
A NewMathematical Model for a 3D
Container Packing Problem

Valentina E. Ocloo
Armin R. Fügenschuh

Olivier M. Pamen

Cottbus Mathematical Preprints
COMP# 12(2020)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/287791673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A New Mathematical Model for a 3D Container Packing

Problem

Valentina E. Ocloo Armin R. Fügenschuh Olivier M. Pamen

January 16, 2020

Abstract

We address the single container packing problem of a company that has to serve its
customers by first placing the products in boxes and then loading the boxes into a
container. We approach the problem by developing and solving mixed-integer lin-
ear models. Our models consider geometric constraints that feature non-overlapping
constraints, box orientation constraints, dimensionality constraints, relative packing
position constraints, and linearity constraints. We also develop an extension of the
models by integrating load balance and the deviation of the center of gravity. We
tested the models on a broad set of real instances involving up to 41 boxes and ob-
tained optimal solutions in most cases and very small gaps when optimality could not
be proven.

Keywords: Container packing problem, mixed-integer programming, box orienta-
tion, non-overlapping, center of gravity deviation.

1 Introduction

Logistics is the act of transporting materials, products or goods to customers. Most
small businesses are interested in the design and production of their goods and services
to their customer needs, however if these products are not able to reach the customers
these business fail to satisfy the needs of their customers. Hence there is a need for a
quick freight distribution to work easier for enterprises and to reduce cost of distribution
of items purchased by customers. Recently evolution of logistic cost reveal that the share
of transportation costs is increasing relative to inventory carrying cost [19].

The container packing problem (CPP) is a vital activity in transportation industries
which needs to be investigated. With the use of transportation equipment like a container,
it reduces the cost of transportation if the boxes are packed into the container in an optimal
way. Thus an optimal packing of boxes into the container reduces the transportation cost
and also increases balance or stability of load which is displayed in Figure 1. Therefore we
define the container packing or 3D container packing problem as the optimal arrangement
of goods and products into boxes or cartons and loaded into containers for delivery. There
have been a lot of studies conducted in the aspect of the container packing problem.
Paquay et al. proposed a mixed-integer linear programming model that factors real-
world encountered constraints such as stability, fragility of boxes, weight distribution and
rotation of boxes in a three-dimensional container [18]. They tested the model on small
instances.

1

Figure 1: Optimal packing of boxes into the container.

Furthermore, a single container packing problem under practical constraints addressed
by Lim et al. under US legal requirements stipulated in the California Vehicle Code (CVC)
which is associated to truck axle weight distribution [14]. They proposed a heuristic solu-
tion method that entails a GRASP wall-building algorithm with linear integer program-
ming models. Also they generated data from real cases and conducted experiments to
show the effectiveness of their approach. In addition, Kurpel et al. addresses multiple
container loading problems that features placing rectangular boxes, non-overlapping and
orthogonal packing inside containers with the goal to optimize a given objective function,
that is either maximize the volume of the packed boxes or minimize the number of con-
tainers needed to load all available boxes [12]. They also propose new techniques to obtain
bounds for these problems by improving an existing heuristic model. Furthermore, they
considered box orientation, load stability and separation of boxes and tested their method
on several existing benchmark sets. They proved optimality and improved the best known
results for several instances.

Recently, a multi container packing problem of a company which serves customers by
arranging the products on a pallet and then load the pallets into trucks was investigated
by Alonso et al. where they developed integer linear models [2]. They consider three types
of constraints in their models:

1. geometric constraints such that the pallets lie fully inside the trucks and must not
overlap,

2. weight distribution and

3. position of the center of gravity of the cargo.

Furthermore, the model was extended so as to adapt to demands served to meet delivery
dates over a set of time periods. In addition, a real instance made up of 44 trucks was
used to test the model. In some instances optimal solutions were obtained and in other
instances minimal gaps were obtained when optimality could not be proven. Our work
considers household equipment which needs to be transported from a retailing shop to
customers based on their orders. The products requested include televisions, laptops,
refrigerators, phones and some cooking utensils. Since these products are to be delivered
to customers, the products are loaded into boxes or cartons. The boxes are placed into a
rectangular container which is then transported for distribution to customers. The main
contributions of the study are as follows:

a. Design, model and implement a time effective packing method.

2

b. Maximize the volume of packed boxes in a large problem.

c. Improve the stability of load to avoid damage of products.

d. Reduce the cost of transportation by obtaining an optimal packing approach to the
problem.

1.1 Organization of the Thesis

The following is the remaining outline of this thesis. Section 2 provides the basic definitions
of linear programming and preliminaries of the methods in mixed-integer programming.
We illustrate some examples using the exact method approach in mixed-integer program-
ming.

Section 3 discusses the sets, parameters and decision variables required for mixed-
integer programming. A mixed-integer programming model is formulated for a single
container packing problem to maximize the volume of packed boxes in the container consid-
ering box orientation constraints, non-overlapping constraints, dimensionality constraints,
relative packing position constraints and linear constraints.

Section 4 extends the model proposed in Section 3 and integrates weight distribution
or load balance as well as deviation of the center of gravity into the model to explore the
optimal height of the container for stability purposes. The objective is to minimize the
height of the container such that the boxes will be balanced.

Section 5 discusses the results obtained using the model in Section 3 on small and
large scale instances using an exact algorithm. Also we implement the model proposed by
Józefowska et al.[11] and compare results obtained using similar data sets and an exact
algorithm. We also implement the model in Section 4 and obtain results.

Section 6 concludes our research and provides future research direction.

2 Basic Concepts and Solution Methods in Mixed-Integer
Programming

This section presents basic definitions and terms in mixed-integer programming (MIP).
We will also describe the methods used in solving mixed-integer programs and gives some
examples of how the methods works. We begin by giving an introduction to a mixed-
integer programming models.

