 0.62 0.49 0.64 0.71 0.82 0.64 0.62 0.49 0.64
p-hat500-3 — — — 39.3 16.9 30.9 104.7 152.8 111.6 39.3 16.9 30.9
p-hat700-2 18.9 19.0 12.8 0.75 0.63 0.59 1.5 1.9 2.2 0.75 0.63 0.59
p-hat700-3 — — — — 216.5 — — — — 282.4 216.5 297.1
san1000 0.30 0.31 0.29 0.15 0.15 0.15 0.05 0.05 0.05 0.15 0.15 0.15
san200-0.9-2 1.1 4.3 2.1 0.23 0.06 0.24 0.06 0.05 0.03 0.23 0.06 0.23
san200-0.9-3 8.3 0.23 3.2 6.8 0.01 3.6 1.2 0.12 0.24 6.8 0.01 3.6
san400-0.7-1 0.06 0.12 0.09 0.12 0.66 0.15 0.13 0.01 0.05 0.12 0.66 0.15
san400-0.7-2 0.61 1.7 0.67 0.89 0.88 0.93 0.75 0.31 0.16 0.89 0.88 0.93
san400-0.7-3 0.58 1.9 2.3 0.52 0.92 1.9 0.22 0.55 0.99 0.52 0.92 1.9
san400-0.9-1 — — — 4.5 — 220.2 0.58 0.02 — 4.5 — 220.2
sanr200-0.7 0.21 0.29 0.22 0.15 0.18 0.16 0.10 0,12 0.11 0.15 0.18 0.16
sanr200-0.9 44.5 101.0 62.2 14.9 12.5 20.6 9.7 8.1 19.0 14.9 12.5 20.6
sanr400-0.5 0.38 0.42 0.35 0.32 0.32 0.30 0.19 0.18 0.20 0.32 0.32 0.30
sanr400-0.7 101.2 106.7 101.5 64.4 54.4 64.1 46.1 44.9 48.7 64.4 54.4 64.1

Table 4 gives the number of nodes, in millions, for the experiments in Table 3. In Table 3 a bold entry
is the best run time for that algorithm against the problem instance, and this is done only when run times

Algorithms 2012, 5 577

differ significantly. For MCQ there is no particular style that is a consistent winner. This is a surprise
as MCQ3 is Tomita’s MCR and in [15] it is claimed that MCR was faster than MCQ. The evidence that
supports this claim is Table 2 of [15], 8 of the 66 DIMACS instances. For MCSa and BBMC style 2
is best more often than not, and in MCSb style 1 is best more often than not. Overall we see that the
BBMC2 is our best algorithm, i.e., BBMC with a minimum width ordering.

4.4. More Benchmarks (not DIMACS)

In [16] experiments are performed on counting maximal cliques in exceptionally large sparse graphs,
such as the Pajek data sets (graphs with hundreds of thousands of vertices) and SNAP data sets
(graphs with vertices in the millions) [35]. Those graphs are out of the reach of the exact algorithms
reported here. The initial reason for this is space consumption. To tackle such large sparse problems, we
require a change of representation, away from the adjacency matrix and towards the adjacency lists as
used in [16]. Therefore we explore large random instances as in [11,13] to further investigate ordering
and the effect of the BitSet representation, the hard solvable instances in BHOSLIB to see how far we can
go, and structured graphs produced via the SNAP (Stanford Network Analysis Project) graph generator.
We start with BHOSLIB.

In Table 5 we have the only instances from the BHOSLIB suite (Benchmarks with Hidden Optimum
Solutions [36]) that could be solved in 4 hours. Each instance has a maximum clique of size 30. A bold
entry is the best run time. For this suite, we see that with respect to style there is no clear winner.

Table 5. BHOSLIB using BBMC: 1,000’s of nodes and run time in seconds. Problems have
450 vertices and graph density 0.82.

instance n edges BBMC1 BBMC2 BBMC3
frb30-15-1 450 83,198 292,095 3,099 626,833 6,503 361,949 3,951
frb30-15-2 450 83,151 557,252 5,404 599,543 6,136 436,110 4,490
frb30-15-3 450 83,126 167,116 1,707 265,157 2,700 118,495 1,309
frb30-15-4 450 83,194 991,460 9,663 861,391 8,513 1,028,129 9,781
frb30-15-5 450 83,231 282,763 2,845 674,987 7,033 281,152 2,802

Table 6 shows results on large random problems. Similar experiments are reported in Tables 4 and 5
of [11] and Table 2 in [13]. The first three columns are the nodes visited, and this is the same for MCSa
and BBMC. Run times are then given in seconds for MCSa and BBMC using each of the three styles.
Highlighted in bold is the search of fewest nodes and this is style 2 (minimum width ordering) in all
but one case. Comparing the run times, we see that as problems get larger, involving more vertices, the
relative speed difference between BBMC and MCSa diminishes, and at n = 15, 000 the performances
of MCSa and BBMC are essentially the same. This was also observed in [10] and is expected: As
problems get larger the BitSet requires more words to represent the set, and with more words the number
of iterations within the BitSet increases.

