906 research outputs found

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    Stochastic resonance and finite resolution in a network of leaky integrate-and-fire neurons.

    Get PDF
    This thesis is a study of stochastic resonance (SR) in a discrete implementation of a leaky integrate-and-fire (LIF) neuron network. The aim was to determine if SR can be realised in limited precision discrete systems implemented on digital hardware. How neuronal modelling connects with SR is discussed. Analysis techniques for noisy spike trains are described, ranging from rate coding, statistical measures, and signal processing measures like power spectrum and signal-to-noise ratio (SNR). The main problem in computing spike train power spectra is how to get equi-spaced sample amplitudes given the short duration of spikes relative to their frequency. Three different methods of computing the SNR of a spike train given its power spectrum are described. The main problem is how to separate the power at the frequencies of interest from the noise power as the spike train encodes both noise and the signal of interest. Two models of the LIF neuron were developed, one continuous and one discrete, and the results compared. The discrete model allowed variation of the precision of the simulation values allowing investigation of the effect of precision limitation on SR. The main difference between the two models lies in the evolution of the membrane potential. When both models are allowed to decay from a high start value in the absence of input, the discrete model does not completely discharge while the continuous model discharges to almost zero. The results of simulating the discrete model on an FPGA and the continuous model on a PC showed that SR can be realised in discrete low resolution digital systems. SR was found to be sensitive to the precision of the values in the simulations. For a single neuron, we find that SR increases between 10 bits and 12 bits resolution after which it saturates. For a feed-forward network with multiple input neurons and one output neuron, SR is stronger with more than 6 input neurons and it saturates at a higher resolution. We conclude that stochastic resonance can manifest in discrete systems though to a lesser extent compared to continuous systems

    Average synaptic activity and neural networks topology: a global inverse problem

    Full text link
    The dynamics of neural networks is often characterized by collective behavior and quasi-synchronous events, where a large fraction of neurons fire in short time intervals, separated by uncorrelated firing activity. These global temporal signals are crucial for brain functioning. They strongly depend on the topology of the network and on the fluctuations of the connectivity. We propose a heterogeneous mean--field approach to neural dynamics on random networks, that explicitly preserves the disorder in the topology at growing network sizes, and leads to a set of self-consistent equations. Within this approach, we provide an effective description of microscopic and large scale temporal signals in a leaky integrate-and-fire model with short term plasticity, where quasi-synchronous events arise. Our equations provide a clear analytical picture of the dynamics, evidencing the contributions of both periodic (locked) and aperiodic (unlocked) neurons to the measurable average signal. In particular, we formulate and solve a global inverse problem of reconstructing the in-degree distribution from the knowledge of the average activity field. Our method is very general and applies to a large class of dynamical models on dense random networks

    The impact of spike timing variability on the signal-encoding performance of neural spiking models

    Get PDF
    It remains unclear whether the variability of neuronal spike trains in vivo arises due to biological noise sources or represents highly precise encoding of temporally varying synaptic input signals. Determining the variability of spike timing can provide fundamental insights into the nature of strategies used in the brain to represent and transmit information in the form of discrete spike trains. In this study, we employ a signal estimation paradigm to determine how variability in spike timing affects encoding of random time-varying signals. We assess this for two types of spiking models: an integrate-and-fire model with random threshold and a more biophysically realistic stochastic ion channel model. Using the coding fraction and mutual information as information-theoretic measures, we quantify the efficacy of optimal linear decoding of random inputs from the model outputs and study the relationship between efficacy and variability in the output spike train. Our findings suggest that variability does not necessarily hinder signal decoding for the biophysically plausible encoders examined and that the functional role of spiking variability depends intimately on the nature of the encoder and the signal processing task; variability can either enhance or impede decoding performance

    Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation

    Get PDF
    Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here
    • …
    corecore