
From Individuals to Populations: a mean field
semantics for process algebra

Chris McCaig, Rachel Norman, Carron Shankland

Department of Computing Science and Mathematics,
University of Stirling, Stirling, FK9 4LA

Abstract

A new semantics in terms of Mean Field Equations is presented for WSCCS
(Weighted Synchronous Calculus of Communicating Systems). The semantics
captures the average behaviour of the system over time, but without computing
the entire state space, therefore avoiding the state space explosion problem. This
allows easy investigation of models with large numbers of components. The new
semantics is shown to be equivalent to the standard Discrete Time Markov Chain
semantics of WSCCS as the number of processes tends to infinity. The method
of deriving the semantics is illustrated with examples drawn from biology and
from computing.

Keywords: Process Algebra, Mean Field Equations, Semantics

1. Introduction

The collected evolution of a group of individuals through time is of signifi-
cance in many fields. Of particular interest is the emergent behaviour of a whole
population given a description of the low level interactions of individuals. For
example, in epidemiology, the focus is on the number of infected individuals in
the population and how a small number of initial infections can lead to a large
epidemic. In biochemistry, fluctuating concentrations of molecules form intra-
and inter-cellular signals. In computing science, networks are formed by clients
and servers, and how information flows through that network is of importance.
Process algebra [2] provides a convenient way to describe such individual-based
models, and to obtain the overall population behaviour.

While simply modelling a system can lead to deeper understanding of it,
usually some additional forms of analyses are desirable to capitalise on the
description. Simulation of the model, for example, provides one view of overall
system behaviour but a single simulation gives only one route through the state
space. Given a large population, many different behaviours are possible, with

Email addresses: cmc@maths.stir.ac.uk (Chris McCaig), ran@maths.stir.ac.uk
(Rachel Norman), ces@cs.stir.ac.uk (Carron Shankland)

Preprint submitted to Theoretical Computer Science (C) August 25, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9048281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

significantly different outcomes. To capture the overall system behaviour we
may consider the average behaviour of the system. Calculating this as the
average of all simulations is clearly computationally expensive. An alternative
is to calculate the steady state of a system. This ignores potentially interesting
transient dynamics, and is again computationally expensive. To avoid state
space computation, we may turn to Ordinary Differential Equations (ODEs).
Mathematical biologists have for many years used ODEs to capture important
transient dynamics of systems, e.g. [1, 15]. Historically, this approach also has
drawbacks: assumptions must be made about how the continuous population-
based dynamics of the system emerge from discrete individual interactions.

This paper presents a novel method of combining the benefits of an individual-
based modelling approach with those of a population-based modelling approach.
We give an alternative, but equivalent, semantics for the process algebra WSCCS [30]
in terms of Mean Field Equations (MFEs). This approach gives a determinis-
tic approximation of the discrete time, discrete space emergent behaviour of
WSCCS models in terms of discrete time, continuous space MFEs. In addition
to providing an alternative view of the system, a further benefit is the wide
range of algebraic and numerical analyses available for MFEs.

Although originally inspired by epidemiological modelling, this work has
wider applicability. Any system built in a bottom-up way from replicated indi-
vidual components is amenable to the technique. In computing science terms,
a new semantics has been developed for an existing language which facilitates
exploration of systems with large numbers of components.

Related Work
Our initial studies [25] were inspired by Sumpter’s derivation of mean field

equations from WSCCS descriptions [27, 28] (using an informal heuristic). His
main application area is social insect behaviour, but his thesis [27] includes
a simple epidemic model and a simple population growth model. The current
paper is based on the thesis of McCaig [19] and the related technical report [22].

Independently, other authors have developed ODE semantics for other pro-
cess algebras: Calder et al. [8], Hillston [13] and Cardelli [9]. Our work tackles a
different technical problem from those in two ways. Firstly, the process algebras
used by Calder et al. [8], Hillston [13] and Cardelli [9] are continuous time. This
means the rate of moving from one state to another is already available in the
transition system, whereas here the transition rate must be derived from proba-
bilistic transitions. In terms of expressiveness of modelling we find probabilistic
choice (as in WSCCS) a more natural way to express individual behaviour than
rates of activity (as in, e.g. PEPA [13]). Secondly, our focus has been on extract-
ing the average behaviour of the existing Markov chain semantics of WSCCS.
Hillston [13] also takes this approach, although some strong restrictions on the
form of the model are imposed, making the method unsuitable for epidemiolog-
ical models. Our recent joint work [5] removes those restrictions. Cardelli [9]
and Calder et al. [8] make a mass action assumption about interaction. This
yields a different semantics to the standard process algebra semantics, which
is based largely on one to one communication. This difference seems to have

2

arisen from the application area: while we wish to mechanistically translate the
behaviour of individuals in epidemics to system dynamics, they are concerned
with biochemical applications in which the mass action assumption of interac-
tion is appropriate. In Cardelli’s work in particular, moving between discrete
and continuous state requires translation via a volumetric factor γ. In our set-
ting, this would be similar to dividing all rates by the total population size.
While this is sometimes appropriate for describing interaction rates in epidemi-
ology, there are some cases where it is incorrect (see Section 3.5 and our paper
on transmission rates [20]).

Tangentially related is the work of Brodo et al. [7] who derive numeric rate
information for π-calculus models. Their work is concerned with performance
analysis, and allowing loose initial specification of a system, with greater re-
finement as more information becomes available. Relevant information includes
network topology, throughput, latency, and protocol complexity. While it would
be interesting to use their system to look at epidemiological models and to derive
transition rates of components top-down from observation of the system as a
whole, our goal is to work bottom-up: to use the observed individual behaviour
to derive the behaviour of the system as a whole.

Outline of the Paper
The paper is structured as follows. Section 2 presents an overview of WSCCS

and gives additional motivation for calculating an approximation of the average
system dynamics. The formal definition of the algorithm to translate WSCCS
models into MFEs is given in Section 3. The method is not suitable for all
WSCCS models: restrictions to the applicability of the algorithm are presented
in Section 3.1. It is not our aim to simply present an alternative semantics for
WSCCS; the equivalence between the standard WSCCS semantics and the new
MFE semantics is given in Section 3.6. Section 4 presents two worked examples
of the approach, one drawn from biology and the other from computing. We
conclude with some comments about useful applications of the approach.

2. Process Algebra

The particular process algebra used here is WSCCS Weighted Synchronous
Calculus of Communicating Systems [30]. WSCCS is a discrete time process
algebra, with synchronous activity. WSCCS has a distinguished record in use
for biological applications (insect behaviour [27, 29], genetic evolution [10, 12],
epidemiology [25, 27], immunology [24]). Its semantics are well suited to epi-
demiology, in which observations of individuals in the population are taken at
discrete time points and probabilistic choice is a natural way to express alter-
native courses of action. The results presented here could be translated to any
similar process algebra [2].

3

2.1. WSCCS Syntax and Semantics
WSCCS was developed by Tofts [30]. In WSCCS the basic components are

actions (a ∈ Act) and the processes (or agents, A ∈ A) that carry out those
actions. The actions are chosen by the modeller to represent activities in the
system. For example, infect , send , receive, throw dice, and so on. The formal
syntax and semantics of WSCCS is presented in Tofts [30]. The main details are
repeated here in Appendix A for the convenience of the reader. To illustrate
the language, a simple epidemiological example is given in Fig. 1. The example
comes from McCaig’s thesis [19] and is based on the same assumptions as the
classical ODE model of an epidemic by Kermack and McKendrick [15].

The population is divided into three groups: susceptibles (agents S1, S2 and
SI2) have never had the disease, infecteds (agents I1, I2 and Trans1) currently
have the disease and can pass it on to others, and recovereds (agents R1 and R2)
have previously had the disease and are immune to future infection. WSCCS is
a synchronous calculus, therefore all agents change state together. A convenient
modelling discipline is to conceive the model in a number of stages and to give
appropriate agent names indicating stage. For example, the model of Fig. 1
has two stages, and agent names include the label 1 and 2. Adherence to this
convention improves readability, but failure to do so does not affect the ability
to derive mean field equations.

S1 def= ω.infect : SI2 + 1.
√

: S2

I1 def= ω.infect : I2 + 1.
√

: I2

Trans1 def= ω.infect : 0 + 1.
√

: 0

R1 def= ω.infect : R2 + 1.
√

: R2

S2 def= 1.
√

: S1

SI2 def= pi.
√

: (I1× Trans1) + (1− pi).
√

: S1

I2 def= pr.
√

: R1 + (1− pr).
√

: (I1× Trans1)

R2 def= 1.
√

: R1

Population
def= Θ((S1{s} × I1{i} × Trans1{i} ×R1{r})d{

√
})

Figure 1: Epidemiology model with contact followed by probabilistic choice

The initial state of the model of Fig. 1 comprises s S1, i I1, i Trans1 and r R1
individuals in parallel (where × indicates parallelism and {n} indicates n copies
of an agent). The first stage of the model (with agents labelled 1) is the contact
stage. Trans1 agents represent an aspect of behaviour of infected agents. They
may communicate with other agents (through the action infect) to try to pass on
the disease. All other agents, including infected agents and recovered agents may

4

be communicated with in this way. This does mean that an individual I1 agent
may interact with the Trans1 agent that represents the input behaviour of the
same individual (i.e. individuals can attempt to infect themselves). Traditional
ODE models (e.g. [3, 15], which this model seeks to emulate) feature terms
to capture transmission based on the reasonable simplification that infected
individuals can contact any member of the population (including themselves).
The rationale behind this modelling choice is that for large populations (the
only situation in which the mean field approximation offered by ODEs is useful)
the difference between I/(S + I + R) and I/(S + I − 1 + R) is very small.

Processes synchronise pairwise on the action infect and its complement infect.
The infect action cannot happen without synchronising with infect: this is en-
forced by the use of the restriction operator d{

√
}. Similarly, infect cannot

happen without synchronising with infect. We refer to actions such as infect
and infect as communicating actions since they cannot proceed without syn-
chronising with a complementary action (representing communication between
agents).

