522 research outputs found

    An auction for collaborative vehicle routing: Models and algorithms

    Get PDF
    Increasing competition and expectations from customers pressures carriers to further improve efficiency. Forming collaborations is essential for carriers to reach their targeted efficiency levels. In this study, we investigate an auction mechanism to facilitate collaboration amongst carriers while maintaining autonomy for the individual carriers. Multiple auction implementations are evaluated. As the underlying decision problem (which is a traditional vehicle routing problem) is known to be NP-hard, this auction mechanism has an important inherent complexity. Therefore, we use fast and efficient algorithms for the vehicle routing problem to ensure that the auction can be used in operational decision making. Numerical results are presented, indicating that the auction achieves a savings potential better than the thus far reported approaches in the literature. Managerial insights are discussed, particularly related to the properties of the auction and value of the information

    The bid construction problem for truckload transportation services procurement in combinatorial auctions : new formulations and solution methods

    Get PDF
    De nos jours, l'Ă©volution du commerce Ă©lectronique ainsi que des niveaux de la consommation requiĂšrent des acteurs de la chaine logistique et en particulier les transporteurs de gĂ©rer efficacement leurs opĂ©rations. Afin de rester concurrentiels et maximiser leurs profits, ils doivent optimiser leurs opĂ©rations de transport. Dans cette thĂšse de doctorat, nous nous focalisons sur les enchĂšres combinatoires en tant que mĂ©canisme de nĂ©gociation pour les marchĂ©s d'approvisionnement des services de transport routier par camions permettant Ă  un expĂ©diteur d'externaliser ses opĂ©rations de transport et aux transporteurs d'acquĂ©rir des contrats de transport. Les mises combinatoires permettent Ă  un transporteur participant Ă  l'enchĂšre d'exprimer ses intĂ©rĂȘts pour une combinaison de contrats mis Ă  l'enchĂšre dans une mĂȘme mise. Si la mise gagne, tous les contrats qui la forment seront allouĂ©s au transporteur au tarif exigĂ©. Les dĂ©fis majeurs pour le transporteur sont de dĂ©terminer les contrats de transport sur lesquels miser, les regrouper dans plusieurs mises combinatoires, s'il y a lieu, et dĂ©cider des prix Ă  soumettre pour chaque mise gĂ©nĂ©rĂ©e. Ces dĂ©fis dĂ©cisionnels dĂ©finissent le problĂšme de construction de mises combinatoires (BCP pour Bid Construction Problem). Chaque transporteur doit rĂ©soudre le BCP tout en respectant ses engagements prĂ©existants et ses capacitĂ©s de transport et en tenant compte des offres des compĂ©titeurs, ce qui rend le problĂšme difficile Ă  rĂ©soudre. Dans la pratique, la majoritĂ© des transporteurs se basent sur leur connaissance du marchĂ© et leur historique pour fixer leurs prix des mises. Dans la littĂ©rature, la majoritĂ© des travaux sur le BCP considĂšrent des modĂšles dĂ©terministes oĂč les paramĂštres sont connus et se limitent Ă  un contexte de flotte homogĂšne. En plus, nous notons qu'un seul travail Ă  considĂ©rer une variante stochastique du BCP. Dans cette thĂšse de doctorat, nous visons Ă  faire avancer les connaissances dans ce domaine en introduisant de nouvelles formulations et mĂ©thodes de rĂ©solution pour le BCP Le premier chapitre de cette thĂšse introduit une nouvelle variante du BCP avec une flotte hĂ©tĂ©rogĂšne. En partant d'une comparaison des similitudes et des diffĂ©rences entre le BCP et les problĂšmes classiques de de tournĂ©es de vĂ©hicules, nous proposons une nouvelle formulation basĂ©e sur les arcs avec de nouvelles contraintes de bris de symĂ©trie pour accĂ©lĂ©rer la rĂ©solution. Ensuite, nous proposons une approche heuristique et une autre exacte pour rĂ©soudre ce problĂšme. L'heuristique dĂ©veloppĂ©e est une recherche adaptative Ă  grands voisinages (ALNS pour Adaptive Large Neighborhood Search) et se base sur le principe de destruction puis rĂ©paration de la solution Ă  l'aide d'opĂ©rateurs conçus spĂ©cifiquement pour le BCP traitĂ©. La mĂ©thode exacte utilise la meilleure solution heuristique pour rĂ©soudre notre modĂšle mathĂ©matique avec le solveur CPLEX. Les rĂ©sultats obtenus montrent la pertinence de nos mĂ©thodes en termes de qualitĂ©s des solutions et des temps de calculs et ce pour des instances de grande taille. Dans le deuxiĂšme chapitre, nous nous attaquons Ă  un cas particulier du BCP oĂč le transporteur n'a pas d'engagements existants et vise Ă  dĂ©terminer un ensemble de contrats mis Ă  l'enchĂšre profitables Ă  miser dessus. Cette problĂ©matique correspond Ă  un problĂšme de tournĂ©es de vĂ©hicules avec profits (TOP pour Team Orienteering Problem). Nous proposons pour le TOP une heuristique ALNS hybride avec de nouveaux opĂ©rateurs ainsi que de nouvelles fonctionnalitĂ©s tenant compte de la nature du problĂšme. Ensuite, nous comparons les performances de notre mĂ©thode avec toutes les mĂ©thodes dĂ©jĂ  publiĂ©es dans la littĂ©rature traitant du TOP. Les rĂ©sultats montrent que notre mĂ©thode surpasse gĂ©nĂ©ralement toutes les approches existantes en termes de qualitĂ© des solutions et/ou temps de calculs quand elle est testĂ©e sur toutes les instances de la littĂ©rature. Notre mĂ©thode amĂ©liore la solution d'une instance de grande taille, ce qui surligne sa performance. Dans le troisiĂšme chapitre, nous nous focalisons sur l'incertitude associĂ©e aux prix de cessions des contrats mis Ă  l'enchĂšre et sur les offres des transporteurs concurrents. Il n'existe qu'un seul article qui traite de l'incertitude dans le BCP cependant il ne permet pas de gĂ©nĂ©rer des mises multiples. Ainsi, nous proposons une nouvelle formulation pour le BCP avec des prix stochastiques permettant de gĂ©nĂ©rer des mises combinatoires et disjointes. Nous prĂ©sentons deux mĂ©thodes pour rĂ©soudre ce problĂšme. La premiĂšre mĂ©thode est hybride et Ă  deux Ă©tapes. Dans un premier temps, elle rĂ©sout un problĂšme de sĂ©lection pour dĂ©terminer un ensemble de contrats profitables. Dans un second temps, elle rĂ©sout