2.1 Introduction to Mixed-Integer Programming

We provide some basic foundations in linear programming [7] and then introduce the
concept of mixed-integer programming [20].

Definition 2.2 [7] A linear program (LP) is a mathematical optimization problem in
which a linear objective function is to be maximized or minimize subject to a finite number
of linear constraints (linear equations and/or linear inequalities).

Hence, the general form of a LP-Model is given as

max
n∑

j=1

cjxj

or min
n∑

j=1

cjxj

subject to

n∑
j=1

aijxj ≤ bi, ∀ i = 1, 2, . . . ,m, (1)

xj ≥ 0, ∀ j = 1, 2, . . . , n, (non-negativity constraints)

3

where cj are the objective function coefficients (constant), xj are the decision variables,
aij are the technical coefficients (constant) and bi are the resource endowments (constant).
We refer to x1, x2, . . . , xn as the unknowns or variables or activities. Furthermore, the LP
model can be revised in the form of matrix notation as follows:

max cx

subject to Ax ≤ b (2)

x ≥ 0,

given that c is a row vector of the form c = (c1, . . . , cn) ∈ Rn, column vectors x =

x1...
xn

,

b =

 b1
...
bm

 given that x ∈ Rn and b ∈ Rm, respectively, and A = (aij) ∈ Rm×n. An

optimal solution denoted x∗ of (1) gives the values for the activities that optimize the
objective function. When the variables satisfy all constraints of the problem we have a
feasible solution. An infeasible solution occurs when there are values for the variables such
that at least one constraint is violated.

Now, an optimal solution to a linear programming model may take fractional values
because the decision variables are not constrained to take integer solutions. There are cases
of problems where the fractional solutions can be allowed, but in some real applications
these are not realistic solutions. For instance, a transportation problem of moving goods
from warehouses to retailers with the aim of minimizing the transportation costs may have
fractional solutions. In other cases such as assignment problems, packing problems, and
others, fractional solutions are not realistic, hence there is a need to constrain some or all
of the decision variables to take integer solutions. We consider the optimization problem:

max c1x1 + c2x2

subject to A1x1 +A2x2 ≤ b

x1 ≥ 0, [x1 ∈ Z] (3)

x2 ≥ 0.

The aforementioned optimization problem is a mixed-integer linear program and for brevity,
we denote it as a MILP model. Also by ignoring integer conditions (or integrality restric-
tions) in (3) we have a LP relaxation. In addition, if all the x and y variables are integers
in (3) then we have an integer program (IP). There is also a special case where the vari-
ables must either take 0 or 1 values. These problems are called binary integer program and
can be used to model ”yes” or ”no” decisions, for instance whether to pack a box into a
container or not to pack a box into a container. In most cases, real-world problems involve
a mix of continuous and integer-value decision variables, hence we will base our model on
a mixed-integer linear program since we are not dealing with non-linear functions in this
work.

Definition 2.3 [20] A mixed-integer programming (MIP) problem is an optimization prob-
lem where some variables take non-integer optimal solutions while other variables are re-
stricted to take integer value solutions.

2.4 Methods for Solving Mixed-Integer Programming Problems

The following are currently the most successful methods used in solving mixed-integer
programming models:

4

1. Exact algorithm: In this method we obtain a guaranteed optimal solution, but it
may take an exponential number of iterations to obtain it. Examples of the exact
algorithms are cutting plane method [8], branch-and-bound method [13], branch-
and-cut method [17] and dynamic programming [3].

2. Heuristics algorithm: This method finds a suboptimal solution but its quality of
solution is not guaranteed. Meanwhile, the running time is not necessarily polyno-
mial. Empirical evidence suggests that these algorithms tend to find a good solution
quickly. Examples are the greedy method [6], local search algorithms [1] and others.

3. Approximation algorithms: Approximation algorithms [10] involve a polynomial
time suboptimal solution obtained together with a bound on the degree of sub-
optimality.

In this work we will use an exact algorithm for solving our problem.

2.5 Cutting Plane Algorithm

We introduce an algorithmic principle that is at the heart of state of the art software for
mixed-integer programming. The cutting plane algorithm was the first method introduced
by Gomory [8] in 1958 for solving IP and MIP problems. Consider the problem:

MIP : max {c1x1 + c2x2 : (x1, x2) ∈ G} ,

where G :=
{

(x1, x2) ∈ Zn
+ × Rn

+ : A1x1 +A2x2 ≤ b
}

. We denote by (x∗1, x
∗
2) and z∗ an

optimal solution and value of MIP respectively. We say (x01, x
0
2) and z0 is the optimal

solution and value of the LP relaxation obtained as

max {c1x1 + c2x2 : (x1, x2) ∈ P} , (4)

where P is the LP relaxation (as the LP problem obtained when we allow non-integer
solutions) of G. In addition, suppose that (x01, x

0
2) is a basic optimal solution of (4) which

we compute using the simplex algorithm. Now when G ⊆ P , it follows that z∗ ≤ z0. In
addition, if (x01, x

0
2) is an integral vector then (x01, x

0
2) ∈ G and therefore z∗ = z0; in this

case the MIP is solved. However, if (x01, x
0
2) is not an integral vector then we need to find a

valid inequality that satisfies every point in G. There are many valid inequalities developed
for linear integer and mixed integer sets some of which are Gomory mixed-integer cuts
[21], Chvatal-Gomory cuts [21], Cover inequalities [9], Mixed integer rounding inequalities
[15] and many more. The quality of the cuts generated by separation algorithm is mostly
related to the time spent on the cut generation. In this algorithm, we will use the simplex
method to solve the LP relaxation and use Chvatal-Gomory cuts to generate valid cuts as
follows:

1. Consider the optimization problem in (3).

2. Solve the relaxation LP to optimality (by the simplex method):

xj+1 = b∗i −
∑
j∈N

a∗ijxj , i ∈ N

z = z∗ +
∑
j∈N

c∗jxj ,

where z∗ is the optimal value of the LP relaxation.