The + operator indicates a weighted choice: transitions are selected with a
probability corresponding to their weight divided by the weight of all possible
transitions from that agent. In S1 the left hand option is weighted ω which
is a special weight. In conjunction with the priority operator, Θ, ω weights
become prioritised, meaning that if the infect action can happen, it must happen.
Semantically, use of the Θ operator removes all non-priority choices. The :
operator sequences an action and a process. For example, following an infect
action, S1 becomes SI2. In stage two, a probabilistic decision is made in agents
SI2 as to whether the infectious contact has resulted in infection or not. Agent
I2 also makes a probabilistic decision to recover or not. Other agents simply
mark time with the special action

√
. The agent 0 is the null agent, the process

doing nothing.
The semantics of WSCCS is transition based, defining the actions that a

process can perform and the weight with which a state can be reached. The
operational rules of WSCCS are presented in Table A.7 of Appendix A. Impor-
tantly for this present work, the transition system can be interpreted as a Dis-
crete Time Markov Chain (DTMC) under abstract bisimulation [30]. Abstract
bisimulation essentially accumulates and normalises the weights associated with
a choice, so that transitions are labelled by their action and probability of oc-
curring.

2.2. Average Behaviour of WSCCS models
As mentioned in the Introduction, the transient dynamics of a system is of

interest, i.e. the time series evolution of the model. While a single time series
evolution of the model is revealing, the average behaviour may be more useful
for further analysis.

To illustrate the idea, consider the transition diagram presented in Fig. 2.
Here, the first two steps of evolution of the model is shown, with weights and
actions combined under abstract bisimulation. Monte Carlo simulation can be

5

Θ((S2×SI2×I2×R2){√})

Θ((S1[2]×I1×Trans1×R1){√})
Θ((S1[2]×R1[2]){√})

Θ((S1×I1[2]×Trans1[2]×R1){√})
Θ((S1×I1×Trans1×R1[2]){√})

√[(1-pi)pr]
√[(1-pi)(1-pr)]

Θ((S1[2]×I1×Trans1×R1){√})

√[pi(1-pr)]

√[pipr]

infect#infect[0.5] infect#infect[0.5]

Θ((S2[2]×I2×R2){√})

Θ((S1[2]×I1×Trans1×R1){√})
Θ((S1[2]×R1[2]){√})

√[pr]
√[(1-pr)]

Figure 2: Evolution of the Simple SIR model. Deadlocked states are underlined.

used to generate a single path through the state space; however, more simula-
tions are required to explore the whole state space and to calculate the average
behaviour. For example, given values pr = 0.1 and pi = 0.5, multiple simula-
tions would give the average state after two steps of Θ((S1{1.75} × I1{1.15} ×
Trans1{1.15} × R1{1.1})d{

√
}) . Note that since this is a mean value, we have

moved from the discrete state space of the WSCCS model into continuous state
space.

While advances in dealing with the state space of larger processes have been
made, we are still limited by the constraints of computer memory and time.
Probabilistic workbench [31], the tool for WSCCS, can handle systems up to
500 components [32] but imposes restrictions on how these models can be in-
terpreted. More generally, systems with state spaces of around 1012 is the cur-
rent limitation (see [26] for a recent review of state space techniques for model
checking). While this seems large, state space is exponential in the number of
components, and in biological systems components can number in the millions.

Again considering the diagram of Fig. 2, another way to calculate the av-
erage state after two steps would be to multiply the probability of getting to
each state by the component numbers in that state. For example, given the
values pr = 0.1 and pi = 0.5, the probability of getting to Θ((S1 × I1{2} ×
Trans1{2} × R1)d{

√
}) is 0.225. The contribution of this state to the average

number of I1 agents is therefore 2*0.225. Calculating the state space piecewise
in order to work out the average state is also expensive, but a similar result
can be achieved by examining the syntax of the model. Fig. 1 holds all the
information required about state evolution, given the semantics of WSCCS. We
propose algebraic calculation of the average time series behaviour via Mean
Field Equations (MFEs). The terms of the MFE capture the calculation above:
the probability of getting to each state multiplied by the number of components
in that state.

2.3. State Evolution and State Vector
For any model, the transition system may be viewed as the evolution of the

initial state (A1{n1}, . . . , Am{nm}) through time, where Ai are WSCCS agents.
We denote the number of agents Ai at time t by Ait. For example, consider the
state space shown in Fig. 2. The initial state is

(S1{2}, I1{1},Trans1{1}, R1{1}, S2{0}, SI2{0}, I2{0}, R2{0}) .

6

(0,0,0,0,1,1,1,1)

(2,1,1,1,0,0,0,0) (2,0,0,2,0,0,0,0) (1,2,2,1,0,0,0,0) (1,1,1,2,0,0,0,0)

√[(1-pi)pr]

√[(1-pi)(1-pr)]

(2,1,1,1,0,0,0,0)

√[pi(1-pr)]
√[pipr]

(0,0,0,0,2,0,1,1)

(2,1,1,1,0,0,0,0) (2,0,0,2,0,0,0,0)

√[pr]√[(1-pr)]

infect#infect[0.5]infect#infect[0.5]

Figure 3: Evolution of the Simple SIR model: state vector

It is convenient, and more compact, to represent this as a numerical vector
rather than as process algebra syntax

(2, 1, 1, 1, 0, 0, 0, 0) .

The state vector includes values for all possible agents. This representation
identifies members of the same equivalence class under direct bisimulation [30].
(Direct bisimulation is a more discriminating relation than abstract bisimula-
tion, mentioned earlier, because the numeric weights given to transitions are
preserved and significant: a process A = 1.a : A1 + 1.a : A2 is not equivalent to
B = 2.a : B1 + 2.a : B2 under direct bisimulation but A and B are equivalent
under abstract bisimulation.) Fig. 3 shows the transition system of Fig. 2 in
terms of state vectors.

Definition 1 (State Vector). For an arbitrary WSCCS model M with m
agent types Ai, i = 1, . . . ,m, the numerical vector form of M, V(M, t), is a
vector with m entries. The entry vi(t) records how many instances of agent type
Ai are exhibited at time t.

Evolution of the system through time simply means changing the values
in the state vector. Formally, for a source state (A1t, . . . , Amt) any one of a

number of transitions (A1t, . . . , Amt)
a[p]−→ (A1t+1, . . . , Amt+1) may be taken,

with a range of values for a and p.
A transition has three possible effects on any particular Ait in the source

state:

exit activity Following the transition, the process evolves to some other agent
Aj therefore the number of Ai agents is decreased over time (Ait+1 < Ait).

entry activity In symmetry with an exit activity for Ai above must be an
entry activity for Aj. The number of Aj agents increases over time
(Ajt+1 > Ajt).

none The process becomes Ai and there is no change in number of Ai agents
(Ait+1 = Ait).

7

Since WSCCS is a synchronous calculus, in each time step, for every agent in
the system, one of the above activities will occur. Note that sometimes there is
a one to one relationship between Ait and Ajt+1 while in other cases a single
exit activity for Ait results in entry activities for a set {Ajt+1}, j ∈ 1 . . .m.
For example, in Fig. 1 when agent S2 evolves to agent S1 this is a one to one
relationship, but when SI2 evolves (left hand choice), the number of Trans1
and I1 both increase.

Our goal is not directly to calculate state spaces in terms of the numerical
state vector as in Fig. 3. Instead, we give the mean change from one state
to another in terms of Mean Field Equations, i.e. the value of vi(t) is given
as an expression in A1(t), . . . , Am(t). Effectively, this is done by constructing
a symbolic expression capturing the product of the change of state and the
probability of making that change, from any given state. The syntax of the
model indicates the choices available at each point, but does not directly give
the value of p, the probability of change, in the DTMC. To calculate the average
state change in each step, we construct a transition table noting these exit and
entry activities for all combinations of agents and actions.

3. Deriving Mean Field Equations

This section presents the method to translate WSCCS models of the form

Population
def= (A1{n1} ×A2{n2} × . . .×Am{nm})d{L}

(possibly with the priority operator Θ) into Mean Field Equations. As before,
the Ai are all WSCCS agents and may include further parallelism. There are
some restrictions on the form of the model; not all WSCCS models are suitable
to be translated into MFEs. Restrictions are presented in Section 3.1.

The computational expense of generating the state space and/or simulation
is avoided because the method is based entirely on manipulation of the syntax of
a WSCCS model. The method described in this Section is O(g2c) where g is the
total number of types of agents and c is the total number of distinct actions in
the WSCCS description. There are a number of additional auxiliary functions
involved in the computation, but these can all be calculated in a single pass of
the WSCCS description.

3.1. Restrictions
The method presented here cannot be used to obtain accurate mean field

equations for every possible well-formed WSCCS model. Firstly, the focus of the
model should be to investigate the numbers of agents of each type present after
some fixed period. Secondly, the system considered must have sufficiently large
numbers of each agent. It is a well known result that deterministic models do
not accurately capture the behaviour of small systems where stochastic effects
can have a great influence. Most importantly, in disease systems it is known
that the initial proportion of infected individuals greatly affects the convergence
of deterministic equations to a discrete stochastic system [34].

8

In addition to these more obvious restrictions we also place some restrictions
on the way that models must be written to be amenable to the method. In all
of the examples given in this section the action a, and its complement a, are
communicating actions and all others are not communicating actions.

1. All weights associated with communication must be 1 or ω. For single
actions, there should be only one alternative (non-communicating) action
to the communication action, which is weighted 1.

2. Probabilistic choice steps must be separate from communication steps.
These first two restrictions are mainly about convenience; the terms of
Section 3.5 are more easily calculated. It might also be argued that using
weights other than 1 or ω makes communication more difficult to under-
stand: users are best to avoid it. An example of an agent that would not
be allowed under these first two restrictions is

A = 1.a : A1 + 0.5.b : A2 + 0.5.c : A3 .

3. There should be no combination of distinct communicating actions a#b.
(Multiple distinct actions are allowed as choices, as are multiple commu-
nicating actions an.) It is possible to reformulate any such system so that
the two different communicating actions take place in successive stages.
Given that concurrency in WSCCS is interleaving in any case this is not
a bar to expressivity.

4. Collaborating agents performing a single instance of the output action
may evolve to different states, depending on whether they communicate
or not; collaborating agents that perform multiple instances of the action
must evolve to the same state, regardless of whether they communicate or
not (and irrespective of how many instances of the action they perform).
For instance the agent

C = ω.a : C1 + 1.b : C2

is allowed, as is

C = ω2.a2 : C1 + ω.a : C1 + 1.b : C1 ,

but the agent
C = ω2.a2 : C1 + ω.a : C2 + 1.b : C3

is not (assuming C1, C2 and C3 are distinct agents). Biologically there
seems to be little need to allow evolution to different states depending on
the number of instances of an action performed.

