2,487 research outputs found

    Classical and all-floating FETI methods for the simulation of arterial tissues

    Full text link
    High-resolution and anatomically realistic computer models of biological soft tissues play a significant role in the understanding of the function of cardiovascular components in health and disease. However, the computational effort to handle fine grids to resolve the geometries as well as sophisticated tissue models is very challenging. One possibility to derive a strongly scalable parallel solution algorithm is to consider finite element tearing and interconnecting (FETI) methods. In this study we propose and investigate the application of FETI methods to simulate the elastic behavior of biological soft tissues. As one particular example we choose the artery which is - as most other biological tissues - characterized by anisotropic and nonlinear material properties. We compare two specific approaches of FETI methods, classical and all-floating, and investigate the numerical behavior of different preconditioning techniques. In comparison to classical FETI, the all-floating approach has not only advantages concerning the implementation but in many cases also concerning the convergence of the global iterative solution method. This behavior is illustrated with numerical examples. We present results of linear elastic simulations to show convergence rates, as expected from the theory, and results from the more sophisticated nonlinear case where we apply a well-known anisotropic model to the realistic geometry of an artery. Although the FETI methods have a great applicability on artery simulations we will also discuss some limitations concerning the dependence on material parameters.Comment: 29 page

    Synergistic Model of Cardiac Function with a Heart Assist Device

    Get PDF
    The breakdown of cardiac self-organization leads to heart diseases and failure, the number one cause of death worldwide. The left ventricular pressure–volume relation plays a key role in the diagnosis and treatment of heart diseases. Lumped-parameter models combined with pressure–volume loop analysis are very effective in simulating clinical scenarios with a view to treatment optimization and outcome prediction. Unfortunately, often invoked in this analysis is the traditional, time-varying elastance concept, in which the ratio of the ventricular pressure to its volume is prescribed by a periodic function of time, instead of being calculated consistently according to the change in feedback mechanisms (e.g., the lack or breakdown of self-organization) in heart diseases. Therefore, the application of the time-varying elastance for the analysis of left ventricular assist device (LVAD)–heart interactions has been questioned. We propose a paradigm shift from the time-varying elastance concept to a synergistic model of cardiac function by integrating the mechanical, electric, and chemical activity on microscale sarcomere and macroscale heart levels and investigating the effect of an axial rotary pump on a failing heart. We show that our synergistic model works better than the time-varying elastance model in reproducing LVAD–heart interactions with sufficient accuracy to describe the left ventricular pressure–volume relation

    Energy-based operator splitting approach for the time discretization of coupled systems of partial and ordinary differential equations for fluid flows: The Stokes case

    Full text link
    The goal of this work is to develop a novel splitting approach for the numerical solution of multiscale problems involving the coupling between Stokes equations and ODE systems, as often encountered in blood flow modeling applications. The proposed algorithm is based on a semi-discretization in time based on operator splitting, whose design is guided by the rationale of ensuring that the physical energy balance is maintained at the discrete level. As a result, unconditional stability with respect to the time step choice is ensured by the implicit treatment of interface conditions within the Stokes substeps, whereas the coupling between Stokes and ODE substeps is enforced via appropriate initial conditions for each substep. Notably, unconditional stability is attained without the need of subiterating between Stokes and ODE substeps. Stability and convergence properties of the proposed algorithm are tested on three specific examples for which analytical solutions are derived
    • …
    corecore