3 research outputs found

    Deriving Mean Field Equations from Large Process Algebra Models

    Get PDF
    In many domain areas the behaviour of a system can be described at two levels: the behaviour of individual components, and the behaviour of the system as a whole. Often deriving one from the other is impossible, or at least intractable, especially when realistically large systems are considered. Here we present a rigorous algorithm which, given an individual based model in the process algebra WSCCS describing the components of a system and the way they interact, can produce a system of mean field equations which describe the mean behaviour of the system as a whole. This transformation circumvents the state explosion problem, allowing us to handle systems of any size by providing an approximation of the system behaviour. From the mean field equations we can investigate the transient dynamics of the system. This approach was motivated by problems in biological systems, but is applicable to distributed systems in general

    From Individuals to Populations: a mean field semantics for process algebra

    Get PDF
    A new semantics in terms of Mean Field Equations is presented for WSCCS (Weighted Synchronous Calculus of Communicating Systems). The semantics captures the average behaviour of the system over time, but without computing the entire state space, therefore avoiding the state space explosion problem. This allows easy investigation of models with large numbers of components. The new semantics is shown to be equivalent to the standard Discrete Time Markov Chain semantics of WSCCS as the number of processes tends to infinity. The method of deriving the semantics is illustrated with examples drawn from biology and from computing

    From individuals to populations: changing scale in process algebra models of biological systems

    Get PDF
    The problem of changing scale in models of a system is relevant in many different fields. In this thesis we investigate the problem in models of biological systems, particularly infectious disease spread and population dynamics. We investigate this problem using the process algebra \emph{Weighted Synchronous Calculus of Communicating Systems} (WSCCS). In WSCCS we can describe the different types of individual in a population and study the population by placing many of these individuals in parallel. We present an algorithm that allows us to rigorously derive mean field equations (MFE) describing the average change in the population. The algorithm takes into account the Markov chain semantics of WSCCS such that as the system being considered becomes larger, the approximation offered by the MFE tends towards the mean of the Markov chain. The traditional approach to developing population level equations of a system involves making assumptions about the behaviour of the entire population. Our approach means that the population level dynamics explained by the MFE are a direct consequence of the behaviour of individuals, which is more readily observed and measured than the behaviour of the population. In this way we develop MFE models of several different systems and compare the equations obtained to the traditional mathematical models of the system
    corecore