5. Processes should not include nested permission sets, i.e. all communication
takes place between all processes (potentially), and not between subgroups
defined by restriction. The reason for this is that the restriction operator
cannot be distributed over parallelism [30]. From a modelling perspective,
this appears to be a reasonable restriction, being equivalent to assuming
random mixing since all agents can (potentially) communicate with all

9

others. If communication between subgroups is required, it can be accom-
modated by renaming. For instance, agents A1 and C1 communicate on
actionA while agents A2 and C2 communicate on actionB.

6. Processes must always be guarded, e.g. I
def= T × Trans is not allowed.

This simplifies construction of the transition table.

These restrictions make the definition of the general terms in Section 3.5 simpler
and impose modelling disciplines to aid clarity. Removing the restrictions, while
possible, would therefore make derivation of MFEs more complex, and make
models more difficult to understand. Having constructed a range of models [19,
20, 21, 23], we can say that the restrictions have not proved limiting in terms
of the systems that we have been able to model, and that there is therefore no
advantage in removing these restrictions.

3.2. Preliminary Definitions
Some auxiliary definitions are required. Formal definitions are given in Ap-

pendix B; here we give informal motivation. Processes can be classified by
syntactic features as: communicating (having an action enabled that is involved
in a communication), probabilistic (having only actions enabled that are not in-
volved in communication), and priority (communicating and using ω weights).
Given any process A, the function transitions(A) returns all outgoing transi-
tions from the source state A. The function get comm trans(A) returns the
transitions involving communicating actions from A. Conversely, the function
get non comm trans(A) returns the (single) transition not involving a commu-
nicating action from A. Given a process A comprising agents A1, . . . , An in par-
allel (with no guards), the function components(A) returns agents A1, . . . , An.
For a process communicating on action a, two groups of processes involved in the
synchronisation are defined: collaborators are those processes with the matching
action a, and competitiors are those processes with the same action a.

3.3. The Transition Table and Mean Field Equations
In Section 2.2 the notion of exit and entry activities was described. The

transition table TT notes these exit and entry activities and forms the core of
the translation from WSCCS to MFEs. Pseudocode to construct the table is
given in Fig. 4, Section 3.4.

TT is a (A×Act)×A matrix, with symbolic expressions over A as entries.
From any agent Ai at a given time there may be several transitions aj . The term
in the MFE for Ai is built from subterms, each one derived using the construct
function and corresponding to each aj . The definition of construct(A,w,a), and
therefore the derivation of these subterms, is fully determined by the context of
the action carried out (e.g. part of a probabilistic choice, or part of a communi-
cation) and the composition of the population (i.e. how many of each different
agent there are). The classification is as follows:

NonCommunicating Agents and Simple Probabilistic Choice: a is a non
communicating action, and the context is probabilistic choice.

10

Communicating Agents: a is a communicating action, where

Single communicating action, Prioritised: the communication involves
only single actions (a and a), and is prioritised.

Single communicating action, Not prioritised: the communication
involves only single actions (a and a), and is not prioritised.

Multiple parallel communicating actions, Prioritised: the commu-
nication involves multiple parallel actions (e.g. a#a#a), and is pri-
oritised.

Multiple parallel communicating actions, Not prioritised: the com-
munication involves multiple parallel actions (e.g. a#a#a), and is not
prioritised.

Multiple distinct communicating actions, Prioritised: the commu-
nication involves choice between multiple distinct actions (e.g. a1 and
a2), and is prioritised.

Details of this derivation are given in Section 3.5. For convenience the terms
associated with each form above are summarised in Table 1. The pseudocode
to compute the entries in the transition table is given in Fig. 5, Section 3.4.

Returning to TT , a single row of TT relates to the source state agent Ai at
time t and one of its enabled actions aj . Each entry (derived by construct) in
that row is an expression in Ait denoting the proportion of Ait agents performing
aj to become some new destination state agent Akt+1. The columns of the
matrix are labelled by the destination states Ak.

Where Ait evolves to the same agent Akt+1 irrespective of which action it
performs, a single row is used for that agent which is labelled Ait ∗. An example
of such an agent is the I1 agent in Fig. 1. Note that if the new agent Akt+1

is a parallel agent then entries are made in the columns corresponding to every
component of Akt+1.

prioritised not prioritised

simple probabilistic choice disallowed pjAt

single communicating action min
(
At,

AtCt

Nt

)
AtCt

Nt+Ct

multiple parallel
communicating actions

min
(
At,

At
P

i ciCit

Nt

)
see Appendix C

multiple distinct
communicating actions

min
(

At∗Cmt

Nt
, At∗CmtPn

i C(A,ai),t

)
omitted

Table 1: Summary of general terms for evolution of At agents following action a (am for the
last case)

11

0 S2 SI2 I2 R2
S1 infect S1t∗Trans1t

S1t+I1t+R1t

S1
√

S1t − S1t∗Trans1t

S1t+I1t+R1t

I1 * I1t

Trans1 * Trans1t

R1 * R1t

Table 2: State transition table for S1, I1,Trans1 and R1 agents in Fig. 1

S1 I1 R1 Trans1
S2

√
S2t

SI2
√

(1− pi)SI2t piSI2t piSI2t

I2
√

(1− pr)I2t prI2t (1− pr)I2t

R2
√

R2t

Table 3: State transition table for S2, SI2, I2 and R2 agents in Fig. 1

Given the constructed table, the mean field equation for Akt+1 is obtained by
summing the terms in the column Ak. The Mean Field Equations are generated
by the pseudocode of the second half of Fig. 4. The algorithm produces a MFE
for every agent, but further simplification is usually desirable. This is illustrated
by the example of the next section.

3.3.1. Transition Table Example
The transition table corresponding to the model of Fig. 1 is given in Ta-

bles 2 and 3 to illustrate the form of the table. The table is sparse, so only the
populated sections are given.

To complete the example based on Fig. 1 the MFEs are constructed. As
specified in Fig. 4, summing each column gives the MFE for that state. The
method yields the following equations

S1t+1 = S2t + (1− pi)SI2t

I1t+1 = piSI2t + (1− pr)I2t

R1t+1 = prI2t + R2t

Trans1t+1 = piSI2t + (1− pr)I2t

S2t+1 = S1t −
S1t ∗ Trans1t

S1t + I1t + R1t

SI2t+1 =
S1t ∗ Trans1t

S1t + I1t + R1t

I2t+1 = I1t

R2t+1 = R1t .

When the model was constructed, the idea was to build it in stages. So there
is the idea that one step of time should encompass both stages in the model.

12

That is, the point of interest is how the S1, I1 and R1 agents change over time,
treating the S2, SI2, I2 and R2 agents as intermediaries. The equations above
can be combined to remove mention of these intermediate states by substituting
equations for S2t+1, SI2t+1, I2t+1 and R2t+1 into equations for S1t+2, I1t+2 and
R1t+2. This involves some adjustment of the time subscripts. The equation for
Trans1 is removed since we are not interested in these agents, but note that
Trans1t = I1t. The new system of MFEs is

S1t+2 = S1t −
S1t ∗ I1t

S1t + I1t + R1t
+ (1− pi)

S1t ∗ I1t

S1t + I1t + R1t

I1t+2 = pi
S1t ∗ I1t

S1t + I1t + R1t
+ (1− pr)I1t

R1t+2 = prI1t + R1t .

Finally, algebraic simplification is carried out, adjusting the time subscript
to reflect a single time step. The final form of the MFEs is

S1t+1 = S1t − pi
S1t ∗ I1t

S1t + I1t + R1t

I1t+1 = I1t + pi
S1t ∗ I1t

S1t + I1t + R1t
− prI1t

R1t+1 = R1t + prI1t .

Further manipulation of the MFEs may be carried out as required. The
advantages of having this alternative view of the model are that different prop-
erties (e.g. on the relationship of various parameters) may become more obvious,
and that algebraic analysis can be carried out.

3.4. Pseudocode for MFE generation
Pseudocode to construct the transition table described in Section 3.3 is given

in Figs. 4 and 5. The presentation of this pseudocode is simplified by assum-
ing that the entries are given as symbolic expressions over agents Ai (Symbol-
icTerm). We assume that a SymbolicTerm may be assigned, that they may be
added together using +, and that there is an empty SymbolicTerm which may
be used for initialisation.

Five auxiliary functions are introduced corresponding to concepts detailed
in the next section; their definitions are given in Appendix B. competitors(A,a)
are those processes with the same action a and collaborators(A,a) are those pro-
cesses with the matching action a. If the second argument is omitted (as in the
case of multiple distinct actions) then competitors(A) denotes all competitors
on all actions. Similarly for collaborators(A,a). The cases of single commu-
nicating action, multiple parallel communicating action, and multiple distinct
communicating actions must be distinguished. This is done using the functions
single act, parallel act and multiple act respectively, based on the syntax of the
agent or of its collaborators.