5

3. If basic optimal solution to LP relaxation is non integer then there exits some row
where b∗i /∈ Z. The Chvatal-Gomory cut applied to this row is

xj+1 +
∑
j∈N
ba∗ijcxj ≤ bb∗i c,

where ba∗ijc is max
{
m ∈ Z| m ≤ a∗ij

}
, and similarly for bb∗i c.

4. Eliminating xj+1 = b∗i −
∑

j∈N a
∗
ijxj in the Chvatal-Gomory cut we obtain:∑

j∈N

(
a∗ij − ba∗ijc

)
xj ≥ b∗i − bb∗i c,∑

j∈N
fijxj ≥ fi,

where 0 ≤ fij ≤ 1 and 0 < fi < 1.

5. We add a slack variable which is the new constraint as

s = −fi +
∑
j∈N

fijxj ,

to the problem and solve using the simplex method until all b∗i are integers.

Example 2.6 Let us consider the following mixed-integer programming problem and solve
it using the cutting plane method:

max x2

subject to 3x1 + 2x2 ≤ 6

−3x1 + 2x2 ≤ 0

x1 ≥ 0, [x1 ∈ Z] (5)

x2 ≥ 0.

We apply the simplex method to solve the LP relaxation problem by introducing x3 and
x4 as the slack variables and we obtain the first dictionary as

x3 = 6− 3x1 − 2x2

x4 = 3x1 − 2x2

z = x2.

(6)

Next x2 is entering and x4 is leaving and we have the second dictionary as

x2 =
3

2
x1 −

1

2
x4

x3 = 6− 6x1 + x4

z =
3

2
x1 −

1

2
x4.

(7)

Furthermore, x1 is entering and x3 is leaving and we obtain the third dictionary as

x1 = 1− 1

6
x3 +

1

6
x4

x2 =
3

2
− 1

4
x3 −

1

4
x4 (8)

z =
3

2
− 1

4
x3 −

1

4
x4.

6

At this point we have obtained an optimal solution for the LP relaxation problem and
from the integrality constraint from (5) we have also obtain the optimal solution of the
MIP problem where x∗1 = 1, x∗2 = 3/2 and z∗ = 3/2. Let us remark that in the case both
x1 and x2 are constrained to take integer value then we have not obtained an optimal
solution, because x2 is not an integer. We show how to obtain integer solutions for the
variables by the cutting plane method. We first generate a constraint row cut from (8),
where we take the constraint which has the fractional solution as

x2 +
1

4
x3 +

1

4
x4 ≤ 3

2
(9)

and for the valid inequality we have

x2 +

⌊
1

4
x3

⌋
+

⌊
1

4
x4

⌋
≤

⌊
3

2

⌋
. (10)

Now, subtracting (9) from (10) we have

−1

4
x3 −

1

4
x4 ≤ −1

2
. (11)

The first cutting plane is obtained by substituting the slack variables x3 and x4 into (11)
and we obtain x2 ≤ 1. Then by adding a new slack variable to (11) we have an additional
constraint as x5 = −1

2 + 1
4x3 + 1

4x4 which is added to the last dictionary. Thus we have

x1 = 1− 1

6
x3 +

1

6
x4

x2 =
3

2
− 1

4
x3 −

1

4
x4

x5 = −1

2
+

1

4
x3 +

1

4
x4 (12)

z =
3

2
− 1

4
x3 −

1

4
x4.

Re-optimizing using the dual simplex method where x3 is entering and x5 is leaving we
have

x1 =
2

3
− 2

3
x5 +

1

3
x4 (13)

x2 = 1− x5
x3 = 2 + 4x5 − x4
z = 1− x5.

A new fractional solution has been found which x∗1 = 2/3, x∗2 = 1 and z∗ = 1 and so we
generate another constraint row cut from only (13) which has the fractional part as

x1 +
2

3
x5 −

1

3
x4 ≤ 2

3
(14)

and for the valid inequality we have

x1 +

⌊
2

3
x5

⌋
+

⌊
−1

3
x4

⌋
≤

⌊
2

3

⌋
. (15)

At this point we subtract (14) from (15) which gives

−2

3
x5 −

2

3
x4 ≤ −2

3
(16)

7

and we obtain the second cutting plane as x1−x2 ≥ 0. Also repeating the same procedure
we have the next dictionary as

x1 =
2

3
− 2

3
x5 +

1

3
x4

x2 = 1− x5
x3 = 2 + 4x5 − x4
x6 = −2

3
+

2

3
x5 +

2

3
x4 (17)

z = 1− x5.

Re-optimizing using the dual simplex method we have the new dictionary in which x4 is
entering and x6 leaving as shown below:

x1 = 1− x5 +
1

2
x6

x2 = 1− x5
x3 = 1 + 5x5 −

3

2
x6

x4 = 1− x5 +
2

3
x6 (18)

z = 1− x5.

Finally the optimal solution is integral thus x∗1 = 1, x∗2 = 1 and z∗ = 1.

2.7 Branch-and-Bound Algorithm

Land and Doig [13] were the first to propose the branch and bound method in 1960. The
branch-and-bound method also uses the simplex algorithm along with an iterative process
which follows a decision tree to solve an integer programming problem. Thus the solution
approach involves partitions of the set of all the feasible solutions into smaller subproblems
and solving systemically until the best solution is found. The branch-and-bound method
uses a tree diagram of nodes and branches to organize the solution partitioning. The
initial node of the branch-and-bound is the LP relaxation.

