19,602 research outputs found

    Relativistic Quantum Information in Detectors-Field Interactions

    Full text link
    We review Unruh-DeWitt detectors and other models of detector-field interaction in a relativistic quantum field theory setting as a tool for extracting detector-detector, field-field and detector-field correlation functions of interest in quantum information science, from entanglement dynamics to quantum teleportation. We in particular highlight the contrast between the results obtained from linear perturbation theory which can be justified provided switching effects are properly accounted for, and the nonperturbative effects from available analytic expressions which incorporate the backreaction effects of the quantum field on the detector behaviour.Comment: 21 pages, 3 figures. Prepared for the special focus issue on RQ

    Entanglement creation between two causally-disconnected objects

    Full text link
    We study the full entanglement dynamics of two uniformly accelerated Unruh-DeWitt detectors with no direct interaction in between but each coupled to a common quantum field and moving back-to-back in the field vacuum. For two detectors initially prepared in a separable state our exact results show that quantum entanglement between the detectors can be created by the quantum field under some specific circumstances, though each detector never enters the other's light cone in this setup. In the weak coupling limit, this entanglement creation can occur only if the initial moment is placed early enough and the proper acceleration of the detectors is not too large or too small compared to the natural frequency of the detectors. Once entanglement is created it lasts only a finite duration, and always disappears at late times. Prior result by Reznik derived using the time-dependent perturbation theory with extended integration domain is shown to be a limiting case of our exact solutions at some specific moment. In the strong coupling and high acceleration regime, vacuum fluctuations experienced by each detector locally always dominate over the cross correlations between the detectors, so entanglement between the detectors will never be generated.Comment: 16 pages, 8 figures; added Ref.[7] and related discussion

    No observational constraints from hypothetical collisions of hypothetical dark halo primordial black holes with galactic objects

    Full text link
    It was suggested by several authors that hypothetical primordial black holes (PBHs) may contribute to the dark matter in our Galaxy. There are strong constraints based on the Hawking evaporation that practically exclude PBHs with masses m~1e15-1e16g and smaller as significant contributors to the Galactic dark matter. Similarly, PBHs with masses greater than about 1e26g are practically excluded by the gravitational lensing observation. The mass range between 10e16g<m<10e26g is unconstrained. In this paper, we examine possible observational signatures in the unexplored mass range, investigating hypothetical collisions of PBHs with main sequence stars, red giants, white dwarfs, and neutron stars in our Galaxy. This has previously been discussed as possibly leading to an observable photon eruption due to shock production during the encounter. We find that such collisions are either too rare to be observed (if the PBH masses are typically larger than about 1e20g), or produce too little power to be detected (if the masses are smaller than about 1e20g).Comment: Accepted for publication in The Astrophysical Journa

    An example of a uniformly accelerated particle detector with non-Unruh response

    Get PDF
    We propose a scalar background in Minkowski spacetime imparting constant proper acceleration to a classical particle. In contrast to the case of a constant electric field the proposed scalar potential does not create particle-antiparticle pairs. Therefore an elementary particle accelerated by such field is a more appropriate candidate for an "Unruh-detector" than a particle moving in a constant electric field. We show that the proposed detector does not reveal the universal thermal response of the Unruh type.Comment: 12 pages, 1 figur

    Comparing Image Quality in Phase Contrast subÎĽ\mu X-Ray Tomography -- A Round-Robin Study

    Full text link
    How to evaluate and compare image quality from different sub-micrometer (subÎĽ\mu) CT scans? A simple test phantom made of polymer microbeads is used for recording projection images as well as 13 CT scans in a number of commercial and non-commercial scanners. From the resulting CT images, signal and noise power spectra are modeled for estimating volume signal-to-noise ratios (3D SNR spectra). Using the same CT images, a time- and shape-independent transfer function (MTF) is computed for each scan, including phase contrast effects and image blur (MTFblur\mathrm{MTF_{blur}}). The SNR spectra and MTF of the CT scans are compared to 2D SNR spectra of the projection images. In contrary to 2D SNR, volume SNR can be normalized with respect to the object's power spectrum, yielding detection effectiveness (DE) a new measure which reveals how technical differences as well as operator-choices strongly influence scan quality for a given measurement time. Using DE, both source-based and detector-based subÎĽ\mu CT scanners can be studied and their scan quality can be compared. Future application of this work requires a particular scan acquisition scheme which will allow for measuring 3D signal-to-noise ratios, making the model fit for 3D noise power spectra obsolete
    • …
    corecore