7 research outputs found

    Recent progress in exact geometric computation

    Get PDF
    AbstractComputational geometry has produced an impressive wealth of efficient algorithms. The robust implementation of these algorithms remains a major issue. Among the many proposed approaches for solving numerical non-robustness, Exact Geometric Computation (EGC) has emerged as one of the most successful. This survey describes recent progress in EGC research in three key areas: constructive zero bounds, approximate expression evaluation and numerical filters

    Combinatorial curve reconstruction and the efficient exact implementation of geometric algorithms

    Get PDF
    This thesis has two main parts. The first part deals with the problem of curve reconstruction. Given a finite sample set S from an unknown collection of curves Gamma, the task is to compute the graph G(S, Gamma) which has vertex set S and an edge between exactly those pairs of vertices that are adjacent on some curve in Gamma. We present a purely combinatorial algorithm that solves the curve reconstruction problem in polynomial time. It is the first algorithm which provably handles collections of curves with corners and endpoints. In the second part of this thesis, we will be concerned with the exact and efficient im plementation of geometric algorithms. First, we develop a generalized filtering scheme to speed-up exact geometric computation and then discuss the design of an object-oriented kernel for geometric computation.Diese Dissertation besteht aus zwei Teilen. Der erste Teil beschäftigt sich mit den Problemen der Kurvenrekonstruktion. Gegeben eine endliche Menge von Stichprobenpunkten S von einer Menge von unbekannten Kurven Gamma, besteht die Aufgabe darin, den Graphen G(S, Gamma) zu konstruieren, welcher die Knotenmenge S und Kanten zwischen genau den Knotenpaaren besitzt, welche auf einer der Kurven in Gamma adjazent sind. Wir präsentieren einen rein kombinatorischen Algorithmus, der das Kurevenkonstruktionsproblem in polynomieller Zeit löst. Es ist der erste Algorithmus, der beweisbar Mengen von Kurven rekonstruieren kann, wenn diese auch Ecken und Endpunkte beinhalten dürfen. Der zweite Teil dieser Dissertation handelt von der exakten und effizienten Implementierung von Geometrischen Algorithmen. Wir entwickeln zunächst ein generalisiertes Filterschema, um exakte geometrische Berechnungen zu beschleunigen, und entwerfen dann das Design eines objektorientierten Kernels für geometrische Berechnungen

    Orthogonal dissection into few rectangles

    Full text link
    We describe a polynomial time algorithm that takes as input a polygon with axis-parallel sides but irrational vertex coordinates, and outputs a set of as few rectangles as possible into which it can be dissected by axis-parallel cuts and translations. The number of rectangles is the rank of the Dehn invariant of the polygon. The same method can also be used to dissect an axis-parallel polygon into a simple polygon with the minimum possible number of edges. When rotations or reflections are allowed, we can approximate the minimum number of rectangles to within a factor of two.Comment: 18 pages, 8 figures. This version adds results on dissection with rotations and reflection

    Programming with Numerical Uncertainties

    Get PDF
    Numerical software, common in scientific computing or embedded systems, inevitably uses an approximation of the real arithmetic in which most algorithms are designed. In many domains, roundoff errors are not the only source of inaccuracy and measurement as well as truncation errors further increase the uncertainty of the computed results. Adequate tools are needed to help users select suitable approximations (data types and algorithms) which satisfy their accuracy requirements, especially for safety- critical applications. Determining that a computation produces accurate results is challenging. Roundoff errors and error propagation depend on the ranges of variables in complex and non-obvious ways; even determining these ranges accurately for nonlinear programs poses a significant challenge. In numerical loops, roundoff errors grow, in general, unboundedly. Finally, due to numerical errors, the control flow in the finite-precision implementation may diverge from the ideal real-valued one by taking a different branch and produce a result that is far-off of the expected one. In this thesis, we present techniques and tools for automated and sound analysis, verification and synthesis of numerical programs. We focus on numerical errors due to roundoff from floating-point and fixed-point arithmetic, external input uncertainties or truncation errors. Our work uses interval or affine arithmetic together with Satisfiability Modulo Theories (SMT) technology as well as analytical properties of the underlying mathematical problems. This combination of techniques enables us to compute sound and yet accurate error bounds for nonlinear computations, determine closed-form symbolic invariants for unbounded loops and quantify the effects of discontinuities on numerical errors. We can furthermore certify the results of self-correcting iterative algorithms. Accuracy usually comes at the expense of resource efficiency: more precise data types need more time, space and energy. We propose a programming model where the scientist writes his or her numerical program in a real-valued specification language with explicit error annotations. It is then the task of our verifying compiler to select a suitable floating-point or fixed-point data type which guarantees the needed accuracy. Sometimes accuracy can be gained by simply re-arranging the non-associative finite-precision computation. We present a scalable technique that searches for a more optimal evaluation order and show that the gains can be substantial. We have implemented all our techniques and evaluated them on a number of benchmarks from scientific computing and embedded systems, with promising results