13

1 /* All agents in the specification have been identified and enumerated.
Process each agent in turn. */

2 for each agent Ai {
3 /* Two cases of interest: communication or probability (restriction 2) */
4 if communicating(Ai) then {
5 /* This is a communicating agent therefore there will be at least one

transition with a communicating action. Construct a term for
each communicating transition.
The sum of these terms (called total term) is used in constructing
the part of the MFE for the non-communicating action (lines 16-20).
term and total term are symbolic expressions in agents A. */

6 total term = empty;
7 for each (wj , aj , Ak) ∈ get comm trans(Ai) {
8 /* Construct the term for exactly one outgoing transition aj. */
9 term = construct(Ai, wj , aj);
10 /* The destination state for the transition may be a single agent A,

or a parallel agent. TT must be updated for each destination state. */
11 for each Am ∈ components(Ak)
12 TT[(Ai, aj), Am] = TT[(Ai, aj), Am] + term;
13 /* Add this term to the total term constructed so far. */
14 total term = total term + term;
15 }
16 /* Get the single non-communicating alternative (restriction 1). */
17 (w, b, Ak) = get non comm trans(Ai);
18 /* Update TT for each destination state (similar to lines 11-12),

using Ai - total term (the remainder of Ai after communication). */
19 for each Am ∈ components(Ak)
20 TT[(Ai, b), Am] = TT[(Ai, b), Am] + Ait - total term;
21 }
22 else /* The second case of interest: probabilistic action. */
23 /* Several possible transitions from Ai, with associated weights, */
24 for each (wj , aj , Ak) ∈ transitions(Ai)
25 /* evolving to single or parallel agents (as in lines 11-12). */
26 for each Am ∈ components(Ak)
27 /* Construct the probabilistic term for each transition,

and add it to the appropriate table entries. */
28 TT[(Ai, aj), Am] = TT[(Ai, aj), Am] + construct(Ai, wj , aj)
29 }
30 /* Construct the MFE for each agent by summing relevant TT entries. */
31 for each agent Ak
32 for each action aj

33 for each Ai
34 MFE[Ak] := MFE[Ak] + TT[(Ai, aj), Ak]

Figure 4: Pseudocode to generate MFEs

14

1 function construct (A, w, a): SymbolicTerm {
2 /* construct a symbolic term relating to the change in A

given the transition a. Cases correspond to Tab. 1 */
3 case A in {
4 /* Simple probabilistic choice, Tab. 1: row 1, column 2 */
5 probabilistic(A): return w/sum weights(A) * At;
6 /* Single communicating action, prioritised, Tab. 1: row 2, column 1 */
7 communicating(A) and priority(A) and single act(collaborators(A,a)):
8 term = min(At, At ∗ collaborators(A,a)/(At + competitors(A,a)));
9 /* Single comm. action, not prioritised, Tab. 1: row 2, column 2 */
10 communicating(A) and not priority(A) and single act(collaborators(A,a)):
11 term = At ∗ collaborators(A,a)

/(At + collaborators(A,a) + competitors(A,a));
12 /* Multiple parallel comm. actions, prioritised, Tab. 1: row 3, column 1 */
13 communicating(A) and priority(A) and parallel act(collaborators(A,a)):
14 term = min(At, At * sum all acts(collaborators(A,a))

/(At + competitors(A,a)));
15 /* Multiple distinct comm. actions, prioritised, Tab. 1: row 4, column 1 */
16 communicating(A) and priority(A) and multiple act(A):
17 term = min(At ∗ collaborators(A,a)/(At + competitors(A)),

At ∗ collaborators(A,a)/collaborators(A));
18 /* no other cases are dealt with */
19 otherwise: return error;
20 }}

Figure 5: Pseudocode to construct a term describing the evolution of A agents at time t + 1

15

The pseudocode for construct assumes two further auxiliary functions: sum weights
which takes a probabilistic agent and returns the sum of the weights of all outgo-
ing transitions, and sum all acts used in the multiple parallel actions case which
takes a set of agents (collaborators) and returns a SymbolicTerm capturing the
total number of a actions performed by all collaborators.

3.5. Entries of the Transition Table
This section gives a more detailed derivation for each of the terms in the

Table 1:

• Non-communicating agents and simple probabilistic choice (Section 3.5.1)

• Single communicating action: Prioritised (Section 3.5.2)

• Single communicating action: Not prioritised (Section 3.5.3)

• Multiple parallel communicating actions: Prioritised (Section 3.5.4)

• Multiple parallel communicating actions: Not prioritised (Section 3.5.5)

• Multiple distinct communicating actions: Prioritised (Section 3.5.6)

Agent evolution through communication depends not just on the action itself
(single or multiple, prioritised or not), but also on the mix of agents in the
population available to communicate on the chosen action. The mean outcome
is based on the weighted multinomial choice of all possible outcomes.

Consider a general system with agents A,Ci, Xi and Pi.

A is the agent of interest, i.e. the A in construct(A,w, a), and a is the action of
interest. We wish to calculate how many of A will communicate on action
a and evolve to the next state. As noted above, the number of A agents
at time t is denoted At.

Ci(A,a) are the agents collaborating with A on a, i.e. the agents who have
the corresponding action a. The total number of collaborators, denoted
C(A,a,t), is defined as

∑
i Ci(A,a),t. The number of types of collaborator is

denoted mc.

Xi(A,a) are the other agents interacting with Ci on a, i.e. agents other than A
doing the action a. These may be regarded as being in competition with
agent A instances since they may absorb instances of the action a leaving
fewer for collaboration with A. Competitors are assumed to always have
the same syntactic form with regard to single, multiple, prioritised, and
not prioritised actions as A. The total number of competitors, denoted
X(A,a,t), is defined as

∑
i Xi(A,a),t. The number of types of competitor is

denoted mx.

The total number of agents doing the a action At +X(A,a),t is denoted Nt.

Pi are those agents not involved in the a action, either as competitors or col-
laborators.

16

To aid clarity, the subscripts (A, a) and (A, a, t) are omitted below since these
can be understood from the context. In the following, the binomial coefficient(

n
m

)
is used, representing the number of unordered ways to choose m objects

from a group of n distinct objects.

3.5.1. Non-communicating agents and simple probabilistic choice
Computation of construct(A,w, a) is straightforward for steps involving only

non-communicating actions. The agent in the source state takes the form

A
def= w1.a1 : A1 + w2.a2 : A2 + . . . + wm.am : Am ,

where ∃!j : 1 . . .m such that w = wj and a = aj . Agent A evolves independently
without communicating with any other agent. This evolution is governed by the
multinomial distribution. The semantics of WSCCS [30] states that in a large
number of repeated experiments of this process, we expect to see Aj chosen
with relative frequency wj/

∑m
k=1 wk . Therefore, from standard theory, the

probability that A will become one of its destination processes Aj is

pj =
wj∑m

k=1 wk
.

The mean number of A agents that become one of the agents Aj in the next
time step is

construct(A,w, a) = pjAt .

3.5.2. Single communicating action: Prioritised
The agent in the source state takes the form

A = ω.a : A1 + 1.b : A2 ,

where a is a communicating action and b is not a communicating action. We
wish to calculate how many At evolve to A1t+1. We assume collaborators Ci of
the form

Ci = ω.a : Ci′ + 1.c : Ci′′ ,

where a is a communicating action and c is not a communicating action (c may
be the same action as b, or a different action). Given a particular A agent,
there are two choices. The A agent communicates with a Ci agent to evolve
to an A1 agent, or it does not communicate with a Ci agent and evolves to an
A2 agent. Since communication is prioritised, failure to communicate with a Ci
agent arises either because there are not sufficient numbers of Ci agents with
which to communicate, or because there are Xi agents communicating with the
Ci agents. In the general case, the number of resulting A1 agents ranges from
0 to At, depending on both the number of Ci and the number of Xi. There
is a further complication: some possibilities in this range are more likely than
others. For example, there are At ways for just one A to communicate with a
single Ci agent, but there is exactly one way for all A agents to communicate
with At Ci agents.

17

For a single action with prioritised communication, given that the weights of
alternative actions are 1 (restriction 1, Section 3.1), the mean change in agent
A is expressed as ∑At

k=1 k
(
At

k

)(
Nt−At

Ct−k

)∑At

k=1

(
At

k

)(
Nt−At

Ct−k

) . (1)

For this example the limits of the sum have been shown explicitly. These are
omitted hereafter since they can be understood from the context, and one of the
binomial coefficients will be zero if the limits are exceeded. On the numerator
we have the weighted sum of all possible evolutions of A agents to A1 agents.
That is, if the evolution is to a state with 42 A1 agents, then we multiply by
42. Similarly, if the evolution is to a state with a single A1 agent, then we
multiply by 1. This is k in the expression above. The second component of
the numerator indicates the number of A communicating with Ci agents, and
the third component indicates the number of Xi agents communicating with Ci
agents. The denominator is the same sum, unweighted, representing all possible
evolutions of A.

This term can be simplified via Vandermonde’s Convolution [11] and stan-
dard theory regarding the binomial coefficient to

AtCt

Nt
.

If Nt < Ct more agents are available to do a than a and the term is limited
to At, therefore

construct(A,w, a) = min
(

At,
AtCt

Nt

)
.

In practice, it is possible to eliminate the min in this term by formulating the
model so that Nt ≥ Ct is always true. For example, pairing all Ci agents with
a parallel Xi agent as in the example of Fig. 1.

3.5.3. Single communicating action: Not prioritised
The agent in the source state takes the form

A = 1.a : A1 + 1.b : A2 ,

where a is a communicating action and b is not a communicating action (re-
striction 1, Section 3.1). Following the single unprioritised a action, the mean
number of A agents evolving to A1 at time t + 1 is given by∑

i

(
Ct

i

) ∑
k k

(
At

k

)(
Nt−At

i−k

)∑
i

(
Ct

i

) ∑
k

(
At

k

)(
Nt−At

i−k

) .

The added term here expresses that the alternative action b may be chosen
more frequently than in the prioritised communication case. Again, the term
simplifies, yielding

construct(A,w, a) =
AtCt

Nt + Ct
.

18

In this case Nt + Ct ≥ Ct for all values of Nt and Ct and there is no need for a
min term.

3.5.4. Multiple parallel communicating actions: Prioritised
The agent in the source state takes the form

A = ω.a : A1 + 1.b : A2 ,

as in the Single communicating action, Prioritised case. The difference here is
the number of actions performed by the collaborating Ci agents. The a actions
may be multiple, i.e. a#a#a# . . .#a, written an for n instances of a. We
assume that there are m different Ci agents, each performing up to ci instances
of a. In particular, we assume Ci takes the form

Ci = ωci .aci : Ci′ + ωci−1.aci−1 : Ci′ + ... + ω.a : Ci′ + 1.b : Ci′ .

This means that Ci will do as many a actions as it can (because of priority).
The mean number of A which evolve to A1 is given by∑

k k
(
At

k

)(
Nt−AtP

i ciCit

)∑
k

(
At

k

)(
Nt−AtP

i ciCit

) .

The term
∑

i ciCit gives the total number of a actions available.
This can be simplified (see the right hand term of the min expression below).

As before, the total number of actions is limited by the capabilities of A. In
particular, if Nt <

∑
i ciCit, then fewer actions are performed in total (leading

to the min term).

construct(A,w, a) = min
(

At,
At

∑
i ciCit

Nt

)
.

Unlike the case for single action, prioritised communication, it is not possible to
eliminate this min term through manipulation of the model while maintaining
competition between A and its competitors.

