486 research outputs found

    Optimal Inference in Crowdsourced Classification via Belief Propagation

    Full text link
    Crowdsourcing systems are popular for solving large-scale labelling tasks with low-paid workers. We study the problem of recovering the true labels from the possibly erroneous crowdsourced labels under the popular Dawid-Skene model. To address this inference problem, several algorithms have recently been proposed, but the best known guarantee is still significantly larger than the fundamental limit. We close this gap by introducing a tighter lower bound on the fundamental limit and proving that Belief Propagation (BP) exactly matches this lower bound. The guaranteed optimality of BP is the strongest in the sense that it is information-theoretically impossible for any other algorithm to correctly label a larger fraction of the tasks. Experimental results suggest that BP is close to optimal for all regimes considered and improves upon competing state-of-the-art algorithms.Comment: This article is partially based on preliminary results published in the proceeding of the 33rd International Conference on Machine Learning (ICML 2016

    Analytic Methods for Optimizing Realtime Crowdsourcing

    Get PDF
    Realtime crowdsourcing research has demonstrated that it is possible to recruit paid crowds within seconds by managing a small, fast-reacting worker pool. Realtime crowds enable crowd-powered systems that respond at interactive speeds: for example, cameras, robots and instant opinion polls. So far, these techniques have mainly been proof-of-concept prototypes: research has not yet attempted to understand how they might work at large scale or optimize their cost/performance trade-offs. In this paper, we use queueing theory to analyze the retainer model for realtime crowdsourcing, in particular its expected wait time and cost to requesters. We provide an algorithm that allows requesters to minimize their cost subject to performance requirements. We then propose and analyze three techniques to improve performance: push notifications, shared retainer pools, and precruitment, which involves recalling retainer workers before a task actually arrives. An experimental validation finds that precruited workers begin a task 500 milliseconds after it is posted, delivering results below the one-second cognitive threshold for an end-user to stay in flow.Comment: Presented at Collective Intelligence conference, 201

    Gradient descent for sparse rank-one matrix completion for crowd-sourced aggregation of sparsely interacting workers

    Full text link
    We consider worker skill estimation for the singlecoin Dawid-Skene crowdsourcing model. In practice skill-estimation is challenging because worker assignments are sparse and irregular due to the arbitrary, and uncontrolled availability of workers. We formulate skill estimation as a rank-one correlation-matrix completion problem, where the observed components correspond to observed label correlation between workers. We show that the correlation matrix can be successfully recovered and skills identifiable if and only if the sampling matrix (observed components) is irreducible and aperiodic. We then propose an efficient gradient descent scheme and show that skill estimates converges to the desired global optima for such sampling matrices. Our proof is original and the results are surprising in light of the fact that even the weighted rank-one matrix factorization problem is NP hard in general. Next we derive sample complexity bounds for the noisy case in terms of spectral properties of the signless Laplacian of the sampling matrix. Our proposed scheme achieves state-of-art performance on a number of real-world datasets.Published versio

    Iterative Bayesian Learning for Crowdsourced Regression

    Full text link
    Crowdsourcing platforms emerged as popular venues for purchasing human intelligence at low cost for large volume of tasks. As many low-paid workers are prone to give noisy answers, a common practice is to add redundancy by assigning multiple workers to each task and then simply average out these answers. However, to fully harness the wisdom of the crowd, one needs to learn the heterogeneous quality of each worker. We resolve this fundamental challenge in crowdsourced regression tasks, i.e., the answer takes continuous labels, where identifying good or bad workers becomes much more non-trivial compared to a classification setting of discrete labels. In particular, we introduce a Bayesian iterative scheme and show that it provably achieves the optimal mean squared error. Our evaluations on synthetic and real-world datasets support our theoretical results and show the superiority of the proposed scheme

    On Classification in Human-driven and Data-driven Systems

    Get PDF
    Classification systems are ubiquitous, and the design of effective classification algorithms has been an even more active area of research since the emergence of machine learning techniques. Despite the significant efforts devoted to training and feature selection in classification systems, misclassifications do occur and their effects can be critical in various applications. The central goal of this thesis is to analyze classification problems in human-driven and data-driven systems, with potentially unreliable components and design effective strategies to ensure reliable and effective classification algorithms in such systems. The components/agents in the system can be machines and/or humans. The system components can be unreliable due to a variety of reasons such as faulty machines, security attacks causing machines to send falsified information, unskilled human workers sending imperfect information, or human workers providing random responses. This thesis first quantifies the effect of such unreliable agents on the classification performance of the systems and then designs schemes that mitigate misclassifications and their effects by adapting the behavior of the classifier on samples from machines and/or humans and ensure an effective and reliable overall classification. In the first part of this thesis, we study the case when only humans are present in the systems, and consider crowdsourcing systems. Human workers in crowdsourcing systems observe the data and respond individually by providing label related information to a fusion center in a distributed manner. In such systems, we consider the presence of unskilled human workers where they have a reject option so that they may choose not to provide information regarding the label of the data. To maximize the classification performance at the fusion center, an optimal aggregation rule is proposed to fuse the human workers\u27 responses in a weighted majority voting manner. Next, the presence of unreliable human workers, referred to as spammers, is considered. Spammers are human workers that provide random guesses regarding the data label information to the fusion center in crowdsourcing systems. The effect of spammers on the overall classification performance is characterized when the spammers can strategically respond to maximize their reward in reward-based crowdsourcing systems. For such systems, an optimal aggregation rule is proposed by adapting the classifier based on the responses from the workers. The next line of human-driven classification is considered in the context of social networks. The classification problem is studied to classify a human whether he/she is influential or not in propagating information in social networks. Since the knowledge of social network structures is not always available, the influential agent classification problem without knowing the social network structure is studied. A multi-task low rank linear influence model is proposed to exploit the relationships between different information topics. The proposed approach can simultaneously predict the volume of information diffusion for each topic and automatically classify the influential nodes for each topic. In the third part of the thesis, a data-driven decentralized classification framework is developed where machines interact with each other to perform complex classification tasks. However, the machines in the system can be unreliable due to a variety of reasons such as noise, faults and attacks. Providing erroneous updates leads the classification process in a wrong direction, and degrades the performance of decentralized classification algorithms. First, the effect of erroneous updates on the convergence of the classification algorithm is analyzed, and it is shown that the algorithm linearly converges to a neighborhood of the optimal classification solution. Next, guidelines are provided for network design to achieve faster convergence. Finally, to mitigate the impact of unreliable machines, a robust variant of ADMM is proposed, and its resilience to unreliable machines is shown with an exact convergence to the optimal classification result. The final part of research in this thesis considers machine-only data-driven classification problems. First, the fundamentals of classification are studied in an information theoretic framework. We investigate the nonparametric classification problem for arbitrary unknown composite distributions in the asymptotic regime where both the sample size and the number of classes grow exponentially large. The notion of discrimination capacity is introduced, which captures the largest exponential growth rate of the number of classes relative to the samples size so that there exists a test with asymptotically vanishing probability of error. Error exponent analysis using the maximum mean discrepancy is provided and the discrimination rate, i.e., lower bound on the discrimination capacity is characterized. Furthermore, an upper bound on the discrimination capacity based on Fano\u27s inequality is developed
    corecore