Crowdsourcing platforms emerged as popular venues for purchasing human
intelligence at low cost for large volume of tasks. As many low-paid workers
are prone to give noisy answers, a common practice is to add redundancy by
assigning multiple workers to each task and then simply average out these
answers. However, to fully harness the wisdom of the crowd, one needs to learn
the heterogeneous quality of each worker. We resolve this fundamental challenge
in crowdsourced regression tasks, i.e., the answer takes continuous labels,
where identifying good or bad workers becomes much more non-trivial compared to
a classification setting of discrete labels. In particular, we introduce a
Bayesian iterative scheme and show that it provably achieves the optimal mean
squared error. Our evaluations on synthetic and real-world datasets support our
theoretical results and show the superiority of the proposed scheme