Algorithms 2012, 5 578

Table 6. Large random graphs, sample size 10.

instance nodes MCSa BBMC
n p s1 s2 s3 s1 s2 s3 s1 s2 s3

1,000 0.1 4,536 4,472 4,563 0 0 0 0 0 0
0.2 39,478 38,250 38,838 0 0 0 0 0 0
0.3 400,018 371,360 404,948 4 4 4 2 2 2
0.4 3,936,761 3,780,737 4,052,677 40 39 38 26 25 26
0.5 79,603,712 75,555,478 80,018,645 860 910 859 570 574 604

3,000 0.1 144,375 142,719 145,487 3 3 3 2 2 2
0.2 2,802,011 2,723,443 2,804,830 38 38 38 32 32 32
0.3 73,086,978 71,653,889 73,354,584 964 960 978 926 930 931

10,000 0.1 5,351,591 5,303,615 5,432,812 236 252 245 212 216 214
15,000 0.1 22,077,212 21,751,100 21,694,036 1,179 1,117 1,081 1,249 1,235 1,208

The graphgen program was downloaded from the SNAP web site and modified to use a random
seed so that generated graphs with the same parameters were actually different. This allows us to
generate a variety of graphs, such as complete graphs, star graphs, 2D grid graphs, Erdós–Rënyi random
graphs with an exact number of edges, k-regular graphs (each vertex with degree k), Albert–Barbasi
graphs, power law graphs, Klienberg copying model graphs and small-world graphs. Finding maximum
cliques in a complete graph, star graph and 2D grid graph is trivial. Similarly, and surprisingly, small
scale experiments suggested that Albert–Barbasi and Klienberg’s graphs are also easy with respect to
maximum clique. However k-regular and small world are a challenge.

Figure 9. k-Regular SNAP instances KR(200, k), 130 ≤ k ≤ 160, sample size 20.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 130 135 140 145 150 155 160 165

no
de

s

k

Mean Nodes: G(200,k)

BBMC1
BBMC2

Algorithms 2012, 5 579

The SNAP graphgen program was used to generated k-regular graphs KR(n, k), i.e., random graphs
with n vertices each with degree k. Graphs were generated with n = 200 and 50 ≤ k ≤ 160, with
k varying in steps of 5, 20 instances at each point. BBMC1 and BBMC2 were then applied to each
instance. Obviously, with style equal to 1 or 3, there is no heuristic information to be exploited at the top
of search. But would a minimum width ordering, style 2, have an advantage? Figure 9 shows average
search effort in nodes plotted against uniform degree k. We see that minimum width ordering does
indeed have an advantage. What is also of interest is that KR(n, k) instances tend to be harder than their
G(n, p) equivalents. For example, we can compare KR(200, 160) with G(200, 0.8) in Figure 6: MCSa1
took on average 1.9 million nodes for G(200, 0.8) and BBMC1 took on average 4.7 million nodes on the
twenty KR(200, 160) instances.

Figure 10. Small world graphs SW (200, k, p): (upper) search effort, (lower) maximum
clique size.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 50

 60

 70

 80

 90

 100

k

 0 0.05 0.1 0.15 0.2 0.25
p

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

nodes

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110

 50

 60

 70

 80

 90

 100

k

 0 0.05 0.1 0.15 0.2 0.25
p

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

clique size

Small-World graphs SW (n, k, p) were then generated using graphgen. This takes three parameters:
n the number of vertices, k where each vertex is connected to k nearest neighbours to the right in a ring
topology (i.e., vertices start with uniform degree 2k), and p a rewiring probability. This corresponds to
the graphs in Figure 1 of [32]. Small-World graphs were generated with n = 1, 000, 50 ≤ k ≤ 100

in steps of 5, 0.0 ≤ p ≤ 0.25 in steps of 0.01, 10 graphs at each point. BBMC1 was then applied

Algorithms 2012, 5 580

to each instance to investigate how difficulty of finding a maximum clique varies with respect to k

and p and also how size of maximum clique varies, i.e., this is an investigation of the problem. The
results are shown as three dimensional plots in Figure 10: The graph above is average search effort
and below average maximum clique size. Looking at the graph above: When p = 0.0 problems are
easy; as p increases and randomness is introduced, the problems quickly get hard, but as p continues to
increase the graphs tend to become predominantly random and behave more like large sparse random
graphs and get easier. We also see that as neighbourhood size k increases, the problems get harder.
We can compare the SW (1000, 100, p) to the graphs G(1000, 0.2) in Table 6: G(1000, 0.2) took on
average 39,478 nodes whereas SW (1000, 100, 0.01) took 709,347 nodes, SW (1000, 100, 0.08) took
2,702,199 nodes and SW (1000, 100, 0.25) 354,430 nodes. Clearly small-world instances are relatively
hard. Looking at the graph below (average maximum clique size), we see that as rewiring probability p
increases maximum cliques size decreases, and as k increases so too does maximum clique size.

