13,170 research outputs found

    Container Loading Problems: A State-of-the-Art Review

    Get PDF
    Container loading is a pivotal function for operating supply chains efficiently. Underperformance results in unnecessary costs (e.g. cost of additional containers to be shipped) and in an unsatisfactory customer service (e.g. violation of deadlines agreed to or set by clients). Thus, it is not surprising that container loading problems have been dealt with frequently in the operations research literature. It has been claimed though that the proposed approaches are of limited practical value since they do not pay enough attention to constraints encountered in practice.In this paper, a review of the state-of-the-art in the field of container loading will be given. We will identify factors which - from a practical point of view - need to be considered when dealing with container loading problems and we will analyze whether and how these factors are represented in methods for the solution of such problems. Modeling approaches, as well as exact and heuristic algorithms will be reviewed. This will allow for assessing the practical relevance of the research which has been carried out in the field. We will also mention several issues which have not been dealt with satisfactorily so far and give an outlook on future research opportunities

    グリーンロジスティクスのためのコンテナ積載と配車配送経路の最適化に関する研究

    Get PDF
    京都大学0048新制・課程博士博士(工学)甲第16840号工博第3561号新制||工||1538(附属図書館)29515京都大学大学院工学研究科機械理工学専攻(主査)教授 椹木 哲夫, 教授 西脇 眞二, 教授 松原 厚学位規則第4条第1項該当Doctor of Philosophy (Engineering)Kyoto UniversityDFA

    Sequential Routing-Loading Algorithm for Optimizing One-Door Container Closed-Loop Logistics Operations

    Get PDF
    One-door container type of vehicle is the main tool for urban logistics in Indonesia which may take the form of truck, car, or motorcycle container. The operations would be more effective when it is performed through pickup-delivery or forward-reverse at a time. However, there is difficulty to optimize the operation of routing and container loading processes in such a system. This article is proposing an improvement for algorithm for sequential routing- loading process which had been tested in the small datasets but not yet tested in the case of big data set and vehicle routing problem with time windows. The improvement algorithm is tested in big data set with the input of the vehicle routing problem with time windows (VRP-TW) using the solution optimization of the Simulated Annealing process with restart point procedure (SA-R) for the routing optimization and Genetic Algorithm (GA) to optimize the container loading algorithm. The large data sets are hypothetical generated data for 800-2500 single-sized products, 4 types of container capacity, and 100-400 consumer spots. As result, the performance of the proposed algorithm in terms of cost is influenced by the number of spots to be visited by the vehicle and the vehicle capacity. Limitations and further analysis are also described in this article

    A new mathematical model for a 3D container packing problem

    Get PDF
    Wir betrachten das Problem der Einzelcontainerpackung eines Unternehmens, das seine Kunden bedienen muss, indem es zuerst die Produkte in Kartons legt und diese dann in einen Container lädt. Für dieses Problem entwickeln und lösen wir ein lineares gemischt-ganzzahliges Modell. Unser Modell berücksichtigt geometrische Randbedingungen, beispielsweise Überlappungsverbote, Orientierungs-Bedingungen und Randbedingungen für die relative Positionierung der Kartons. Wir betrachten auch die Erweiterung des Modells durch die Integration der Schwerpunktsabweichung der Packung vom Containermittelpunkt. Das Modell wurde an einer großen Anzahl von realen Instanzen getestet, die bis zu 41 Kartons enthalten. In den meisten Fällen wurden optimale Lösungen erzielt bzw. nah-optimale Lösungen mit beweisbar kleiner Optimalitätslücke.We address the single container packing problem of a company that has to serve its customers by first placing the products in boxes and then loading the boxes into a container. We approach the problem by developing and solving mixed-integer linear models. Our models consider geometric constraints that feature non-overlapping constraints, box orientation constraints, dimensionality constraints, relative packing position constraints, and linearity constraints. We also develop an extension of the models by integrating load balance and the deviation of the center of gravity. We tested the models on a broad set of real instances involving up to 41 boxes and obtained optimal solutions in most cases and very small gaps when optimality could not be proven

    A literature review on the Pallet Loading Problem Una revisión literaria del Problema de Carga del Pallet

    Get PDF
    Actualmente, las empresas enfrentan una competencia agresiva, por lo que implementar estrategias para alcanzar la competitividad es elemental. En este sentido, en Logística, el uso adecuado de los recursos es imprescindible. El impacto en la ganancia que tienen el almacenaje y el transporte, conlleva la implementación de acciones para contrarrestarlo. Un paletizado efectivo puede contribuir a reducir costos. El Problema de Carga del Pallet (PLP) procura la optimización del espacio del pallet para lograr cargar máxima de producto debidamente empacado. El uso práctico y beneficios del PLP han dado pie a su estudio en la búsqueda su solución. Este artículo presenta una revisión literaria de 30 estudios para mostrar las características principales y los métodos de solución propuestos para proveer la base teórica y las maneras como se ha tratado el PLP. Con el entendimiento de estas propuestas de solución, se busca tener el sustento para elaborar un modelo nuevo.Nowadays, businesses face a fierce competition. Hence, the search for strategies to achieve competitiveness is elemental. For that purpose, in Logistics, the proper use of resources is a must. Storing and transportation cause impact the overall profit, making it necessary to take actions to lower their effect. An efficient palletizing can contribute to reduce costs. The Pallet Loading Problem (PLP) focuses on finding space optimization to load the maximum quantity of packed product onto the pallet. The PLP’s practical use and benefits have made it subject of study throughout time. This article presents a literature review of 30 approaches to show the main characteristics and the solution methods researchers have proposed. The objective of this revision consists of providing the theoretical basis and the way the PLP has been treated. Thus, the understanding of these solution approaches can help in the development of a new proposed model

    A unified race algorithm for offline parameter tuning

    Get PDF
    This paper proposes uRace, a unified race algorithm for efficient offline parameter tuning of deterministic algorithms. We build on the similarity between a stochastic simulation environment and offline tuning of deterministic algorithms, where the stochastic element in the latter is the unknown problem instance given to the algorithm. Inspired by techniques from the simulation optimization literature, uRace enforces fair comparisons among parameter configurations by evaluating their performance on the same training instances. It relies on rapid statistical elimination of inferior parameter configurations and an increasingly localized search of the parameter space to quickly identify good parameter settings. We empirically evaluate uRace by applying it to a parameterized algorithmic framework for loading problems at ORTEC, a global provider of software solutions for complex decision-making problems, and obtain competitive results on a set of practical problem instances from one of the world's largest multinationals in consumer packaged goods

    Review on integrated scheduling of quay crane and yard truck

    Get PDF
    With the development of port shipping trade, the increasing container throughput has brought pressure to port operation. Research literatures on quay crane scheduling, yard truck scheduling and integrated scheduling of quay crane and yard truck are reviewed in turn. Combined with the current research, the future research direction of integrated scheduling of quay crane and yard truck is proposed
    corecore