14,436 research outputs found

    Exact Coupling Threshold for Structural Transition in Interconnected Networks

    Get PDF
    Interconnected networks are mathematical representation of systems where two or more simple networks are coupled to each other. Depending on the coupling weight between the two components, the interconnected network can function in two regimes: one where the two networks are structurally distinguishable, and one where they are not. The coupling threshold--denoting this structural transition--is one of the most crucial concepts in interconnected networks. Yet, current information about the coupling threshold is limited. This letter presents an analytical expression for the exact value of the coupling threshold and outlines network interrelation implications

    Structural transition in interdependent networks with regular interconnections

    Get PDF
    Networks are often made up of several layers that exhibit diverse degrees of interdependencies. A multilayer interdependent network consists of a set of graphs GG that are interconnected through a weighted interconnection matrix B B , where the weight of each inter-graph link is a non-negative real number p p . Various dynamical processes, such as synchronization, cascading failures in power grids, and diffusion processes, are described by the Laplacian matrix Q Q characterizing the whole system. For the case in which the multilayer graph is a multiplex, where the number of nodes in each layer is the same and the interconnection matrix B=pI B=pI , being I I the identity matrix, it has been shown that there exists a structural transition at some critical coupling, p∗ p^* . This transition is such that dynamical processes are separated into two regimes: if p>p∗ p > p^* , the network acts as a whole; whereas when p<p∗ p<p^* , the network operates as if the graphs encoding the layers were isolated. In this paper, we extend and generalize the structural transition threshold p∗ p^* to a regular interconnection matrix B B (constant row and column sum). Specifically, we provide upper and lower bounds for the transition threshold p∗ p^* in interdependent networks with a regular interconnection matrix B B and derive the exact transition threshold for special scenarios using the formalism of quotient graphs. Additionally, we discuss the physical meaning of the transition threshold p∗ p^* in terms of the minimum cut and show, through a counter-example, that the structural transition does not always exist. Our results are one step forward on the characterization of more realistic multilayer networks and might be relevant for systems that deviate from the topological constrains imposed by multiplex networks.Comment: 13 pages, APS format. Submitted for publicatio

    Towards real-world complexity: an introduction to multiplex networks

    Full text link
    Many real-world complex systems are best modeled by multiplex networks of interacting network layers. The multiplex network study is one of the newest and hottest themes in the statistical physics of complex networks. Pioneering studies have proven that the multiplexity has broad impact on the system's structure and function. In this Colloquium paper, we present an organized review of the growing body of current literature on multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. Major recent advances in the field are surveyed and some outstanding open challenges and future perspectives will be proposed.Comment: 20 pages, 10 figure

    Layer degradation triggers an abrupt structural transition in multiplex networks

    Get PDF
    Network robustness is a central point in network science, both from a theoretical and a practical point of view. In this paper, we show that layer degradation, understood as the continuous or discrete loss of links' weight, triggers a structural transition revealed by an abrupt change in the algebraic connectivity of the graph. Unlike traditional single layer networks, multiplex networks exist in two phases, one in which the system is protected from link failures in some of its layers and one in which all the system senses the failure happening in one single layer. We also give the exact critical value of the weight of the intra-layer links at which the transition occurs for continuous layer degradation and its relation to the value of the coupling between layers. This relation allows us to reveal the connection between the transition observed under layer degradation and the one observed under the variation of the coupling between layers.Comment: 8 pages, and 8 figures in Revtex style. Submitted for publicatio

    Disease Localization in Multilayer Networks

    Get PDF
    We present a continuous formulation of epidemic spreading on multilayer networks using a tensorial representation, extending the models of monoplex networks to this context. We derive analytical expressions for the epidemic threshold of the SIS and SIR dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasi-stationary state method we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks, which are characterized analytically and numerically through the inverse participation ratio. Furthermore, when mapping the critical dynamics to an eigenvalue problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of the ratio of two spreading rates: if the rate at which the disease spreads within a layer is comparable to the spreading rate across layers, the individual spectra of each layer merge with the coupling between layers. Finally, we verified the barrier effect, i.e., for three-layer configuration, when the layer with the largest eigenvalue is located at the center of the line, it can effectively act as a barrier to the disease. The formalism introduced here provides a unifying mathematical approach to disease contagion in multiplex systems opening new possibilities for the study of spreading processes.Comment: Revised version. 25 pages and 18 figure

    Multiple structural transitions in interacting networks

    Get PDF
    Many real-world systems can be modeled as interconnected multilayer networks, namely a set of networks interacting with each other. Here we present a perturbative approach to study the properties of a general class of interconnected networks as inter-network interactions are established. We reveal multiple structural transitions for the algebraic connectivity of such systems, between regimes in which each network layer keeps its independent identity or drives diffusive processes over the whole system, thus generalizing previous results reporting a single transition point. Furthermore we show that, at first order in perturbation theory, the growth of the algebraic connectivity of each layer depends only on the degree configuration of the interaction network (projected on the respective Fiedler vector), and not on the actual interaction topology. Our findings can have important implications in the design of robust interconnected networked system, particularly in the presence of network layers whose integrity is more crucial for the functioning of the entire system. We finally show results of perturbation theory applied to the adjacency matrix of the interconnected network, which can be useful to characterize percolation processes on such systems

    Layer-switching cost and optimality in information spreading on multiplex networks

    Full text link
    We study a model of information spreading on multiplex networks, in which agents interact through multiple interaction channels (layers), say online vs.\ offline communication layers, subject to layer-switching cost for transmissions across different interaction layers. The model is characterized by the layer-wise path-dependent transmissibility over a contact, that is dynamically determined dependently on both incoming and outgoing transmission layers. We formulate an analytical framework to deal with such path-dependent transmissibility and demonstrate the nontrivial interplay between the multiplexity and spreading dynamics, including optimality. It is shown that the epidemic threshold and prevalence respond to the layer-switching cost non-monotonically and that the optimal conditions can change in abrupt non-analytic ways, depending also on the densities of network layers and the type of seed infections. Our results elucidate the essential role of multiplexity that its explicit consideration should be crucial for realistic modeling and prediction of spreading phenomena on multiplex social networks in an era of ever-diversifying social interaction layers.Comment: 15 pages, 7 figure

    Multilayer Networks in a Nutshell

    Get PDF
    Complex systems are characterized by many interacting units that give rise to emergent behavior. A particularly advantageous way to study these systems is through the analysis of the networks that encode the interactions among the system's constituents. During the last two decades, network science has provided many insights in natural, social, biological and technological systems. However, real systems are more often than not interconnected, with many interdependencies that are not properly captured by single layer networks. To account for this source of complexity, a more general framework, in which different networks evolve or interact with each other, is needed. These are known as multilayer networks. Here we provide an overview of the basic methodology used to describe multilayer systems as well as of some representative dynamical processes that take place on top of them. We round off the review with a summary of several applications in diverse fields of science.Comment: 16 pages and 3 figures. Submitted for publicatio
    • …
    corecore