4.5. Calibration of Results

To compare computational results across publications a standard C program, dfmax, is compiled and
run against a set of benchmarks. These run times are then used as a conversion factor, and the results are
then taken from one publication, scaled accordingly, and then included in another publication. Recent
examples of this are [7] including rescaled results from [33]; [9] including rescaled results from [7], [14]
and [4]; [15] including rescaled results from [7] and [33]; [11] including rescaled results from [5]; [10]
including rescaled results from [11]; [6] including rescaled results from [9,15]. Is this procedure safe?

To test this we take two additional machines, Fais and Daleview, and calibrate them with respect to our
reference machine Cyprus. We then run experiments on each machine using the Java implementations
of the algorithms implemented here against some of the DIMACS benchmarks. These results are then
rescaled. If the rescaling gives substantially different results from those on the reference machine, this
would suggest that this technique is not safe.

Table 7. Conversion factors using dfmax on three machines: Cyprus, Fais and Daleview.

machine r100.5 r200.5 r300.5 r400.5 r500.5 Intel(R) GHz cache Java scaling factor
Cyprus 0.0 0.02 0.24 1.49 5.58 Xeon(R) E5620 2.40 12,288KB 1.6.0 07 1
Fais 0.0 0.08 0.58 3.56 13.56 XEON(TM) CPU 2.40 512KB 1.5.0 06 0.41
Daleview 0.0 0.09 0.53 3.00 10.95 Atom(TM) N280 1.66 512KB 1.6.0 18 0.50

Table 7 gives a “Rosetta Stone” for the three machines used in this study. The standard program
dfmax [37] was compiled using gcc and the -O2 compiler option on each machine and then run on
the benchmarks r* on each machine. Run times in seconds are tabulated for the five benchmark
instances, each machine’s /proc/cpuinfo is given and a conversion factor relative to the reference
machine Cyprus is then computed in the same manner as that reported in [11] (“... the first two
graphs from the benchmark were removed (user time was considered too small) and the rest of the
times averaged ...”). Therefore when rescaling the run times from Fais, we multiply the actual run time
by 0.41 and for Daleview by 0.50.

Table 8 shows the results of the calibration experiments. Tabulated are a subset of DIMACS instances
that took more than 1 s and less than 2 h to solve using MCSa1 on our second slowest machine (Fais).

Algorithms 2012, 5 581

Run times are tabulated in milliseconds (in brackets) and the actual ratio of Cyprus-time over Fais-time
(expected to be 0.41) is given as well as Cyprus-time over Daleview-time (expected to be 0.50) for each
data point. Two algorithms are used, MCSa1 and BBMC1. The last row of Table 8 gives the relative
performance ratios computed using the sum of the run times in the table. Referring back to Table 7 we
expect a Cyprus/Fais ratio of 0.41 but empirically get 0.12 when using MCSa1 and 0.14 when using
BBMC1. We expect a Cyprus/Daleview ratio of 0.50 but empirically get an average 0.26 with MCSa1
and 0.10 with BBMC1. The conversion factors in Table 7 consistently overestimate the speed of Fais
and Daleview. For example, we would expect MCSa1 applied to brock200-1 on Fais to have a run time
of 19, 343 × 0.41 = 7, 930 milliseconds on Cyprus. In fact it takes 4,777 milliseconds. If we use the
derived ratio in the last row of Table 8 we get 19, 343×0.12 = 2, 321 milliseconds. As another example,
consider san1000 using BBMC1 on Daleview. We would expect this to take 54, 816 × 0.50 = 27, 408

milliseconds on Cyprus. In fact it takes 5,927 milliseconds! If we use the conversion ratio from the last
row of Table 8, we get a more accurate estimate 54, 816× 0.10 = 5, 481 milliseconds.

Table 8. Calibration experiments using 3 machines, 2 algorithms and a subset of DIMACS.