3.5.5. Multiple parallel communicating actions: Not prioritised
In general, models without priority featuring agents that perform multiple

instances of the output action lead to MFE that are intractable. A full derivation
of the general term is included in Appendix C for completeness but here we
present the case where an agent can perform at most two instances of the action.
Agents performing multiple instances of the output action must always evolve
to the same state (restriction 4, Section 3.1) so the collaborating agents take
the general form

Ci = 1.a2 : Ci′ + 1.a : Ci′ + 1.b : Ci′ .

The agent in the source state takes the form

A = 1.a : A1 + 1.b : A2 ,

19

with competitors taking the same form

Xi = 1.a : X1 + 1.b : X2 .

In the following, the multinomial coefficient
(

m
p,q,r

)
is used. This represents

the number of unordered ways to choose a group of p objects, a group of q objects
and a group of r objects from a group of m distinct objects, with m = p+ q + r.

The mean number of A that become A1 is given by

A
∑

n1

∑
n2

(
Ct

n1,n2,Ct−n1−n2

)(
At+Xt−1

2×n2+n1−1

)∑
n1

∑
n2

(
Ct

n1,n2,Ct−n1−n2

)(
At+Xt

2×n2+n1

) .

For even a simple case such as this the term is quite unwieldy and does not lend
itself to the sort of analyses we typically wish to use to study our models. In
the general case this problem is amplified. We have not found it biologically
necessary to use this form of communication in our case studies so far.

3.5.6. Multiple distinct communicating actions: Prioritised
We consider first the case of two distinct actions since this arises more com-

monly (e.g. the supershedders model of McCaig [19]). The agent in the source
state takes the form

A = ω.a1 : A1 + ω.a2 : A2 + 1.b : A3 .

Two sets of collaborating agents C1 and C2 perform the actions a1 and a2

respectively. Communication is prioritised. The agent A can perform either a1

or a2, evolving differently in each case, but cannot perform both actions together
(restriction 3, Section 3.1). The action b is a non-communicating action and
because of priority will only be executed if neither a1 or a2 can synchronise
with another process.

The number of At which communicate with C1t is∑
k

∑
j k

(
At

k,j,At−k−j

)(
Nt−At

C1t−k,C2t−j,Nt−At−C1t−C2t+k+j

)∑
k

∑
j

(
At

k,j,At−k−j

)(
Nt−At

C1t−k,C2t−j,Nt−At−C1t−C2t+k+j

)
This can be simplified, so that

AtC1t

Nt
.

This term is valid only when Nt ≥ C1t + C2t. If Nt < C1t + C2t then we have

AtC1t

C1t + C2t
.

Therefore, the general term for the number of At agents which communicate
with C1t is

construct(A,w, a) = min
(

AtC1t

Nt
,

AtC1t

C1t + C2t

)
.

20

The corresponding term for the number of At agents which communicate with
C2t is found similarly

construct(A,w, b) = min
(

AtC2t

Nt
,

AtC2t

C1t + C2t

)
.

As for the case of single action prioritised communication, this min term can be
avoided by using parallel agents.

n actions, prioritised communication. The results for two actions can be gen-
eralised to cover cases where there are n different actions a1, a2, ..., an, giving

construct(A,w, am) = min
(

At ∗ Cmt

Nt
,

At ∗ Cmt∑n
i C(A,ai),t

)
.

where m ranges over 1 . . . n and Cm denotes the set of agents collaborating on
action am. As above, this min term can be avoided by using parallel agents.

3.5.7. General Properties of the MFE Semantics
Given a model of the form

Population
def= A1{n1} ×A2{n2} × . . .×Am{nm}d{L}

(possibly with the priority operator Θ) the MFEs derived will always be first
order difference equations, i.e. of the general form

At+1 = f(At) , (2)

where A is the vector of the different agent types for which equations are being
derived,

A = (A1 . . . Am) .

This is a consequence of the ‘memoryless’ Markovian nature of WSCCS, i.e. the
future state of the system depends only on the current state of the system and
not on previous states.

Higher order equations are obtained by substitution. For example, noting
that (2) implies

At+2 = f(At+1) ,

and substituting for At+1 to find

At+2 = f(At+1)
= f(f(At)) ,

as was done for the example of Section 3.3.1. If such simplification is carried out,
the modeller should be sure that the intermediate state At+1 is not of interest.
The second order equations are likely to be algebraically more complicated.

For models featuring only probabilistic choice the derived equations will be
first order linear difference equations (i.e. each term in f is linear in one of
the components of A) and for models featuring communication they will be
non-linear.

21

WSCCS
syntax DTMC

MFE

Tofts semantics

MNS
semantics

Kurtz

Figure 6: Relationship between MFE and Markov chain semantics of WSCCS

3.6. Correctness
In this Section the relationship between the derived MFEs and the standard

Markov semantics for WSCCS, as represented in Fig. 6 is established. The
method presented here offers an alternative semantics for WSCCS in terms of
Mean Field Equations (shown as the solid line in Fig. 6). While this may be
useful and interesting in itself, in terms of describing and analysing models our
particular goal is to capture the existing behaviour [30] (represented by the
dotted arrow in Fig. 6). This will allow conclusions to be drawn about how
individual behaviour results in emergent properties in the population dynam-
ics. The key to this relationship is a result of Kurtz [17], who presented limit
theorems relating the mean of Continuous Time Markov chain (CTMC) and
Discrete Time Markov Chain (DTMC) to ordinary differential equations. This
is shown as a dashed line in Fig. 6. Kurtz showed that it was possible to derive
ODEs as an approximation of the average behaviour of a DTMC. At the limit,
where the DTMC consists of infinitely many agents, the mean of the Markov
chain is equivalent to the derived ODEs. An intermediate step of Kurtz’s proof
produces terms equivalent to those given in Section 3.5. We use this to show
the correctness of our derivation of MFEs from WSCCS.

Kurtz laid out conditions under which his limit theorem holds. We present
these here and then repeat them below, together with an explanation of how
they relate to our WSCCS models.

Consider Xn(k), a sequence of discrete time Markov processes, with mea-
surable state spaces (En,Bn), En ∈ Bk, the Borel sets [16] in Rk. When con-
sidering processes over {0, 1, ..., n} Kurtz rescales to [0, 1] by dividing through
by n and letting n →∞.

The one step transition function of Xn(k) is denoted by

µn(x, Γ) = P{Xn(k + 1) ∈ Γ | Xn(k) = x}

i.e. µn(x, Γ) is the probability of moving from x to a point in the set Γ in one
timestep. Suppose there exist sequences of positive numbers αn and εn such

22

that
lim

n→∞
αn = ∞ and lim

n→∞
εn = 0 ,

sup
n

sup
x∈En

αn

∫
En

|z − x|µn(x, dz) < ∞

and
lim

n→∞
sup

x∈En

αn

∫
|z−x|>εn

|z − x|µn(x, dz) = 0 .

Kurtz shows that the difference between state changes in the Markov chain
is equivalent to that expressed in the relevant ODE. For every δ > 0, t > 0

lim
n→∞

sup
x∈En

P

{
sup

k≤αnt
|Xn(k)−Xn(0)−

k∑
l=0

1
αn

Fn(Xn(l))| > δ

where Xn(0) = x

}
= 0 ,

where Fn(x) = αn

∫
En

(z − x)µn(x, dz). It is to this intermediate stage in the
proof of the correctness of ODEs that we compare our method of deriving MFEs.

We now relate these conditions to our method for deriving MFE:

1. [Kurtz] Xn(k) is a sequence of discrete time Markov processes, with mea-
surable state spaces (En,Bn), En ∈ Bk, the Borel sets [16] in Rk.
[WSCCS] The states of WSCCS models here are in Nk, where k is the
number of types of agents in the model. This is a consequence of the
vector representation of state space chosen in Section 2.3. All subsets of
Rk are Borel sets and Nk ⊂ Rk.

2. [Kurtz] When considering processes over {0, 1, ..., n} Kurtz rescales to
[0, 1] by dividing through by n and letting n →∞.
[WSCCS] Processes range over {0, 1, ..., n}, where n is the initial number
of agents in the system. The same rescaling is carried out to match Kurtz’s
conditions.

3. [Kurtz] The one step transition function is denoted by

µn(x,Γ) = P{Xn(k + 1) ∈ Γ | Xn(k) = x}

i.e. µn(x, Γ) is the probability of moving from x to a point in the set Γ in
one timestep.
[WSCCS] Consider the LTS of a WSCCS model under abstract bisimu-
lation. The one step transition function can be extracted from the LTS
by the following.

µn(A, {A′ | A a[p]−→ A′}) = p

where p is the probability that this action occurs, derived from all the
preceding weighted choices as given in Appendix A.2.1.

23

4. [Kurtz] Suppose there exist sequences of positive numbers αn and εn such
that

lim
n→∞

αn = ∞ and lim
n→∞

εn = 0 ,

sup
n

sup
x∈En

αn

∫
En

|z − x|µn(x, dz) < ∞ (3)

and
lim

n→∞
sup

x∈En

αn

∫
|z−x|>εn

|z − x|µn(x, dz) = 0 . (4)

[WSCCS] In WSCCS terms, we think of z and x as being state vectors
with a component representing each type of agent in the system. The
term |z − x| , which appears in both (3) and (4), is the magnitude of the
difference between the start state, x, and the destination state, z, i.e. how
much change there has been in the components. This means that |z − x|
is the norm of the vector travelled in one timestep.
As n →∞ the number of states that can be reached in one step becomes
very large (since WSCCS is synchronous, many components change si-
multaneously). As demonstrated earlier, there is a higher probability of
moving to a state with a small change from the previous state when there
are lots of components since there are lots of ways to make that change.
Conversely, the states for which the change is high are less likely to occur,
since this requires the coincidence of many choices. Formally, the distri-
bution of weights on the LTS is either Gaussian (for probabilistic choices)
or hyper-geometric (for communicating actions).
The vectors are scaled by dividing by n (point 2 above), therefore 0 ≤
|z−x| ≤ 1. By definition µ(x, z) is a probability, therefore 0 ≤ µ(x, z) ≤ 1.
The states z for which µ(x, z) is greatest will be close to x (such that |z−x|
is close to 0). For z where |z − x| is larger, the probability of reaching
z will be close to 0. This means that

∫
En
|z − x|µn(x, dz) is infinitesimal

and at the limit (where n = ∞) αn = ∞ and αn

∫
En
|z− x|µn(x, dz) < ∞

is true and (3) is satisfied.
In contrast, the core of (4) represents the states which are unreachable, i.e.
for which µ(x, z) = 0. As εn → 0, (4) captures that the reachable states
are nearer to x, i.e. the change |z − x| is small.