Definition 2.8 [20] A subproblem is fathomed if any of the following conditions are sat-
isfied:

1. The relaxation of the subproblem has an optimal solution with z ≤ z∗, where z∗ is
the current best solution;

2. The relaxation of the subproblem has no feasible solution;

3. The relaxation of the subproblem has an optimal solution that has all integers.

The following are the steps needed in the branch-and-bound algorithm:

1. Consider the LP relaxation in (3).

2. If the optimal solution of the LP relaxation are all integers then an optimal solution
is obtained.

3. Else, let xj be the integer variable and x∗j ∈ R the current fractional solution, then
xj ≤ bx∗jc is the bounding inequality (only for the left branch) and in the right
branch the new inequality is xj ≥ dx∗je.

4. Repeat until a global optimal IP or MIP solution is found whenever the iteration
results in an upper bound that equals the LP.

8

5. Otherwise, if a particular branch is infeasible (or fathomed) then discard and only
branch on a feasible node which will result in an upper bound that equals the LP.

Example 2.9 Consider the optimization problem in Example 2.6 and assume also that
both variables are integers and use the branch-and-bound method to solve it.

From the previous iteration using the simplex method we obtained x∗1 = 1, x∗2 = 3/2 and
z∗ = 3/2 which is an optimal solution for the MIP problem given and not optimal for
the IP problem, hence we apply the branch-and-bound method to obtain the IP optimal
solution. Since x2 = 3/2 we branch on x2 where the left branch is x2 ≤ 1 and the right
branch is x2 ≥ 2 are our new constraints added to the first dictionary and are solved
separately using the simplex method. Starting with the left branch we have the initial
dictionary as:

x3 = 6− 3x1 − 2x2

x4 = 3x1 − 2x2

x5 = 1 − x2
z = x2.

(19)

The entering variable is x2 and leaving variable is x5 and we have the next dictionary as

x2 = 1 − x5
x3 = 4 − 3x1 − 2x5

x4 = −2 + 3x1 + 2x5

z = 1 − x5.

(20)

Using the dual simplex method we have x1 entering and x4 leaving as

x1 =
2

3
+

1

3
x4 +

2

3
x5

x2 = 1 − x5
x3 = 2 − x4
z = 1 − x5.

(21)

From this dictionary we have an optimal solution where x1 = 2/3, x2 = 1 and z = 1. Now
we solve the right branch by adding a new constraint (x2 ≥ 2) to (6) which gives the initial
dictionary

x3 = 6− 3x1 − 2x2

x4 = 3x1 − 2x2

x5 = 2 − x2
z = x2.

(22)

Solving problem (22) results to an infeasible solution. Next we branch again on the node
which had a feasible solution (left branch). Hence, we have additional two sub-problems
where their constraints are x1 ≤ 0 (left-left branch) and x1 ≥ 1 (right-left branch) and
we solve them differently. For x1 ≤ 0, we have x1 = 0, x2 = 0 and z = 0 and for x1 ≥ 1,
we have x1 = 1, x2 = 1 and z = 1. Finally, we obtain the optimal integer solution where
x∗1 = 1, x∗2 = 1 and z∗ = 1.

2.10 Branch-and-Cut Algorithm

Padberg and Rinaldi [17] proposed the branch-and-cut algorithm in 1987. The branch-
and-cut method involves running a branch-and-bound and using cutting planes to tighten

9

the LP relaxations. On the other hand, if bounds are not used to tighten the LP re-
laxation then we have cut-and-branch algorithm. The cutting plane method is fast, but
unreliable and branch-and-bound method is reliable but slow. Therefore, the branch-and-
cut method combines the advantages from these two methods and improves the defects in
both algorithms. It has proven to be a very successful approach for solving a wide variety
of integer programming problems. We can solve the MIP problem by taking some cutting
planes before applying the branch-and-bound to the resulting system. The branch-and-cut
method is not only reliable, but also faster than branch-and-bound method alone. The
procedure of the branch-and-cut algorithm is as follows:

Input: An MIP problem in (3).

Output: An optimal solution x∗ ∈ XMIP and its objective value z∗ = cx∗ or if
XMIP = ∅, denote z∗ = +∞.

1. Initialize a queue list of active problem Q := {PLP }, z∗ := +∞.

2. If Q = ∅, exit by returning the optimal solution x∗ with value z∗.

3. Select a problem P from the queue Q.

4. Solve the linear program z(P) = max {cx : x ∈ P} with optimal solution x̄(P).

5. If cuts should be generated, go to step 6, otherwise go to step 7.

6. Generate a cut, Tx ≥ u, where T ∈ Rk×n, u ∈ Rk, and k is the generated cuts. Add
them to the formulation P := P ∪ {x : Tx ≥ u}. Go to step 4.

7. If z(P) ≥ z∗, go to step 3.

8. If x̄(P) ∈ XMIP, update the incumbent x∗ = x̄(P) and z∗ = z(P).

9. Branch to split P into subproblems and add them to Q and return to step 3.

Let us remark that the unsolved pending subproblems are called the active problems which
are kept in a pool denoted by Q.

3 A Mixed-Integer Programming Model for Single Con-
tainer Packing

In this section, we present the problem formulation and give the mathematical model
description of the single container packing problem.

3.1 Problem Formulation

We consider household equipment needed to be transported from a retailing shop to cus-
tomers based on their orders. The products requested include televisions, laptops, refriger-
ators, phones, and cooking utensils. Since these product are to be delivered to customers,
the products are packed into boxes or cartons. The boxes are placed into a rectangular
container which is transported by a vehicle for distribution to customers so as to we max-
imize the volume of the packed boxes and thus reduce the cost of transportation. In the
next section, we model this problem as a 0-1 mixed-integer programming (MIP) model of
a single container packing problem (SCPP).