MCSa1 BBMC1
instance Fais Daleview Cyprus Fais Daleview Cyprus

brock200-1 0.25 (19,343) 0.27 (17,486) 1.00 (4,777) 0.15 (15,365) 0.09 (25,048) 1.00 (2,358)
brock200-4 0.40 (1,870) 0.43 (1,765) 1.00 (755) 0.20 (1,592) 0.13 (2,464) 1.00 (321)
hamming10-2 0.18 (1,885) 0.14 (2,299) 1.00 (333) 0.25 (608) 0.21 (710) 1.00 (151)
hamming8-4 0.24 (1,885) 0.28 (1,647) 1.00 (455) 0.23 (1,625) 0.19 (1,925) 1.00 (367)
johnson16-2-4 0.35 (2,327) 0.38 (2,173) 1.00 (823) 0.26 (1,896) 0.14 (3,560) 1.00 (495)
MANN-a27 0.21 (32,281) 0.22 (31,874) 1.00 (6,912) 0.14 (12,335) 0.10 (16,491) 1.00 (1,676)
p-hat1000-1 0.25 (8,431) 0.28 (7,413) 1.00 (2,108) 0.14 (8,359) 0.12 (9,389) 1.00 (1,169)
p-hat1500-1 0.19 (77,759) 0.22 (66,113) 1.00 (14,421) 0.11 (90,417) 0.10 (92,210) 1.00 (9,516)
p-hat300-3 0.25 (53,408) 0.26 (51,019) 1.00 (13,486) 0.14 (41,669) 0.09 (60,118) 1.00 (5,711)
p-hat500-2 0.27 (13,400) 0.30 (12,091) 1.00 (3,659) 0.14 (10,177) 0.11 (13,410) 1.00 (1,428)
p-hat700-1 0.40 (1,615) 0.51 (1,251) 1.00 (641) 0.29 (1,169) 0.24 (1,422) 1.00 (344)
san1000 0.11 (94,107) 0.12 (89,330) 1.00 (10,460) 0.10 (57,868) 0.11 (54,816) 1.00 (5,927)
san200-0.9-1 0.29 (4,918) 0.31 (4,705) 1.00 (1,444) 0.18 (4,201) 0.11 (6,588) 1.00 (748)
san200-0.9-2 0.22 (23,510) 0.25 (20,867) 1.00 (5,240) 0.15 (14,572) 0.09 (23,592) 1.00 (2,218)
san400-0.7-1 0.25 (10,230) 0.27 (9,607) 1.00 (2,573) 0.15 (8,314) 0.12 (10,206) 1.00 (1,260)
san400-0.7-2 0.23 (84,247) 0.27 (72,926) 1.00 (19,565) 0.13 (71,360) 0.11 (87,325) 1.00 (9,219)
san400-0.7-3 0.24 (45,552) 0.27 (40,792) 1.00 (10,839) 0.13 (39,840) 0.11 (46,818) 1.00 (5,162)
sanr200-0.7 0.31 (5,043) 0.33 (4,676) 1.00 (1,548) 0.19 (4,079) 0.12 (6,652) 1.00 (795)
sanr200-0.9 0.23 (1,249,144) 0.23 (1,211,762) 1.00 (283,681) 0.15 (844,487) 0.09 (1,409,428) 1.00 (123,461)
sanr400-0.5 0.28 (9,898) 0.31 (8,754) 1.00 (2,745) 0.16 (9,177) 0.12 (12,658) 1.00 (1,484)
sanr400-0.7 0.10 (7,292,771) 0.28 (2,544,196) 1.00 (711,861) 0.14 (2,698,444) 0.10 (3,737,833) 1.00 (365,629)
ratio (total) 0.12 (9,033,624) 0.26 (4,202,746) 1.00 (1,098,326) 0.14 (3,937,554) 0.10 (5,622,663) 1.00 (539,439)

But maybe this is because we have used a C program (dfmax) to calibrate a Java program. Would we
get a reliable calibration if a C program was used? Östergård’s Cliquer program was downloaded and
compiled on our three machines and run against DIMACS benchmarks, i.e., the experiments in Table 8
were repeated using Cliquer and dfmax with a different, and easier, set of problems. The results are
shown in Table 9 were an entry “—” was a run of dfmax that was terminated after 2 minutes. What
we see is an actual scaling factor of 0.62 for Cliquer on Fais when dfmax predicts 0.41 and for Cliquer
on Daleview 0.26 when we expect 0.50; again we see that the rescaling procedure fails. The last three
columns show a dfmax calibration using problems other than the r* benchmarks and here we see an
error of about 5% on Fais (expected 0.41, actual 0.39) and about 16% on Daleview (expected 0.50,

Algorithms 2012, 5 582

actual 0.43). Therefore, it appears that rescaling results using dfmax and the five r* benchmarks is not
a safe procedure and can result in wrong conclusions being drawn regarding the relative performance
of algorithms.