Kurtz shows that the difference between state changes in the Markov chain
is equivalent to that expressed in the ODE. For every δ > 0, t > 0

lim
n→∞

sup
x∈En

P

{
sup

k≤αnt
|Xn(k)−Xn(0)−

k∑
l=0

1
αn

Fn(Xn(l))| > δ

where Xn(0) = x

}
= 0 , (5)

where Fn(x) = αn

∫
En

(z − x)µn(x, dz).

24

Applied to process behaviour over only one timestep (as here), (5) becomes

lim
n→∞

sup
x∈En

P

{
|Xn(1)−Xn(0)−

∫
En

(z − x)µn(x, dz)| > δ

where Xn(0) = x

}
= 0 . (6)

Introducing a function

G(x) =
∫

En

(z − x)µn(x, dz) , (7)

(6) means that at the limit n →∞ , the difference

Xn(1)− {Xn(0) + G(Xn(0))} ,

is infinitesimal; therefore, it can be assumed that

Xn(1) = Xn(0) + G(Xn(0)) .

Markov processes have no memory of previous states, allowing a further gener-
alisation:

Xn(k + 1) = Xn(k) + G(Xn(k)) . (8)

The form of G(x) =
∫

En
(z − x)µn(x, dz) is equivalent to the way in which

MFEs are constructed in Section 3. We interpret the integral here as a summa-
tion. The integral, across the entire state space, of the product of the change
of state and the probability of making that change, gives the mean change of
state. By adding this to the previous state of the models, (8), we obtain the
MFEs derived by our method.

Consider for instance an alternative derivation of the term for single com-
municating action with prioritised contact, Eqn. (1) of Section 3.5.2. In this
case (

At

j

)(
Nt−At

Ct−j

)∑At

k=1

(
At

k

)(
Nt−At

Ct−k

)
represents the probability of j of the agents of interest communicating with the
collaborators Ct. If we then multiply by j (equivalent to (z − x) in (7)) and
sum across all values of j (equivalent to the integral across En in (7)) we have∑At

j=1 j
(
At

j

)(
Nt−At

Ct−j

)∑At

k=1

(
At

k

)(
Nt−At

Ct−k

) =
AtCt

Nt
,

which is (1).

4. Examples

We present two further examples to illustrate the method. The first, on
population growth is from McCaig et al [23]. The second, on resource allocation,
is novel.

25

N1 def= 1.get : N2 + 1.
√

: 0

Res1 def= 1.get : Res2 + 1.
√

: Res2

N2 def= pb.
√

: (N1×N1) + pd.
√

: 0 + (1− pb − pd).
√

: N1

Res2 def= 1.
√

: Res1

Population
def= (N1{n} × Res1{f})d{

√
}

Figure 7: Density dependence on deaths with non-prioritised communication

4.1. Population Dynamics
An important feature of many biological models is a dynamic population, i.e.

a population with the ability to grow and shrink. While it is possible to simply
add fixed probabilities of birth and death, it is often more desirable to allow the
probability of birth and death to vary depending on the size of the population
at each instant in time (density dependence). For example, as the population
grows, resources such as food and shelter become scarce, therefore individuals
become weaker and are more likely to die. Alternatively this weakness may
manifest itself as a reduced fecundity and a reduction in the birth rates.

The model of Fig. 7 demonstrates an individual-based approach to modelling
density dependent population growth. Agents represent population members
(N1, N2) and “resource” (R1, R2), e.g. food, shelter, or space. The resource
is required by individuals to survive. It is finite and individuals must compete
for it. It does not last forever, therefore must be reacquired at regular intervals.
Access to this resource can be used to determine the likelihood of either birth
or death; the model of Fig. 7 has density dependent death.

Acquiring a resource is modelled with non-prioritised communication. This
means that individuals might not obtain the resource, even when it is available,
and is therefore more biologically plausible. In Fig. 7 the N1 agents can get the
resource, becoming the agent N2, but if they do not get the resource they die,
becoming the null agent 0 (this is density dependent death). The N2 agents
give birth probabilistically and die probabilistically (e.g. due to old age).

The transition table for this model is shown in Table 4 and the resulting
MFE (substituting f for Res1 since resource is constant) is

Nt+1 = (1 + pb − pd)
fNt

f + Nt
, (9)

where the term fNt/(f + Nt) represents the proportion of the population who
survive the competition for resource, with the factor (1 + pb − pd) representing
the increase in the population due to births and the decrease due to probabilistic
death. Equation (9) can be rearranged to give

Nt+1 =
aNt

1 + bNt
, (10)

26

0 N1t+1 N2t+1 Res1t+1 Res2t+1

(N1t, get) N1t∗Res1t
N1t+Res1t

(N1t,
√

) N1t − N1t∗Res1t
N1t+Res1t

(Res1t, ∗) Res1t

(N2t,
√

) pdN2t (1− pb − pd)N2t

+2pbN2t

(Res2t, ∗) Res2t

Table 4: State transition table for N1, N2, Res1 and Res2 agents in Fig. 7

where a = (1 + pb − pd) and b = 1/f . Equation (10) is the Beverton-Holt
model [6], originally proposed as a model of salmon populations displaying den-
sity dependent birth. Even though our model is based on density dependent
death the interpretations of a and b here are similar to the original Beverton and
Holt definitions. Parameter a corresponds to the proliferation rate per genera-
tion and parameter b corresponds to 1/M where M is a measure of the maximal
population size. Our derivation endorses the plausibility of the Beverton-Holt
model, which is commonly used in models of plant populations but not so widely
used for animal populations.

Setting Nt+1 = Nt = N∗ in (9) and solving for N∗ yields the steady state

N∗ = (pb − pd)f .

To ensure the steady state is positive we require pb > pd . Such analysis is not
obvious from the original model.

Finding equation (9) for a population featuring density dependent death
highlights the advantage of our approach. We know that the population model
described by (9) is a direct consequence of the individual level assumptions
that have been made. The traditional method of deriving population level
equations relies on assumptions about how individual level behaviour influences
the dynamics of the system as a whole, when this is not always well understood.

We also previously developed a model featuring competition for food with
density dependent birth [23] with the resulting MFE,

Nt+1 = (1− pd)Nt +
pbfNt

f + Nt
, (11)

featuring a birth term similar to the single term found for the density dependent
death model, (9), but with death captured by a separate term. Here the density
dependent birth term could be rewritten as the single term in the Beverton-Holt
model, by choosing a = pb and b = 1/f , but we still have a separate term to
capture the fixed probability of death. Once again this MFE is a direct result
of the individual behaviour described in the underlying WSCCS model.

27

Booth A def= ω.occupy : Booth U + 1.
√

: Booth A

Booth U def= ω.vacate : Booth A + 1.
√

: Booth U

Canvasser def= q.success : (Waiting × Canvasser) + (1− q).fail : Canvasser

Waiting def= ω.occupy : Busy + 1.
√

: Waiting

Busy def= p.work : Done + (1− p).
√

: Busy

Done def= ω.vacate : 0
Cafe def= Θ((Canvasser{c} × Booth A{b})d{fail , success,work ,

√
})

Figure 8: The Internet Cafe

0 Ct+1 Wt+1 Bt+1 Dt+1

(Ct, success) qCt qCt

(Ct, fail) (1− q)Ct

(Wt, occupy) min(Wt,BAt)

(Wt,
√

) Wt

−min(Wt,BAt)

(Bt,work) pBt

(Bt,
√

) (1− p)Bt

(Dt, vacate) Dt

Table 5: Transition table for Canvasser agents in Fig. 8

4.2. The Internet Cafe
Resource allocation is a common problem in distributed computing. This

example was inspired by the storage allocation problem of [14], phrasing the
problem in terms of an Internet cafe.

The Internet cafe has a fixed number of booths, b. Customers arrive to make
use of the booths, but there may be no booths available, so a queue of wait-
ing customers forms. Waiting customers use booths as they are vacated (the
queuing system here is not orderly). The model is shown in Fig. 8. Arrivals at
the cafe are modelled by a Bernoulli process (Canvasser), which represents em-
ployees outside the cafe attracting customers inside. Note the separation of the
probabilistic choice to continue working or not (in Busy) and the communication
to signal that the booth is free (in Done).

Parts of the transition table for the model are given in Tables 5 and 6 (using
abbreviations for agent names). The resulting MFEs are given below. The term

28

BAt+1 BUt+1

(BAt, occupy) min(Wt,BAt)

(BAt,
√

) BAt −min(Wt,BAt)

(BUt, vacate) BUt −min(Dt,BUt)

(BUt,
√

) min(Dt,BUt)

Table 6: Transition table for Booth agents in Fig. 8

min(Dt, BUt) from Table 6 simplifies to Dt since BUt < Dt is impossible.

BAt+1 = BAt −min(BAt,Wt) + Dt ,

BUt+1 = BUt + min(BAt,Wt)−Dt ,

Ct+1 = Ct ,

Wt+1 = Wt −min(BAt,Wt) + qCt ,

Bt+1 = (1− p)Bt + min(BAt,Wt) ,

Dt+1 = pBt . (12)

From these equations we can derive new information. For example, consider
the steady state of the system, i.e. where Xt+1 = Xt for any X. The number
of booths is constant over time, BAt+1 + BUt+1 = BAt + BUt = b, as is the
number of canvassers Ct+1 = Ct = c. We consider two cases in turn: BA < W
and BA ≥ W (because of the min term in (12)). If BA < W a contradiction is
derived: there is no steady state in this case. In fact, the length of the queue
grows unboundedly. If BA ≥ W then the equations can be solved, yielding the
condition b − qc(1 + 1/p) ≥ qc for the steady state to exist. This equation,
for example, allows the cafe owner to calculate the number of booths required
b ≥ qc(2 + 1/p) based on known customer arrival and departure rates.

In the source paper [14] the conjecture was that utilisation of file space
becomes maximal as the length of time files stayed in store increased. Translated
to the above scenario, this is BA/BU → 0 as p → 0. In the steady state

BA
BU

=
b− qc(1 + 1/p)

qc(1 + 1/p)
,

and the result follows.
As above, these observations only become clear when the MFEs are derived

from the model; however, it is important to have made the individual-based
model in the first place since this is the source of our observations.