10

3.2 Mathematical Model Description

The following assumptions are needed in the packing problem:

Assumption 1 Any two boxes packed cannot overlap within the container.

Assumption 2 The placement of boxes must be orthogonal, i.e. the sides or edges of the
boxes have to be parallel to the container side.

Assumption 3 Each box can freely be rotated in the container.

Assumption 4 Boxes are allowed to be placed on top of each other without restrictions.

3.3 Sets and Parameters of the Model

The following sets describe an instance of the problem. A set of rectangular boxes B :=
{1, . . . , n} and a set of orientations O := {1, . . . , 6} are given. We give the following data
set to the problem: the number of boxes to pack, the size of each box base on its six
orientations and the size of the container. These describe the technical packing of the
boxes into the container. The SCPP technical parameters are given by the following:

1. The length of the container is given as L ∈ R+, the width of the container is repre-
sented as W ∈ R+ and the height of the container is represented as H ∈ R+.

2. We assume that the boxes can be rotated freely in the container. For this, we define
the length of each box b rotated with orientation o as denoted lb,o ∈ R+, similarly for
the width and height of each box b rotated with orientations o denoted as wb,o ∈ R+

and hb,o ∈ R+ respectively. Figure 2 represent six possible ways that a box can
rotate in the container.

(a) orientation 1 (b) orientation 2 (c) orientation 3

(d) orientation 4 (e) orientation 5 (f) orientation 6

Figure 2: Six possible orientations of a box.

3.4 Decision Variables of the Model

We construct the following decision variables below and without loss of generality, the axes
of the coordinate system are assumed to be placed so that the length of the container L

11

(respectively width W , height H) lies on the X-axis (respectively Y -axis, Z-axis). Thus,
the origin of the coordinate system lies on the bottom-left corner (BLC) of the box. Hence,
we define a continuous variable location of the BLC of the box b as (Xb, Yb, Zb) ∈ R+,∀ b ∈
B. Next we define a binary variable, αb,o indicates the orientation of each box as

αb,o =

{
1, if box b is rotated with orientation o;

0, otherwise

For example the variable is equal to α1,1 = 1 assuming that box 1 is placed into the
container in the first orientation as shown in Figure 2a. We define a continuous variable
that gives the orientation of the placement of box b in the x-axis. That is,

xb =
∑
o∈O

lb,o · αb,o, ∀ b ∈ B. (23)

Similarly, we denote a variable that gives the orientation of the placement of the box b in
the y-axis. Thus,

yb =
∑
o∈O

wb,o · αb,o, ∀ b ∈ B. (24)

Lastly, in the z-axis of the orientation placement of box b is denoted as

zb =
∑
o∈O

hb,o · αb,o, ∀ b ∈ B. (25)

Since the boxes can be rotated orthogonally, the variables xb, yb and zb are introduced to
describe its length, width and height orientations of each box along the axis.

Example 3.5 Suppose that box 2 has dimensions of 17.40mm long, 26.88mm wide and
39.99mm high where the dimensions of the container is 63.99mm long, 42.37mm wide and
27.44mm high. If box 2 is placed into the container of orientation 4 then xb = l2,1 · α2,1 =
39.99(1) = 39.99mm, yb = w2,1 · α2,1 = 26.88(1) = 26.88mm and zb = h2,1 · α2,1 =
17.40(1) = 17.40mm. Assuming box 2 is placed in orientation 3 or 6, this will be an
infeasible packing of the box since the height of the box is higher than the container.

Also, we define a binary variable that determines if a box is packed into the container
given as:

Ωb =

{
1, if box b is packed;

0, otherwise.

Now, the following binary variables describe the relative packing position of box b and k
inside the container. That is,

x′b,k =

{
1, if box b is placed to the left or right of box k;

0, otherwise.

y′b,k =

{
1, if box b is placed in front or behind of box k;

0, otherwise.

z′b,k =

{
1, if box b is placed above or below of box k;

0, otherwise.

To guarantee that there is no overlapping of two boxes, we need to know the relative
position of two boxes and these variables describe all the situations. For example, if the

12

box b is on the right of box k it means that box k is on the left of the box b, then x′b,k = 1,
y′b,k = 0 and z′b,k = 0 as shown below:

x′1,2 =

(1 2

1 0 1
2 0 0

)
, y′1,2 =

(1 2

1 0 0
2 0 0

)
and z′1,2 =

(1 2

1 0 0
2 0 0

)
.

Even if the definition of z′b,k is the same as x′b,k and y′b,k, we will see in the next subsection
that these variables are not fully determined. Indeed, part of the definition will be ensured
by the constraints: if z′b,k = 1 then we are sure that Zb + zb ≤ Zk. If z′b,k = 0, then we
have no information.

3.6 Constraints of the Model

Some constraints in Bortfeldt and Wäscher [4] are called basic constraints (the geomet-
ric ones) and others are specific constraints. The specific constraints comprise stability,
fragility, weight distribution or load balance, load priorities of the boxes placed in the
container and others.