4.6. Relative Algorithmic Performance on Different Machines

But is it even safe to draw conclusions on our algorithms when we base those conclusions on
experiments performed on a single machine? Previously, in Table 2 we compared MCSa against BBMC
on our reference machine Cyprus and concluded that BBMC was typically twice as fast as MCSa. Will
that hold on Fais and on Daleview? Table 10 takes the data from Table 8 and divides the run time of
MCSa by BBMC for each instance on our three machines. On Fais BBMC is rarely more than 50%
faster than MCSa and on Daleview BBMC is slower than MCSa more often than not! If experiments
were performed only on Daleview using only the DIMACS instances, we might draw entirely different
conclusions and claim that BBMC is slower than MCSa. This change in relative algorithmic ordering
has been observed on five different machines (four using the Java 1.6.0) using all of the algorithms. The
-server and -client options were also tried. The -server option sometimes gave speedups of a factor of 2,
sometimes a factor of 0.5, and this can also affect relative algorithmic performance.

Table 9. Calibration experiments for Cliquer and dfmax using 3 machines.

Cliquer dfmax
instance Fais Daleview Cyprus Fais Daleview Cyprus

brock200-1 0.66 (9,760) 0.43 (18,710) 1.00 (6,490) 0.39 (25,150) 0.42 (23,020) 1.00 (9,730)
brock200-4 0.64 (690) 0.47 (1,190) 1.00 (440) 0.41 (1,510) 0.46 (1,360) 1.00 (620)
p-hat1000-1 0.62 (1,750) 0.36 (3,020) 1.00 (1,090) 0.41 (1,680) 0.45 (1,540) 1.00 (690)
p-hat700-1 0.67 (150) 0.37 (270) 1.00 (100) — — — — — —
san1000 0.75 (120) 0.30 (300) 1.00 (90) — — — — — —
san200-0.7-1 0.48 (1,750) 0.20 (4,220) 1.00 (840) — — — — — —
san200-0.9-2 0.61 (18,850) 0.21 (53,970) 1.00 (11,530) — — — — — —
san400-0.7-3 0.62 (6,800) 0.26 (16,100) 1.00 (4,230) — — — — — —
sanr200-0.7 0.65 (2,940) 0.36 (5,270) 1.00 (1,900) 0.40 (5,240) 0.44 (4,770) 1.00 (2,080)
sanr400-0.5 0.62 (1,490) 0.38 (2,420) 1.00 (930) 0.41 (3,550) 0.47 (3,080) 1.00 (1,460)
ratio (total) 0.62 (44,300) 0.26 (105,470) 1.00 (27,640) 0.39 (37,130) 0.43 (33,770) 1.00 (14,580)

5. Conclusions

We have seen that small implementation details (in MC) can result in large changes in performance.
Modern programming languages with rich constructs and large libraries of utilities make it easier for the
programmer to do this. We have also drifted away from the days when algorithms were presented along
with their implementation code (examples here are [8,23]) to presenting algorithms only in pseudo-code.
Fortunately we are moving into a new era where code is being made publicly available (examples here
are Östergård’s Cliquer and Konc and Janez̆ic̆’s MaxCliqueDyn) via the web. Hopefully this will grow
and allow Computer Scientist to be better able to perform reproducible empirical studies.

Tomita [13] presented MCS as an improvement on MCR brought about via two modifications: (1) a
static colour ordering and (2) a colour repair step. Our study has shown that modification (1) improves
performance and (2) degrades performance, i.e., MCSa is better than MCSb.

Algorithms 2012, 5 583

Table 10. Calibration experiment part 2, does hardware affect relative algorithmic
performance? Values greater than 1 imply BBMC is faster than MCSa, and values less
than 1 imply MCSa is faster.

instance Fais Daleview Cyprus

brock200-1 1.26 0.70 2.03
brock200-4 1.17 0.72 2.35
hamming10-2 3.10 3.24 2.21
hamming8-4 1.16 0.86 1.24
johnson16-2-4 1.23 0.61 1.66
MANN-a27 2.62 1.93 4.12
p-hat1000-1 1.01 0.79 1.80
p-hat1500-1 0.86 0.72 1.52
p-hat300-3 1.28 0.85 2.36
p-hat500-2 1.32 0.90 2.56
p-hat700-1 1.38 0.88 1.86
san1000 1.63 1.63 1.76
san200-0.9-1 1.17 0.71 1.93
san200-0.9-2 1.61 0.88 2.36
san400-0.7-1 1.23 0.94 2.04
san400-0.7-2 1.18 0.84 2.12
san400-0.7-3 1.14 0.87 2.10
sanr200-0.7 1.24 0.70 1.95
sanr200-0.9 1.48 0.86 2.30
sanr400-0.5 1.08 0.69 1.85
sanr400-0.7 2.70 0.68 1.95

BBMC is algorithm MCSa with sets represented as bit strings, i.e., BitSet is used rather than
ArrayList. Experiments on the reference machine showed a speedup typically of a factor of 2. The
three styles of ordering were investigated. The orderings were quickly disrupted by MCQ, but in the
other algorithms minimum width ordering was the best in random problems, whereas in the DIMACS
instances there was no clear winner.

