10,537 research outputs found

    Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs

    Get PDF
    In this work we propose a structured prediction technique that combines the virtues of Gaussian Conditional Random Fields (G-CRF) with Deep Learning: (a) our structured prediction task has a unique global optimum that is obtained exactly from the solution of a linear system (b) the gradients of our model parameters are analytically computed using closed form expressions, in contrast to the memory-demanding contemporary deep structured prediction approaches that rely on back-propagation-through-time, (c) our pairwise terms do not have to be simple hand-crafted expressions, as in the line of works building on the DenseCRF, but can rather be `discovered' from data through deep architectures, and (d) out system can trained in an end-to-end manner. Building on standard tools from numerical analysis we develop very efficient algorithms for inference and learning, as well as a customized technique adapted to the semantic segmentation task. This efficiency allows us to explore more sophisticated architectures for structured prediction in deep learning: we introduce multi-resolution architectures to couple information across scales in a joint optimization framework, yielding systematic improvements. We demonstrate the utility of our approach on the challenging VOC PASCAL 2012 image segmentation benchmark, showing substantial improvements over strong baselines. We make all of our code and experiments available at {https://github.com/siddharthachandra/gcrf}Comment: Our code is available at https://github.com/siddharthachandra/gcr

    Truncated Variational EM for Semi-Supervised Neural Simpletrons

    Full text link
    Inference and learning for probabilistic generative networks is often very challenging and typically prevents scalability to as large networks as used for deep discriminative approaches. To obtain efficiently trainable, large-scale and well performing generative networks for semi-supervised learning, we here combine two recent developments: a neural network reformulation of hierarchical Poisson mixtures (Neural Simpletrons), and a novel truncated variational EM approach (TV-EM). TV-EM provides theoretical guarantees for learning in generative networks, and its application to Neural Simpletrons results in particularly compact, yet approximately optimal, modifications of learning equations. If applied to standard benchmarks, we empirically find, that learning converges in fewer EM iterations, that the complexity per EM iteration is reduced, and that final likelihood values are higher on average. For the task of classification on data sets with few labels, learning improvements result in consistently lower error rates if compared to applications without truncation. Experiments on the MNIST data set herein allow for comparison to standard and state-of-the-art models in the semi-supervised setting. Further experiments on the NIST SD19 data set show the scalability of the approach when a manifold of additional unlabeled data is available
    • …
    corecore