3.6.1 Some Geometric Constraints

The following are the geometric constraints of the model:∑
o∈O

αb,o = Ωb, ∀ b ∈ B. (26)

Xb + xb ≤ L · Ωb, ∀ b ∈ B. (27a)

Yb + yb ≤W · Ωb, ∀ b ∈ B. (27b)

Zb + zb ≤ H · Ωb, ∀ b ∈ B. (27c)

The constraint (26) ensures that each box packed can rotate orthogonally in exactly one
orientation at a time in the container. Constraints (27) ensure that all boxes are packed
within the physical dimension of the container known as the dimensional bounds con-
straints and thus does not exceed the container size. The following constraints guarantee
non-overlapping of two boxes and they cannot occupy the same portion of the space in
the container:

x′b,k + x′k,b ≤ Ωb, ∀ b < k ∈ B. (28a)

y′b,k + y′k,b ≤ Ωb, ∀ b < k ∈ B. (28b)

z′b,k + z′k,b ≤ Ωb, ∀ b < k ∈ B. (28c)

x′b,k + x′k,b + y′b,k + y′k,b + z′b,k + z′k,b ≥ Ωb + Ωk − 1, ∀ b < k ∈ B. (29)

Xb + xb ≤ Xk + L · (1− x′b,k), ∀ b 6= k ∈ B. (30a)

Yb + yb ≤ Yk +W · (1− y′b,k), ∀ b 6= k ∈ B. (30b)

Zb + zb ≤ Zk +H · (1− z′b,k), ∀ b 6= k ∈ B. (30c)

13

When the variables x′b,k, x
′
k,b, y

′
b,k, y

′
k,b, z

′
b,k or z′k,b equal to 1, the two boxes b and k must not

overlap along any of the coordinates. To avoid two boxes occupying the same portion of
space, it is sufficient for no overlapping along at least one of the relative packing position.
Thus, at most one of these variables must be equal 1 and this describes the linearity
constraints in (28). Similarly in constraints (29) ensures that each pair b, k it must hold
at least one of the six relative packing position: b is left to k or b is right to k or b is in
front of k or b is behind k or b is above k or b is below k which is given as the relative
constraint. Constraints (30) help to fully determine these variables x′b,k, y

′
b,k and z′b,k to

ensure that there is no overlapping of two boxes in the container.

3.7 Objective of the Model

There are a lot of objectives which have been addressed in the container packing problem.
Wu et al. formulate a MIP model of a single container with the goal of minimizing the
height of the container [22]. Although various objectives may be considered, the one which
is often relevant in logistic applications is to maximize the volume of the packed boxes.
This will help to know the full utilization of the packed boxes in the container so as to
reduce cost of transporting the products. Hence, our primary goal is to maximize the
volume of the packed boxes. This reflects the following objective function:

max
∑
b∈B

(lb,1 · wb,1 · hb,1)Ωb. (31)

Other MIP models of the basic container packing problem have been proposed by Paquay
et al.[18], Chen et al.[5], Józefowska et al.[11] and many others.

4 Extended MIP Model of the Single Container

Although the single container packing problem has been modelled, there are still defi-
ciencies in the single container problem since it does not really conform into the real-life
issues concerning the packing problem. In this chapter we will extend the single container
packing problem to adapt to real-world applications in order to evaluate the quality of our
results.

4.1 Practical Issues for Container Packing

There are several constraints encountered during container loading. The following are
some typical constraints encountered in CPP:

1. Weight Distribution or Load Balance Constraints

2. Fragility Constraints

3. Priority Packing Constraints

In this work we will focus on weight distribution or load balance constraints.

4.2 Weight Distribution Constraints under Single CPP

Moon et al. [16] propose an algorithm with balance constraints and trade off between
weight balance and volume utilization and also propose a MIP model that groups upper
and lower bounds for a 3D-CPP. The balance of load in the container is very important
in CPP. When the load in the container is not well balanced (stable), the container shifts
while it is moved. Unstable packing happens when there is uneven distribution of weight.

14

This leads to breakages and damages of the products in the boxes. To achieve an even
weight distribution, we need to consider the center of gravity of the load near to the
geometrical center of the container. We assume that the weight (mass) of each box is
evenly distributed. Usually, the center of gravity of the container must lie around a specific
area. In the horizontal form of the container, the area is defined around the geometric
midpoint of the container floor. However, vertically the center of gravity lies below a given
level. Given boxes of different masses placed in a container, we define the center of gravity
of boxes along the x axis as

xCG =

∑
bmbxb∑
bmb

,

where xb is the x-coordinate of the box b and mb its mass. Figure 3 displays an example
of a balanced load and an unbalanced load.

(a) stable packed boxes (b) unstable packed boxes

Figure 3: Example of balanced packing.

Now, in the extended Single Container Packing Problem (SCPP) we assume the fol-
lowing:

a. All boxes are packed into the container, hence Ωb is set to 1.

b. All other sets, parameters, variables and constraints are maintained.

We add new parameters, new decision variables and new constraints to the model and
propose a new objective to the problem. The following new parameters are added:

1. We introduce mb which is the mass of each box.

2. We add
totalMass =

∑
b∈B

mb

that refers to the total mass of all the boxes.

3. We add θ ∈ [0, 1) which is a value that balances the contribution height versus the
deviation of the x, y-center of mass from the middle of the container.

Next we propose the following decision variables to the problem. We introduce decision
variables for the x-axis center of mass of the box as

ξb = Xb +
1

2
xb. (32)

Similarly, we add the y-axis and z-axis center of mass of the box as follows;

δb = Yb +
1

2
yb (33)

and

ψb = Zb +
1

2
zb. (34)

15

Also, we introduce additional decision variables, Xcent ≥ 0 and Ycent ≥ 0 which is the x and
y center of gravity direction respectively. Now, concerning the centre of mass in z direction
is quite different since we want the gravity to lie as low as possible. Hence, we introduce a
decision variable Zheight ≥ 0 which refers to the contribution height in terms of the center
of mass. Furthermore, we introduce additional decision variables diffX ≥ 0,diffY ≥ 0
which refer to the value of deviation of the x and y center of mass direction, respectively.
Also we introduce a decision variable

Diff = diffX + diffY , (35)

which is the sum of all the deviation in the x and y center of gravity position. Now the
extended model:

minimize θ ·Diff + (1− θ) · Zheight (36a)

subject to totalMass ·Xcent =
∑
b∈B

mb · ξb, (36b)

totalMass · Ycent =
∑
b∈B

mb · δb, (36c)

totalMass · Zheight =
∑
b∈B

mb · ψb, (36d)

Xcent −
1

2
· L ≤ diffX , (36e)

1

2
· L−Xcent ≤ diffX , (36f)

Ycent −
1

2
·W ≤ diffY , (36g)

1

2
·W − Ycent ≤ diffY . (36h)

Constraints (36b), (36c) and (36d) are imposed to ensure that we fully determine the
center of gravity along the x, y and z axis. We also model constraints (36e) and (36f) to
check the deviation in the x axis center of gravity position. Similarly, we model that in the
y axis. In the basic model we considered maximization of volume of packed boxes, since
we want the center of gravity to fall nearer to the ground of the container, we minimize
the height of container.