5. Conclusion

An alternative, yet equivalent, semantics has been presented for WSCCS.
The advantages of the new semantics are that they allow time series information

29

to be calculated quickly without calculating the whole state space, and that they
give a means of translating between the individual-based world of processes
and the population-based dynamics of mean field equations. This last point
is particularly crucial in the biological setting. For many years biologists have
sought a rigorous way of moving between scales [4, 18].

Having established the theoretical basis for the translation between WSCCS
and MFEs future work will focus on application to specific problems. Several
epidemiological systems have already been investigated with some success:

• Using this technique it is possible to explore how different types of local
interaction can be translated into transmission at the global level [20].
In particular, interaction at the local level may be frequency dependent
(a fixed number of contacts regardless of population size). Mathemati-
cal biologists typically reflect this assumption at the population level by
frequency dependent transmission βSI/N . Alternatively, interaction at
the local level may be density dependent (a variable number of contacts
depending on population size). Mathematical biologists typically reflect
this assumption at the population level by density dependent transmission
βSI. Turner et al. [33] suggest that frequency dependent transmission re-
sults at the global level, regardless of local interaction. Our results showed
that density dependent interaction at the local level was matched by the
traditional density dependent transmission term at the global level. Sim-
ilarly a fixed probability of contact at the local level leads to a frequency
dependent transmission term at the global level.

• Population dynamics, with density dependent births and deaths are de-
scribed in [23], together with an extended disease model which has been
successfully matched to HIV-AIDS data.

• The method allows easy comparison of different mechanisms for disease
spread. A recent study [21] considers superspreaders. Models encode
whether superspreaders are more infectious than other infected individu-
als, or whether they are more gregarious than other infected individuals.
Our surprising result was that mechanism is not important for average
behaviour in this case.

The approach suits any problem in which a system is composed of a number
of replicated individuals, where there is interaction between individuals, and
where we are interested in how this interaction contributes to emergent system
properties. The approach will most obviously be useful for biologists of various
kinds, and for exploration of distributed computer systems.

Acknowledgement

This work was supported by EPSRC through a Doctoral Training Grant
(CM, from 2004–2007) and through System Dynamics from Individual Interac-
tions: A process algebra approach to epidemiology (EP/E006280/1, all authors,
2007–2010). We thank the anonymous referees for their helpful comments.

30

References

[1] R.M. Anderson and R.M. May. The population-dynamics of micro-parasites
and their invertebrate hosts. Philosophical transactions of the Royal Society
of London Series B, 291:451–524, 1981.

[2] J.C.M. Baeten. A brief history of process algebra. Theoretical Computer
Science, 335(2/3):131–146, 2005.

[3] M. Begon, M. Bennet, R.G. Bowers, N.P. French, S.M. Hazel, and
J. Turner. A clarification of transmission terms in host-microparasite mod-
els: numbers, densities and areas. Epidemiology and infection, 129:147–153,
2002.

[4] M. Begon, C.R. Townsend, and J.L. Harper. Ecology: From Individuals to
Ecosystems. Wiley-Blackwell, 2005. 4th edition.

[5] S. Benkirane, J Hillston, C. McCaig, R. Norman, and C. Shankland. Im-
proved continuous approximation of PEPA models through epidemiological
examples. In From Biology to Concurrency and back, FBTC 2008, volume
229 of ENTCS, pages 59–74. Elsevier, 2008.

[6] R.J.H. Beverton and S.J. Holt. On the dynamics of exploited fish popula-
tions, volume 19 of Fisheries Investigations, Series 2. H.M.S.O., 1957.

[7] L. Brodo, P. Degano, and C. Priami. A tool for quantitative analysis of
calculus processes. In ICALP Satellite Workshops, pages 535–550, 2000.

[8] M. Calder, S. Gilmore, and J. Hillston. Automatically deriving ODEs from
process algebra models of signalling pathways. In Proceedings of Compu-
tational Methods in Systems Biology (CMSB 2005), pages 204–215, 2005.

[9] L. Cardelli. On process rate semantics. Theoretical Computer Science,
391:190–215, 2008.

[10] A.M. Dunn, M.J. Hatcher, R.S. Terry, and C. Tofts. Evolutionary ecol-
ogy of vertically transmitted paprasites: transovarial transmission of a
microsporidian sex ratio distorer in Gammarus duebeni. Parasitology,
111:S91–S109, 1995.

[11] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A
foundation for computer science. Addison-Wesley, 1989.

[12] M. J. Hatcher and C. Tofts. The evolution of polygenic sex determination
with potential for environmental manipulation. Technical Report UMCS-
95-4-2, Department of Computer Science, University of Manchester, 1995.

[13] J. Hillston. Fluid Flow Approximation of PEPA models. In QEST’05,
Proceedings of the 2nd International Conference on Quantitative Evaluation
of Systems, pages 33–42. IEEE Computer Society Press, Torino, September
2005.

31

[14] E.G. Coffman Jr., T.T. Kadota, and L.A. Shepp. On the asymptotic opti-
mality of first-fit storage allocation. IEEE Trans. Soft. Eng., 11:235–239,
1985.

[15] W.O. Kermack and A.G. McKendrick. Contributions to the mathematical
theory of epidemics I. Proceedings of the Royal Society of London Series
A, 115:700–721, 1927.

[16] K. Kuratowski. Topology: Volume 1. Polish Scientific Publishers, 1966.

[17] T.G. Kurtz. Solutions of ordinary differential equations as limits of pure
jump markov processes. Journal of Applied Probability, 7:49–58, 1970.

[18] S.A. Levin, B. Grenfell, A.Hastings, and A.S. Perelson. Mathematical and
computational challenges in population biology and ecosystems science.
Science, 275:334 – 343, 1997.

[19] C. McCaig. From individuals to populations: changing scale in process
algebra models of biological systems. PhD thesis, University of Stirling,
2007. http://hdl.handle.net/1893/398.

[20] C. McCaig, M. Begon, R. Norman, and C. Shankland. A rigorous approach
to investigating common assumptions about disease transmission: Process
algebra as an emerging modelling methodology for epidemiology. Theory
in Biosciences, 2010. Special issue on emerging modelling methodologies.
In press.

[21] C. McCaig, M. Begon, R. Norman, and C. Shankland. A symbolic investi-
gation of superspreaders. Bulletin of Mathematical Biology, 2010. Special
issue on Algebraic Biology. In press.

[22] C. McCaig, R. Norman, and C. Shankland. Deriving mean field equations
from large process algebra models. Technical Report CSM-175, Department
of Computing Science and Mathematics, University of Stirling, March 2008.
http://hdl.handle.net/1893/1584.

[23] C. McCaig, R. Norman, and C. Shankland. From individuals to popula-
tions: A symbolic process algebra approach to epidemiology. Mathematics
in Computer Science, 2(3):139–155, 2009.

[24] R Monroy. A process algebra model of the immune system. In Knowledge-
Based Intelligent Information and Engineering Systems, volume 3214 of
Lecture Notes in Computer Science, pages 526–533. Springer-Verlag, 2004.

[25] R. Norman and C. Shankland. Developing the use of process algebra in
the derivation and analysis of mathematical models of infectious disease.
In Computer Aided Systems Theory - EUROCAST 2003, volume 2809 of
Lecture Notes in Computer Science, pages 404–414. Springer-Verlag, 2003.

32

[26] R. Pelánek. Fighting state space explosion: Review and evaluation. In Proc.
of Formal Methods for Industrial Critical Systems (FMICS’08), volume
5596, pages 37–52, 2009.

[27] D. Sumpter. From Bee to Society: an agent based investigation of honeybee
colonies. PhD thesis, UMIST, 2000.

[28] D.J.T. Sumpter and D.S. Broomhead. Relating individual behaviour to
population dynamics. Proceedings of the Royal Society of London Series B,
268:925–932, 2001.

[29] C. Tofts. Describing social insect behaviour using process algebra. Trans-
actions of the Society for Computer Simulation, 9:227–283, 1992.

[30] C. Tofts. Processes with probabilities, priority and time. Formal Aspects
of Computing, 6:536–564, 1994.

[31] C. Tofts. Exact, analytic, and locally approximate solutions to discrete
event-simulation problems. Simulation Practice and Theory, 6:721–759,
1998.

[32] C. Tofts. Exploiting strong attractors to slaughter monsters - taming 101500

states and beyond. Technical Report HPL-2006-121, HP Laboratories, Bris-
tol, 2006.

[33] J. Turner, M. Begon, and R.G. Bowers. Modelling pathogen transmission:
the interrelationship between local and global approaches. Proceedings of
the Royal Society of London Series B, 270:105–112, 2002.

[34] R.W. West and J.R. Thompson. Models for the simple epidemic. Mathe-
matical Biosciences, 141:29–39, 1997.

Appendix A. WSCCS

In this Appendix we summarise the formal syntax and semantics of WSCCS [30].

Appendix A.1. Syntax
Appendix A.1.1. Actions

Action names, a ∈ Act , are chosen from an arbitrary set and should be
suggestive of the system being described. The inverse of the action a (typically
input) is a (typically output) and the identity action is denoted by

√
. When

actions must occur in parallel we denote the multiplication by # such that
a#a =

√
. Actions form an abelian group with identity

√
and the inverse of

action a being a. Actions occur instantaneously and have no duration.

33

Appendix A.1.2. Relative frequency expressions
Relative Frequency Expressions, e, are defined as follows with x ranging over

a set of variable names and c ranging over a fixed field (e.g. N or R):

e ::= x | c | e + e | e× e .

In these expressions we have commutative and associative multiplication and
addition, with multiplication distributing over addition.

Appendix A.1.3. Weights
The set of WSCCS weights W , denoted by wi, are of the form eωk , e = eω0 .

In such weights e is the relative frequency with which this choice should be taken
and k is the priority of this choice with ω an infinite object, ω > e ∀ e . The
following multiplication and addition rules apply with k ≥ k′:

eωk + fωk′ = eωk = fωk′ + eωk ,

eωk + fωk = (e + f)ωk = fωk + eωk ,

eωk ∗ fωk′ = (ef)ωk+k′ = fωk′ ∗ eωk .