New benchmark problems (i.e., problems rarely investigated by the maximum clique community)
were investigated such as BHOSLIB, k-regular and small-world graphs. Motivation for this study was
partly to compare algorithms but also to explore these problems to determine if and when they are hard.

Finally, we demonstrated that the standard procedure for calibrating machines and rescaling results is
unsafe, and that running our own code on different machines can lead to different relative algorithmic
performance. This is disturbing. First, it suggests that to perform a fair and reliable empirical study we
should not rescale others’ results: We must either code up the algorithms ourselves, as done here and
also by Carmo and Züge [2], or download and run code on our machines. Secondly, we should run our
experiments on different machines.

All the codes used in this study are available online [34] along with instructions on how to run the
code, the DIMACS instances, random problem generator and runtime results.

Algorithms 2012, 5 584

Appendix

At the top of MCQ’s search, Tomita [12] sorts vertices in non-increasing degree order and the first ∆

vertices are given colours 1 to ∆ respectively, where ∆ is the maximum degree in the graph, thereafter
vertices are given colour ∆ + 1. This is done to prime the candidate set for the initial call to EXPAND.
Thereafter Tomita calls NUMBER-SORT immediately before the recursive call to EXPAND. A simpler
option is taken here: colouring and sorting of the candidate set is done only at the start of expand.
Using graph g10–50 as an example, in Figure 2 of [12] vertices would initially be selected in the order
[7,9,8,5,2,1,6,4,0,3] with colours respectively [6,6,6,6,6,5,4,3,2,1], i.e., using 6 colours. Here vertices
are selected in order [9,8,5,7,2,1,6,4,0,3] with colours [4,3,3,2,2,2,2,1,1,1], i.e., using 4 colours, a tighter
upper bound and vertices no longer in degree order.

Figure 11. The effect of Tomita’s initial colour ordering.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.4 0.5 0.6 0.7 0.8 0.9 1

no
de

s

edge probability

Mean Nodes: MCQ1 v MCQTomita G(100,p)

MCQ1
MCQTomita

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0.4 0.5 0.6 0.7 0.8 0.9 1

no
de

s

edge probability

Mean Nodes: MCSa1 v MCSaTomita G(100,p)

MCSa1
MCSaTomita

Listing 13 presents a Java implementation of MCQ as described in [12] but in our framework. Lines 18
to 20 give an initial colour to the sorted vertices. Method numberSort is now called after the selection
of a vertex (line 40). A similar change was made to MCSa. Figure 11 shows the effect of the initial
colour ordering, using G(100, p) on calls to expand (nodes). We see on the left that Tomita’s MCQ is
marginally better than MCQ1 and on the right that MCSa1 is better than Tomita’s equivalent (and we see
a similar improvement in BBMC1). In conclusion, the approach adopted here is simpler, using a single
colour-ordering procedure. In MCQ1 the effect on performance is detrimental but small, and in MCSa1
(and BBMC1a) it is beneficial.

Acknowledgements

I would like to thank Pablo San Segundo, Jeremy Singer, Ciaran McCreesh and my reviewers.

Algorithms 2012, 5 585

Listing 13. MCQTomita.�
1 import j a v a . u t i l . ∗ ;
2
3 c l a s s MCQTomita ex tends MC {
4
5 MCQTomita (i n t n , i n t [] [] A, i n t [] degree , i n t s t y l e) {
6 super (n , A, degree , s t y l e) ;
7 }
8
9 void s e a r c h () {

10 cpuTime = System . c u r r e n t T i m e M i l l i s () ;
11 nodes = 0 ;
12 c o l o u r C l a s s = new A r r a y L i s t [n] ;
13 A r r a y L i s t <I n t e g e r > C = new A r r a y L i s t <I n t e g e r >(n) ;
14 A r r a y L i s t <I n t e g e r > P = new A r r a y L i s t <I n t e g e r >(n) ;
15 f o r (i n t i =0 ; i<n ; i ++) c o l o u r C l a s s [i] = new A r r a y L i s t <I n t e g e r >(n) ;
16 o r d e r V e r t i c e s (P) ;
17 i n t [] c o l o u r = new i n t [P . s i z e ()] ;
18 i n t maxDeg = d e g r e e [P . g e t (0)] ;
19 f o r (i n t i =0 ; i<maxDeg ; i ++) c o l o u r [i] = i +1 ;
20 f o r (i n t i =maxDeg ; i<n ; i ++) c o l o u r [i] = maxDeg +1;
21 expand (C , P , c o l o u r) ;
22 }
23
24 void expand (A r r a y L i s t <I n t e g e r > C , A r r a y L i s t <I n t e g e r > P , i n t [] c o l o u r) {
25 i f (t i m e L i m i t > 0 && System . c u r r e n t T i m e M i l l i s () − cpuTime >= t i m e L i m i t) re turn ;
26 nodes ++;
27 i n t m = P . s i z e () ;
28 f o r (i n t i =m−1; i >=0; i−−){
29 i f (C . s i z e () + c o l o u r [i] <= maxSize) re turn ;
30 i n t v = P . g e t (i) ;
31 C . add (v) ;
32 A r r a y L i s t <I n t e g e r > newP = new A r r a y L i s t <I n t e g e r >(i) ;
33 f o r (i n t j =0 ; j <=i ; j ++){
34 i n t u = P . g e t (j) ;
35 i f (A[u] [v] == 1) newP . add (u) ;
36 }
37 i f (newP . isEmpty () && C . s i z e () > maxSize) s a v e S o l u t i o n (C) ;
38 i f (! newP . isEmpty ()) {
39 i n t [] newColour = new i n t [newP . s i z e ()] ;
40 numberSor t (C , newP , newP , newColour) ;
41 expand (C , newP , newColour) ;
42 }
43 C . remove (C . s i z e ()−1) ;
44 P . remove (i) ;
45 }
46 }
47 }
� �

References

1. Garey, M.R.; Johnson, D.S. Computers and Intractability; W.H. Freeman and Co.: New York, NY,
USA, 1979.

2. Renato, C.; Alexandre P. Z. Branch and bound algorithms for the maximum clique problem under
a unified framework. J. Braz. Comp. Soc. 2012, 18, pp. 137–151.

Algorithms 2012, 5 586

3. Randy, C.; Panos M.P. An exact algorithm for the maximum clique problem. Oper. Res. Lett.
1990, 9, 375–382.

4. Torsten, F. Simple and Fast: Improving a Branch-and-Bound Algorithm for Maximum Clique. In
Proceedings of the ESA 2002, LNCS 2461, Rome, Italy, 17–21 September 2002; pp. 485–498.

5. Janez, K.; Dus̆anka, J. An improved branch and bound algorithm for the maximum clique
problem. MATCH Commun. Math. Comput. Chem. 2007, 58, pp. 569–590. Available online:
http://www.sicmm.org/ konc/ (accessed on 12 November 2012).

6. Chu, M.; Li, Z.Q. An Efficient Branch-and-Bound Algorithm Based on Maxsat for the Maximum
Clique Problem. In Proceedings of the AAAI’10, Atlanta, GA, USA, 11–15 July 2010; pp. 128–133.

7. Östergård, P.R.J. A fast algorithm for the maximum clique problem. Discret. Appl. Math. 2002,
120, pp. 197–207. Available online: http://users.tkk.fi/pat/cliquer.html/ (accessed on 12 November
2012).

8. Pardalos, P.M.; Rodgers, G.P. A branch and bound algorithm for the maximum clique problem.
Comput. Oper. Res. 1992, 19, pp. 363–375.

9. Régin, J.-C. Using Constraint Programming to Solve the Maximum Clique Problem. In
Proceedings CP 2003, LNCS 2833, Kinsale, Ireland, 29 September–3 October 2003; pp. 634–648.

10. Segundo, P.S.; Matia, F.; Diego, R.-L.; Miguel, H. An improved bit parallel exact maximum clique
algorithm. Optim. Lett. 2011, doi:10.1007/s11590-011-0431-y.

11. Segundo, P.S.; Diego, R.-L.; Augustı́n, J. An exact bit-parallel algorithm for the maximum clique
problem. Comput. Oper. Res 2011, 38, 571–581.

12. Tomita, E.; Sutani, Y.; Higashi, T.; Takahashi, S.; Wakatsuki, M. An Efficient Branch-and-Bound
Algorithm for Finding a Maximum Clique. In Proceedings of the DMTCS 2003, LNCS 2731,
Dijon, France, 7–12 July 2003; pp. 278–289.

13. Tomita, E.; Sutani, Y.; Higashi, T.; Takahashi, S.; Wakatsuki, M. A Simple and Faster
Branch-and-Bound Algorithm for Finding Maximum Clique. In Proceedings of the WALCOM
2010, LNCS 5942, Dhaka, Bangladesh, 10–12 February 2010; pp. 191–203.

14. Wood, D.R. An algorithm for finding a maximum clique in a graph. Oper. Res. Lett. 1997, 21,
211–217.

15. Tomita, E.; Toshikatsu, K. An efficient branch-and-bound algorithm for finding a maximum clique
and computational experiments. J. Glob. Optim. 2007, 37, 95–111.

16. David, E.; Darren, S. Listing all maximal cliques in large sparse real-world graphs. In Experimental
Algorithms, LNCS 6630. Comput. Sci. 2011, 6630, 364–375.