5 Computational Experiments

5.1 Test Bed

The model was implemented in the AMPL programming language on a quad core Intel
Core i5 with 1.70 GHz and 8 MByte cache, running on a Linux laptop, and an IBM ILOG
CPLEX 12.9 as a linear programming based mixed-integer branch-and-cut framework.
The set of test instances proposed in literature most often does not contain orientations in

16

our case. Notwithstanding, our first experiments were performed on the set of instances
with 3, 5, 8, 10, 12 and 15 boxes. The result were on average 70% better in terms of the
computational time for volume utilization as compared to the model by Józefowska et al.
[11]. These results were promising enough to proceed the experiments on large instances.
Even though the motivation for our model comes from a practical application, unfortu-
nately, no real order test scenarios are available. To evaluate the model performance, we
prepared a set of instances on a list of real products. This include the data for the length,
width and height of boxes of 28 different types and also the size of the container. We
generated instances by randomly choosing boxes from the list to set up a shipment order.
The experiment was performed on a set of 369 instances where 9 instances were randomly
generated from each 41 groups. The groups of instances are defined by providing the
number of box types with its sizes. The container size of 130.87 mm length, 110.64 mm
width, and 120.40 mm height was assumed.

5.2 Results

The computational execution time for different instances is presented in Figure 4. We set
a time limit of 3600s (1h) for every instance given. A score shown in the graph reflects
each instances solve within the time limit and if not solved shown as a gap. Thus,

i =

{
ti

3600 , if instance solved

1 + gap
100 , if instance not solved.

Here, the gap is computed as:

gap =
LPopt − Best integer

LPopt
× 100%.

Figure 4 shows that from 24 boxes onwards not all boxes can be packed within the given
time limit due to a medium container. In addition, the total number of 41 boxes could
not be packed and had a gap of 35%. We also computed the median, arithmetic average,
and geometric average of the scores which is depicted in the Figure 4. For comparison, we

Figure 4: Number of boxes packed against time and gap of our model.

implemented the model of Józefowska et al.[11] to check the computational execution time

17

with the same data set generated in our instances. We denote the model of Józefowska et
al.[11] as “Jppmk” model, and from Figure 5 we see that 17 boxes and above could not
be packed within the given time limit.

Figure 5: Number of boxes packed against time and gap of Jppmk model.

Eventually, some instances had recorded a high gap of 80% showing that such number
of boxes could not be packed. Overall, the packing of boxes into the container becomes
more difficult compared to a sole maximization of the volume of packed boxes when we
have the following: a) a small container is given to pack the boxes, b) a higher number of
different type of boxes to pack and, c) the number of boxes to pack increases. Furthermore
to check on the quality of our solution, we compared both models together on the same
graph to detect which is faster than the other and this is depicted in Figure 6. At the
end of the experiment, the solver CPLEX was able to find better solutions in shorter time
on instances of our model compared to Jppmk model. We explore an experiment on the

Figure 6: Comparison between our model and Jppmk model.

18

extended model for 10 boxes of 7 different types. We assume the container length, width
and height as 50mm, 45mm and 200mm respectively. Next, we varied θ and obtained
three unique solutions for a range of θ value. We obtained the following:

1. For θ = 0.001 to 0.007, we have Diff = 1.58398 and Zheight = 7.9118.

2. For θ = 0.008 to 0.189, we have Diff = 0.432482 and Zheight = 7.99849.

3. For θ = 0.190 to 0.999, we have Diff = 0 and Zheight = 8.11293.

All these instances were solved to optimality and a derivation of Pareto curve is obtained
for aforementioned bi-criterion optimization model shown in Figure 7. Though all these so-
lutions are Pareto-optimal, we identify a “good choice” solution where θ = 0.190 to 0.999,
we have no deviation of the center of mass and the container height must have 8.11293 to
obtain a stable packing arrangement of the boxes in the container.

Figure 7: Tradeoff between Container height and deviation of center of mass.

6 Conclusion and Future Work

We have addressed a real-world 3D container packing problem in this work. The con-
tainer packing problem is an essential tool in logistics management, hence some practical
constraints were considered to ensure that our the proposed results can be implemented
by industries faced with some issues in packing plans. In order to assess a satisfactory
solution, a constructive model based on a mixed-integer programming approach has been
developed with regards to the problems encountered by companies. Also due to current
packing problems that companies face, we considered the container weight distribution or
load balance issue in this research. Our model develops a strategy of showing the packing
arrangement of boxes packed to the left or right, in front or behind and below or above in
the container without overlapping each other and combining boxes of different orientations
trying to maximize the volume of packed boxes. Randomly generated instances from a list
of shippment order from 41 groups which is the number of types boxes and its size was
used to evaluate the performance of the model. The solver CPLEX was able to compute

19

a maximum volume of packed boxes, while satisfying all the constraints of the problem.
Most instances could be solved to proven optimality within 1 hour for up to 16 boxes and
some instances could not be solved within the time limit from 17 boxes onwards having
at most 35% gap due to small container size, high number of different types of boxes and
increased number of boxes.