simultanĂ©ment un problĂšme de sĂ©lection de contrats et de dĂ©termination de prix des mises (CSPP pour Contracts Selection and Pricing Problem) en ne considĂ©rant que les contrats sĂ©lectionnĂ©s dans la premiĂšre Ă©tape. Notre mĂ©thode exacte rĂ©sout, avec l'algorithme de branch-and-cut, le CSPP sans prĂ©sĂ©lectionner des contrats. Les rĂ©sultats expĂ©rimentaux et de simulations que nous rapportons soulignent la performance de nos deux mĂ©thodes et Ă©valuent l'impact de certains paramĂštres sur le profit rĂ©el du transporteur. Dans le quatriĂšme chapitre, nous nous focalisons sur l'incertitude liĂ©e au succĂšs des mises et Ă  la non-matĂ©rialisation des contrats. GĂ©nĂ©ralement, le transporteur souhaite avoir la garantie que si certaines des mises ne sont pas gagnĂ©es ou un contrat ne se matĂ©rialise pas, il n'encourra pas de perte en servant le sous-ensemble de contrats gagnĂ©s. Dans cette recherche, nous adressons le BCP avec prix stochastiques et dĂ©veloppons une mĂ©thode exacte qui garantit un profit non nĂ©gatif pour le transporteur peu importe le rĂ©sultat des enchĂšres. Nos simulations des solutions optimales dĂ©montrent, qu'en moyenne, notre approche permet au transporteur d'augmenter son profit en plus de garantir qu'il reste non-nĂ©gatif peu importe les mises gagnĂ©es ou la matĂ©rialisation des contrats suivant l'enchĂšre.Nowadays, the evolution of e-commerce and consumption levels require supply chain actors, in particular carriers, to efficiently manage their operations. In order to remain competitive and to maximize their profits, they must optimize their transport operations. In this doctoral thesis, we focus on Combinatorial Auctions (CA) as a negotiation mechanism for truckload (TL) transportation services procurement allowing a shipper to outsource its transportation operations and for a carrier to serve new transportation contracts. Combinatorial bids offer a carrier the possibility to express his valuation for a combination of contracts simultaneously. If the bid is successful, all the contracts forming it will be allocated to the carrier at the submitted price. The major challenges for a carrier are to select the transportation contracts to bid on, formulate combinatorial bids and associated prices. These decision-making challenges define the Bid Construction Problem (BCP). Each carrier must solve a BCP while respecting its pre-existing commitments and transportation capacity and considering unknown competitors' offers, which makes the problem difficult to solve. In practice, the majority of carriers rely on their historical data and market knowledge to set their prices. In the literature, the majority of works on the BCP propose deterministic models with known parameters and are limited to the problem with a homogeneous fleet. In addition, we found a single work addressing a stochastic BCP. In this thesis, we aim to advance knowledge in this field by introducing new formulations and solution methods for the BCP. The first chapter of this thesis introduces the BCP with a heterogeneous fleet. Starting from a comparison between the BCP and classical Vehicle Routing Problems (VRPs), we propose a new arc-based formulation with new symmetry-breaking constraints for the BCP. Next, we propose exact and heuristic approaches to solve this problem. Our Adaptive Large Neighborhood Search (ALNS) heuristic is based on a destroy-repair principle using operators designed for this problem. Our exact method starts from the heuristic solution and solves our mathematical model with CPLEX. The results we obtained revealed the relevance of our methods in terms of solutions quality and computational times for large instances with up to 500 contracts and 50 vehicles. In the second chapter, we tackle a particular case of the BCP where the carrier has no pre-existing commitments and aims to select a set of profitable auctioned contracts to bid on. This problem corresponds to a Team Orienteering Problem (TOP). We propose a hybrid ALNS heuristic for the TOP with new operators as well as new features taking into account the nature of the problem. Then, we compare the performance of our algorithm against the best solutions from the literature. The results show that our method generally outperforms all the existing ones in terms of solutions quality and/or computational times on benchmark instances. Our method improves one large instance solution, which highlights its performance. In the third chapter, we focus on the uncertainty associated with the auctioned contracts clearing prices and competing carriers offers. Only one article dealing with uncertainty in the BCP existed but it does not allow to generate multiple bids. Thus, we propose a new formulation for the BCP with stochastic prices allowing to generate non-overlapping combinatorial bids. We present two methods to solve this problem. The first one is a two-step hybrid heuristic. First, it solves a Contracts Selection Problem to determine a set of profitable contracts to bid on. Secondly, it simultaneously solves a Contracts Selection and Pricing Problem (CSPP) by considering only the set of auctioned contracts selected in the first stage. Our exact method solves a CSPP by branch-and-cut without pre-selecting contracts. The experimental and simulation results underline the performance of our two methods and evaluate the impact of certain parameters on the carrier's real profit. In the fourth chapter, we focus on the uncertainty associated with bids success and contracts non-materialization. Generally, the carrier seeks to be assured that if some of the submitted bids are not won or a contract does not materialize, it will not incur a loss by serving the remaining contracts. In this research, we address the BCP with stochastic prices and develop an exact method that ensures a non-negative profit for the carrier regardless of the auction outcomes and contracts materialization. Our simulations of the optimal solutions show that, on average, our approach increases the carrier's profit in addition to guaranteeing its non-negativity regardless of the bids won or the contracts materialization

