455 research outputs found

    On Linear Congestion Games with Altruistic Social Context

    Full text link
    We study the issues of existence and inefficiency of pure Nash equilibria in linear congestion games with altruistic social context, in the spirit of the model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a framework, given a real matrix Γ=(γij)\Gamma=(\gamma_{ij}) specifying a particular social context, each player ii aims at optimizing a linear combination of the payoffs of all the players in the game, where, for each player jj, the multiplicative coefficient is given by the value γij\gamma_{ij}. We give a broad characterization of the social contexts for which pure Nash equilibria are always guaranteed to exist and provide tight or almost tight bounds on their prices of anarchy and stability. In some of the considered cases, our achievements either improve or extend results previously known in the literature

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Efficient computation of approximate pure Nash equilibria in congestion games

    Get PDF
    Congestion games constitute an important class of games in which computing an exact or even approximate pure Nash equilibrium is in general {\sf PLS}-complete. We present a surprisingly simple polynomial-time algorithm that computes O(1)-approximate Nash equilibria in these games. In particular, for congestion games with linear latency functions, our algorithm computes (2+ϵ)(2+\epsilon)-approximate pure Nash equilibria in time polynomial in the number of players, the number of resources and 1/ϵ1/\epsilon. It also applies to games with polynomial latency functions with constant maximum degree dd; there, the approximation guarantee is dO(d)d^{O(d)}. The algorithm essentially identifies a polynomially long sequence of best-response moves that lead to an approximate equilibrium; the existence of such short sequences is interesting in itself. These are the first positive algorithmic results for approximate equilibria in non-symmetric congestion games. We strengthen them further by proving that, for congestion games that deviate from our mild assumptions, computing ρ\rho-approximate equilibria is {\sf PLS}-complete for any polynomial-time computable ρ\rho

    On the Impact of Fair Best Response Dynamics

    Get PDF
    In this work we completely characterize how the frequency with which each player participates in the game dynamics affects the possibility of reaching efficient states, i.e., states with an approximation ratio within a constant factor from the price of anarchy, within a polynomially bounded number of best responses. We focus on the well known class of congestion games and we show that, if each player is allowed to play at least once and at most β\beta times any TT best responses, states with approximation ratio O(β)O(\beta) times the price of anarchy are reached after TloglognT \lceil \log \log n \rceil best responses, and that such a bound is essentially tight also after exponentially many ones. One important consequence of our result is that the fairness among players is a necessary and sufficient condition for guaranteeing a fast convergence to efficient states. This answers the important question of the maximum order of β\beta needed to fast obtain efficient states, left open by [9,10] and [3], in which fast convergence for constant β\beta and very slow convergence for β=O(n)\beta=O(n) have been shown, respectively. Finally, we show that the structure of the game implicitly affects its performances. In particular, we show that in the symmetric setting, in which all players share the same set of strategies, the game always converges to an efficient state after a polynomial number of best responses, regardless of the frequency each player moves with
    corecore