Furthermore, some comparative tests have been conducted to literature related prob-
lems with the available data sets showing that the solver CPLEX was able to find better
solutions in shorter time on instances of our model compared to instances of the Jppmk
model. The good results raised the interest to consider the weight distribution in the
container to enhance stability of the packed boxes. Hence, we factored such constraints
in the extended model. We obtained three unique solutions from the range θ value which
was displayed as a Pareto front cure. A good choice of solution where θ = 0.190 to 0.999,
which have no deviation of the center of mass and the container height has 8.11293 to
obtain a stable packing arrangement of the boxes in the container. Now, our future work
is to consider the case where boxes have different destinations to be unloaded to customers
(priority constraints or multi-drops constraints). In this case, we will address that in the
extended model to factor the loading of boxes by dividing the container into sub-containers
and arranging the boxes per the destination order for easier off loading. Another case to
consider is to factor in the fragility of certain boxes which cannot be packed on one an-
other since this will lead to breakages of items like wine, laptops, etc. in the boxes loaded
into the container. Lastly, there are certain boxes that cannot be oriented in all the six
orientations (up side down) due to the nature of the product in the box (no orientation
for such boxes). These extra constraints can be implemented in our future work.

References

[1] Emile Aarts and Jan Karel Lenstra. Local search in combinatorial optimization.
Princeton University Press, 2003.

[2] MT Alonso, R Alvarez-Valdes, M Iori, and F Parreño. Mathematical models for
multi container loading problems with practical constraints. Computers & Industrial
Engineering, 127:722–733, 2019.

[3] Richard Bellman and Robert E Kalaba. Dynamic programming and modern control
theory, volume 81. Citeseer, 1965.

[4] Andreas Bortfeldt and Gerhard Wäscher. Constraints in container loading–a state-
of-the-art review. European Journal of Operational Research, 229(1):1–20, 2013.

[5] CS Chen, Shen-Ming Lee, and QS Shen. An analytical model for the container loading
problem. European Journal of Operational Research, 80(1):68–76, 1995.

[6] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Greedy
algorithms. Introduction to algorithms, 1:329–355, 2001.

[7] Richard Cottle and Mukund N Thapa. Linear and Nonlinear Optimization, volume
253. Springer, 2017.

[8] Ralph E Gomory. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society, 64(5):275–278, 1958.

[9] Zonghao Gu, George L Nemhauser, and Martin WP Savelsbergh. Lifted cover in-
equalities for 0-1 integer programs: Computation. INFORMS Journal on Computing,
10(4):427–437, 1998.

20

[10] David S Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9(3):256–278, 1974.

[11] Joanna Józefowska, Grzegorz Pawlak, Erwin Pesch, Micha l Morze, and Dawid Kowal-
ski. Fast truck-packing of 3d boxes. Engineering Management in Production and
Services, 10(2):29–40, 2018.

[12] Deidson Vitorio Kurpel, Cleder Marcos Schenekemberg, Cassius Tadeu Scarpin, José
Eduardo Pécora Junior, and Leandro C Coelho. The Exact Solutions of Several
Classes of Container Loading Problems. CIRRELT, Centre interuniversitaire de
recherche sur les réseaux d’entreprise, 2018.

[13] AH Land and AG Doig. An automatic method of solving discrete programming
problems, econométrica, 1998.

[14] Andrew Lim, Hong Ma, Chaoyang Qiu, and Wenbin Zhu. The single container loading
problem with axle weight constraints. International Journal of Production Economics,
144(1):358–369, 2013.

[15] Hugues Marchand and Laurence A Wolsey. Aggregation and mixed integer rounding
to solve mips. Operations research, 49(3):363–371, 2001.

[16] Ilkyeong Moon and Thi Viet Ly Nguyen. Container packing problem with balance
constraints. OR Spectrum, 36(4):837–878, 2014.

[17] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolu-
tion of large-scale symmetric traveling salesman problems. SIAM review, 33(1):60–
100, 1991.

[18] Célia Paquay, Michael Schyns, and Sabine Limbourg. A mixed integer programming
formulation for the three-dimensional bin packing problem deriving from an air cargo
application. International Transactions in Operational Research, 23(1-2):187–213,
2016.

[19] Jean-Paul Rodrigue, Claude Comtois, and Brian Slack. The geography of transport
systems. Routledge, 2016.

[20] J Cole Smith and Z Caner Taskin. A tutorial guide to mixed-integer programming
models and solution techniques. Optimization in Medicine and Biology, pages 521–
548, 2008.

[21] Laurence A Wolsey and George L Nemhauser. Integer and combinatorial optimization.
John Wiley & Sons, 2014.

[22] Yong Wu, Wenkai Li, Mark Goh, and Robert de Souza. Three-dimensional bin pack-
ing problem with variable bin height. European Journal of Operational Research,
202(2):347–355, 2010.

21

IMPRESSUM

Brandenburgische Technische Universität Cottbus-Senftenberg
Fakultät 1 | MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik
Institut für Mathematik
Platz der Deutschen Einheit 1
D-03046 Cottbus

Professur für Ingenieurmathematik und Numerik der Optimierung
Professor Dr. rer. nat. Armin Fügenschuh

E fuegenschuh@b-tu.de
T +49 (0)355 69 3127
F +49 (0)355 69 2307

Cottbus Mathematical Preprints (COMP), ISSN (Print) 2627-4019
Cottbus Mathematical Preprints (COMP), ISSN (Online) 2627-6100

www.b-tu.de/cottbus-mathematical-preprints
cottbus-mathematical-preprints@b-tu.de
doi.org/10.26127/btuopen-5088