    Selected topics in algorithmic geometry

    Get PDF
    Let P be a set of n points on the plane with no three points on a line. A crossing-free structure on P is a straight-edge plane graph whose vertex set is P. In this thesis we consider problems of two different topics in the area of algorithmic geometry: Geometry using Steiner points, and counting algorithms. These topics have certain crossing-free structures on P as our primary objects of study. Our results can roughly be described as follows: i) Given a k-coloring of P, with k >= 3 colors, we will show how to construct a set of Steiner points S = S(P) such that a k-colored quadrangulation can always be constructed on (P U S). The bound we show of |S| significantly improves on previously known results. ii) We also show how to construct a se S = S(P) of Steiner points such that a triangulation of (P U S) having all its vertices of even (odd) degree can always be constructed. We show that |S| <= n/3 + c, where c is a constant. We also look at other variants of this problem. iii) With respect to counting algorithms, we show new algorithms for counting triangulations, pseudo-triangulations, crossing-free matchings and crossing-free spanning cycles on P. Our algorithms are simple and allow good analysis of their running times. These algorithms significantly improve over previously known results. We also show an algorithm that counts triangulations approximately, and a hardness result of a particular instance of the problem of counting triangulations exactly. iv) We show experiments comparing our algorithms for counting triangulations with another well-known algorithm that is supposed to be very fast in practice.Sei P eine Menge von n Punkte in der Ebene, so dass keine drei Punkten auf einer Geraden liegen. Eine kreuzungsfreie Struktur von P ist ein geradliniger ebener Graph, der P als Knotenmenge hat. In dieser Dissertation behandeln wir zwei verschiedene Problemkreise auf dem Gebiet der algorithmischen Geometrie: Geometrie mit Steinerpunkten und Anzahl bestimmende Algorithmen auf P und auf gewissen kreuzungsfreien Strukturen von P. Unsere Resultate können wie folgt beschrieben werden: i) Gegeben sei eine k-Färbung von P, mit k >= 3 Farben. Es wird gezeigt, wie eine Menge S = S(P) von Steiner Punkten konstruiert werden kann, die die Konstruktion einer k-gefärbten Quadrangulierung von (P U S) ermöglicht. Die von uns gezeigte Schranke für |S| verbessert die bisher bekannte Schranke. ii) Gezeigt wird auch die Konstruktion einer Menge S = S(P) von Steiner Punkten, so dass eine Triangulierung von (P U S) konstruiert werden kann, bei der der Grad aller Knoten gerade (ungerade) ist. Wir zeigen, dass |S| <= n/3 + c möglich ist, wobei c eine Konstante ist. Wir betrachten auch andere Varianten dieses Problems. iii) Was die Anzahl bestimmenden Algorithmen betrifft, zeigen wir neue Algorithmen, um Triangulierungen, Pseudotriangulierungen, kreuzungsfreie Matchings und kreuzungsfreie aufspannende Zyklen von P zu zählen. Unsere Algorithmen sind einfach und lassen eine gute Analyse der Laufzeiten zu. Diese neuen Algorithmen verbessern wesentlich die bisherigen Ergebnisse. Weiter zeigen wir einen Algorithmus, der Triangulierungen approximativ zählt, und bestimmen die Komplexitätsklasse einer bestimmten Variante des Problems des exakten Zählens von Triangulierungen. iv) Wir zeigen Experimente, die unsere triangulierungszählenden Algorithmen mit einem anderen bekannten Algorithmus vergleichen, der in der Praxis als besonders schnell bekannt ist

    Exact computation with leda_real - Theory and geometric applications

    No full text
    corecore