Appendix A.1.4. Grammar
The possible WSCCS expressions are given by the following BNF grammar:

A ::= X | a : A | Σ{wi.Ai | i ∈ I} | A×A | AdL | Θ(A) | A[S] | X def= A .

Here X ∈ Var , a set of process variables; a ∈ Act , an action group; wi ∈ W ,
a set of weights; S is a set of renaming functions, S : Act → Act such that
S(
√

) =
√

and S(a) = S(a); action subsets L ⊆ Act with
√
∈ L; and arbitrary

indexing sets I . The informal interpretation of the operators is as follows:

• 0 is defined as Σ{wi.Ai | i ∈ ∅} and is a process which cannot proceed,
representing deadlock ;

• X the process bound to the variable X ;

• a :A a process which can perform the action a becoming the process A ;

• Σ{wi.Ai | i ∈ I} the weighted choice between processes Ai , the weight of
Ai being wi . Considering a large number of repeated experiments of this
process, we expect to see Ai chosen with relative frequency wi/Σi∈Iwi .
The binary plus operator can be used in place of the indexed sum i.e.
writing Σ{11.a :0, 22.b :0} as 1.a :0 + 2.b :0 ;

• A × B the synchronous parallel composition of A and B . At each stage
each process must perform an action with the composed process perform-
ing the composition (denoted #) of the individual actions, e.g. a :A× b :B
yields a#b : (A×B). This is a powerful operator: models are constructed
by describing simple individuals and composing a number of those in paral-
lel. McCaig [19] introduces an extended notation A{n} which is syntactic
sugar for n instances of process A in parallel, where n ∈ N ;

34

• AdL a process which can only perform actions in the group L . These are
referred to as the free actions. This operator is used to enforce communi-
cation on actions b /∈ L. Two processes in parallel may communicate when
one carries out an action and the other carries out the matching co-action,
e.g. infect and infect . Communication can be used to model passing of
information from one process to another, or to coordinate activity. Such
communication is strictly two-way ;

• Θ(A) represents taking the prioritised parts of the process A only. A
WSCCS model is not considered well-formed if ω weights appear and the
Θ(A) operator is not used. The Θ(A) operator must be applied every time
ω weights appear in the model, since its use makes clear that prioritised
actions are executed in preference to other actions ;

• A[S] represents A relabelled by the function S ;

• X
def= A represents binding the process variable X to the expression A .

Appendix A.2. Semantics
The semantics of WSCCS is transition based, defining the actions that a

process can perform and the weight with which a state can be reached. The
operational rules of WSCCS, presented in Table A.7, follow the informal descrip-
tion of the operators given above. In particular note the two different arrows
that feature in the table: a→ represents a transition, associated with the action
a ; and w7−→ represents a transition associated with a weight w . The auxiliary
predicate doesA(E) , which denotes the ability of E to perform A after zero or
more probabilistic actions, is well defined since only finitely branching choice
expressions are allowed.

Appendix A.2.1. Abstract Bisimulation
Let Pr denote the set of closed expressions of WSCCS, according to the

grammar of Appendix A.1.4.

Definition 2. We define the probability of a transition: P
p7−→ P ′ if P

w7−→ P ′

and the total weight of transitions from P is w′, with p = w/w′.

Definition 3. We define an abstract notion of evolution as follows:

P
a[p]−→ P ′ iff P

p17−→ . . .
pn7−→ a−→ P ′ with p =

∏
pi .

Definition 4. Let S be a set of processes, then

P
a[p]−→ S iff p =

∑
{pi | P

a[pi]−→ Q for some Q ∈ S} .

Definition 5. We say an equivalence relation R ⊆ A×A is an abstract bisim-
ulation if (P,Q) ∈ R implies that

for all S ∈ Pr/R and for all p ∈ [0, 1], P
a[p]−→ S iff Q

a[p]−→ S .

As Tofts [30] remarks, this relation is not a congruence, but is a useful notion
of equivalence.

35

a:A
a−→A

P
{wi.Ai|i∈I}

wi7−→Ai

A
a−→A′ B

b−→B′

A×B
a#b−→A′×B′

A
w7−→A′ B

v7−→B′

A×B
wv7−→A′×B′

A
a−→A′ B

w7−→B′

A×B
w7−→A×B′

A
w7−→A′ B

a−→B′

A×B
w7−→A′×B

A
a−→A′ a∈L
doesL(A)

A
w7−→A′ doesL(A′)

doesL(A)

A
a−→A′ a∈L

AdL a−→A′dL
A

w7−→A′ doesL(A′)

AdL w7−→A′dL

A
a−→A′

A[S]
S(a)−→A′[S]

A
w7−→A′

A[S]
w7−→A′[S]

A
a−→A′ X

def
= A

X
a−→A′

A
w7−→A′ X

def
= A

X
w7−→A′

A
a−→A′

Θ(A)
a−→Θ(A′)

A
nωi
7−→A′@(j>i).A

mωj
7−→A′′

Θ(A)
n7−→Θ(A′)

Table A.7: Operational rules for WSCCS

Appendix B. Auxiliary Definitions

Here we present definitions for the auxiliary functions used in the pseudocode
of Figs. 4 and 5. Firstly, define the general form of a model M as

M = Θ((A1 × . . .×An)d{L}) .

Given a serial process A = w1.a1 :A1 + w2.a2 :A2 + ... + wm.am :Am define
transitions(A) = {w1.a1:A1, w2.a2:A2, ..., wm.am:Am}. Given a parallel process
A = A1×A2× ...×Am define components(A) = {A1, A2, ...Am}.

For any model M , define the set of communicating actions inductively over
the grammar of M as

comm acts(a : A) = {a}
comm acts(Σ{wi.Ai | i ∈ I}) =

⋃
i∈I

comm acts(Ai)

comm acts(A×B) = comm acts(A) ∪ comm acts(B)
comm acts(AdL) = comm acts(A) \ L

comm acts(Θ(A)) = comm acts(A)
comm acts(A[S]) = comm acts(A)[S]

where S is a renaming function as above

comm acts(X) = comm acts(A) where X
def= A

36

The function get comm trans(A,M) is defined in terms of the global set of com-
municating actions and the function transitions:

get comm trans(A,M) = {(wi, ai, Ai) ∈ transitions(A) | ai ∈ comm acts(M)}
get non comm trans(A,M) = {(wi, ai, Ai) ∈ transitions(A) | ai 6∈ comm acts(M)}

For convenience, we drop the context M from the use of these functions since
it is always for the whole model. Processes can then be classified as

communicating(A) = (get comm trans(A) 6= ∅)
probabilistic(A) = (get comm trans(A) = ∅)

priority(A) = (∃w = kω | k > 0 and (w, a,A′) ∈ transitions(A)) .

Three predicates over agents were used in the pseudocode of Fig. 5. The
first two are are only called with the argument collaborators(A,a) and the third
is called with the agent A itself. All are defined using the syntax of agents.

single act(collaborators(A, a)) = ∀Bi ∈ collaborators(A, a),
Bi has the form a : C + D where
D does not include a.

parallel act(collaborators(A, a)) = ∀Bi ∈ collaborators(A, a),
Bi has the form an : C + D where
n > 1 and D may include a.

multiple act(A) = A has the form a1 : A1 + a2 : A2 + A3 where
A3 does not include a1 or a2, and
a1, a2 ∈ comm acts(M).

Finally, two functions were used to provide summation

sum weights(A) = Σ{w | (w, a,A) ∈ transitions(A)}
sum all acts(collaborators(A, a)) = Σireplications(ci) ∗ Ci

where (wi, ci, Ci) ∈ transitions(C) for
C ∈ collaborators(A, a) and ci = an where
n > 1 and replications(a) = 1,

replications(a#more) = 1 + replications(more)

Appendix C. Multiple parallel communicating actions, Not priori-
tised

Here we present the full general term for the Multiple non-prioritised con-
tacts case discussed in Section 3.5.5.

37

The agent in the source state takes the form

A = 1.a : A1 + 1.b : A2 ,

as in the Single, Non-prioritised case. The Ci can perform multiple actions,
as in the Multiple Communicating Actions, Prioritised case, but replacing all
weights by 1

Ci = 1ci .aci : Ci′ + 1ci−1.aci−1 : Ci′ + ... + 1.a : Ci′ + 1.b : Ci′ .

We make use of the Multinomial coefficient

Cit!
(
∏ci

j=1 ni,j !)(Cit −
∑ci

k=1 ni,k)!
,

for each of the Ci agents that perform the inverse action, where ni,k is the
number of Ci agents performing k instances of a at a particular time. The
binomial coefficients in (C.1) below(

At + (
∑mx

p=1 Xpt)− 1

(
∑mc

q=1

∑cq

r=1 r ∗ nq,r)− 1

)
and

(
At + (

∑mx

p=1 Xpt)∑mc

q=1

∑cq

r=1 r ∗ nq,r

)
come from the simplification of the product of the individual binomial coeffi-
cients for the numbers of A and Xj that communicate with a Ci. The overall
general term for this case is

construct(A,w, a) = At

f
((∏mc

i=1
Cit!

(
Qci

j=1 ni,j !)(Cit−
Pci

k=1 ni,k)!

)(At+(
Pmx

p=1 Xpt)−1

(
Pmc

q=1
Pcq

r=1 r∗nq,r)−1

))
f
((∏mc

i=1
Cit!

(
Qci

j=1 ni,j !)(Cit−
Pci

k=1 ni,k)!

)(At+
Pmx

p=1 XptPmc
q=1

Pcq
r=1 r∗nq,r

)) ,(C.1)

where

f(x) =
Cmc∑

nmc,cmc
=0

Cmc−nmc,cmc∑
nmc,cmc−1=0

. . .

Cmc−
Pcmc

s=1 nmc,s∑
nmc,1=0

C(mc−1)∑
nmc−1,cmc−1=0

. . .

C1−
Pc1

u=1 n1,u∑
n1,1=0

x ,

omitting the time subscript t to avoid confusion. mc and mx are as defined
previously and ci is the maximum number of instances of a that Ci can perform.
Since the agents performing the action are able to make more than two choices
multinomial coefficients rather than binomial coefficients are used. These cannot
be simplified in the same way as previously, leaving (C.1) as the general term
for this form of communication. This is intractable in the MFE, therefore such
communication is generally omitted from our models.

38