    Heuristic methods for the periodic Shipper Lane Selection Problem in transportation auctions

    Get PDF
    none3siopenTriki, Chefi; Mirmohammadsadeghi, Seyedmehdi; Piya, SujanTriki, Chefi; Mirmohammadsadeghi, Seyedmehdi; Piya, Suja

    Truckload Shipment Planning and Procurement

    Get PDF
    This dissertation presents three issues encountered by a shipper in the context of truckload transportation. In all of the studies, we utilize optimization techniques to model and solve the problems. Each study is inspired from the real world and much of the data used in the experiments is real data or representative of real data. The first topic is about the freight consolidation in truckload transportation. We integrate it with a purchase incentive program to increase truckload utilization and maximize profit. The second topic is about supporting decision making collaboration among departments of a manufacturer. It is a bi-objective optimization model. The third topic is about procurement in an adverse market. We study a modification of the existing procurement process to consider the market stochastic into marking decisions. In all three studies, our target is to develop effectively methodologies to seek optimal answers within a reasonable amount of time

    Revisiting the Evolution and Application of Assignment Problem: A Brief Overview

    Get PDF
    The assignment problem (AP) is incredibly challenging that can model many real-life problems. This paper provides a limited review of the recent developments that have appeared in the literature, meaning of assignment problem as well as solving techniques and will provide a review on   a lot of research studies on different types of assignment problem taking place in present day real life situation in order to capture the variations in different types of assignment techniques. Keywords: Assignment problem, Quadratic Assignment, Vehicle Routing, Exact Algorithm, Bound, Heuristic etc

    Opportunity costs calculation in agent-based vehicle routing and scheduling

    Get PDF
    In this paper we consider a real-time, dynamic pickup and delivery problem with timewindows where orders should be assigned to one of a set of competing transportation companies. Our approach decomposes the problem into a multi-agent structure where vehicle agents are responsible for the routing and scheduling decisions and the assignment of orders to vehicles is done by using a second-price auction. Therefore the system performance will be heavily dependent on the pricing strategy of the vehicle agents. We propose a pricing strategy for vehicle agents based on dynamic programming where not only the direct cost of a job insertion is taken into account, but also its impact on future opportunities. We also propose a waiting strategy based on the same opportunity valuation. Simulation is used to evaluate the benefit of pricing opportunities compared to simple pricing strategies in different market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization and delivery reliability

    Integrating production scheduling and transportation procurement through combinatorial auctions

    Get PDF
    This study uses the winner determination problem (WDP) to integrate auction transportation procurement with decisions related to production scheduling. The basic problem arises when a manufacturer has to clear a combinatorial auction to decide whether to cover transportation needs by using the in-house fleet or to procure transportation through auction. Thus, the manufacturer should include an additional decision level by integrating the WDP with production scheduling to gain efficiency and achieve savings in the logistics system. To the best of our knowledge, this is the first time production and transportation procurement problems are being solved simultaneously in an integrated manner. The study proposes a mathematical formulation and develops two heuristic approaches for solving the integrated problem. Extensive computational experiments and sensitivity analyses are reported to validate the model, assess the performance of the heuristics, and show the effect of integration on total cost. © 2020 The Authors. Networks published by Wiley Periodicals LLC
    • 

    corecore