17. Knuth, D.E. Generating all Combinations and Permutations. In The Art of Computer Programming;
Pearson Education Inc.: Stoughton, MA, USA, January 2006; Volume 4, pp.1–3.

18. Li, C.M.; Quan, Z. Combining Graph Structure Exploitation and Propositional Reasoning for the
Maximum Clique Problem. In Proceedings of the ICTAI’10; Arras, France, 27–29 October 2010;
Volume 1, pp. 344–351.

19. Bentley, J.L.; McIlroy, M.D. Engineering a sort function. Softw.-Pract. Exp. 1993, 23, 1249–1265.
20. Eugene, C.F. A sufficient condition for backtrack-free search. J. Assoc. Comput. Mach. 1982, 29,

24–32.

Algorithms 2012, 5 587

21. David, W.M.; Beck, L.L. Smallest-Last ordering and clustering and graph coloring algorithms.
J. Assoc. Comput. Mach. 1983, 30, 417–427.

22. Pardalos, P.M.; Xue, J. The maximum clique problem. J. Glob. Optim. 1994, 4, 301–324.
23. Bron, C.; Kerbosch, J. Algorithm 457: Finding all cliques of an undirected graph [h]. Commun.

ACM 1973, 16, 575–579.
24. Akkoyunlu, E.A. The enumeration of maximal cliques of large graphs. SIAM J. Comput. 1973, 2,

1–6.
25. Tomita, E.; Tanaka, A.; Takahashi, H. The worst-case time complexity for generating all maximal

cliques and computational experiments. Theor. Comput. Sci. 2006, 363, 28–42.
26. Abu-Khzam, F.N.; Collins, R.L.; Fellows, M.R.; Langston, M.A.; Suters, W.H.;

Symons, C.T. Kernelization algorithms for the vertex cover problem: Theory and experiments.
In ALENEX/ANALC; New Orleans, LA, USA, 10–13 January 2004; pp. 62–69.

27. Segundo, P.S.; Tapia, C. A New Implicit Branching Strategy for Exact Maximum Clique. In
Proceedings of ICTAI’10; Arras, France, 27–29 October 2010; Volume 1, pp. 352–357.

28. Cheeseman, P.; Kanefsky, B.; Taylor, W.M. Where the Really Hard Problems are. In Proceedings
of the IJCAI’91, Sidney, Australia, 24–30 August 1991; pp. 331–337.

29. Gent, I.P.; MacIntyre, E.; Prosser, P.; Walsh, T. The Constrainednss of Search. In Proceedings of
the AAAI’96, Portland, OR, USA, 4–8 August 1996; pp. 246–252.

30. Zweig, K.A.; Palla, G.; Vicsek, T. What makes a phase transition? Analysis of the random
satisfiability problem. Physica A 2010, 389, 1501–1511.

31. DIMACS instances. Available online: ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmark
s/clique (accessed on 12 November 2012).

32. Watts, D.J.; Strogatz, S.H. Collective dynamics of small world networks. Nature 1998, 394,
440–442.

33. Sewell, E.C. A branch and bound algorithm for the stability number of a sparse graph. INFORMS
J. Comput. 1998, 10, 438–447.

34. Prosser, P. Maximum Clique Algorithms in Java. Available online: http://www.dcs.gla.ac.uk/ pat/-
maxClique (accessed on 12 November 2012).

35. Stanford Large Network Dataset Collection. Available online: http://snap.stanford.edu/data/
index.html (accessed on 12 November 2012).

36. Benchmarks with Hidden Optimum Solutions. Available online: http://www.nlsde.buaa.edu.cn/
kexu/benchmarks/graph-benchmarks.htm (accessed on 12 November 2012).

37. Dfmax. Available online: ftp://dimacs.rutgers.edu/pub/dsj/clique (accessed on 12 November 2012).

c© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	The Maximum Clique Problem (MCP)
	Exact Algorithms for MCP
	Structure of the Paper

	The Algorithms: MC, MCQ, MCR, MCS and BBMC
	MC
	MC in Java
	Observations on MC
	A Trace of MC

	MCQ and MCR
	MCQ in Java
	A Trace of MCQ
	Observations on MCQ

	MCS
	MCSa in Java
	MCSb in Java
	Observations on MCS

	BBMC
	BBMC in Java
	Observations on BBMC

	Summary of MCQ, MCR, MCS and BBMC

	Exact Algorithms for Maximum Clique: A Brief History
	The Computational Study
	MCQ vs. MCS: Static Ordering and Colour Repair
	BBMC vs. MCSa: A Change of Representation
	MCQ and MCS: The Effect of Initial Ordering
	More Benchmarks (not DIMACS)
	Calibration of Results
	Relative Algorithmic Performance on Different Machines

	Conclusions
	Appendix
	Acknowledgements

