18 research outputs found

    Evolving Ensemble Models for Image Segmentation Using Enhanced Particle Swarm Optimization

    Get PDF
    In this paper, we propose particle swarm optimization (PSO)-enhanced ensemble deep neural networks and hybrid clustering models for skin lesion segmentation. A PSO variant is proposed, which embeds diverse search actions including simulated annealing, levy flight, helix behavior, modified PSO, and differential evolution operations with spiral search coefficients. These search actions work in a cascade manner to not only equip each individual with different search operations throughout the search process but also assign distinctive search actions to different particles simultaneously in every single iteration. The proposed PSO variant is used to optimize the learning hyper-parameters of convolutional neural networks (CNNs) and the cluster centroids of classical Fuzzy C-Means clustering respectively to overcome performance barriers. Ensemble deep networks and hybrid clustering models are subsequently constructed based on the optimized CNN and hybrid clustering segmenters for lesion segmentation. We evaluate the proposed ensemble models using three skin lesion databases, i.e., PH2, ISIC 2017, and Dermofit Image Library, and a blood cancer data set, i.e., ALL-IDB2. The empirical results indicate that our models outperform other hybrid ensemble clustering models combined with advanced PSO variants, as well as state-of-the-art deep networks in the literature for diverse challenging image segmentation tasks

    A Novel Sep-Unet Architecture of Convolutional Neural Networks to Improve Dermoscopic Image Segmentation by Training Parameters Reduction

    Get PDF
    Nowadays, we use dermoscopic images as one of the imaging methods in diagnosis of skin lesions such as skin cancer. But due to the noise and other problems, including hair artifacts around the lesion, this issue requires automatic and reliable segmentation methods. The diversity in the color and structure of the skin lesions is a challenging reason for automatic skin lesion segmentation. In this study, we used convolutional neural networks (CNN) as an efficient method for dermoscopic image segmentation. The main goal of this research is to recommend a novel architecture of deep neural networks for the injured lesion in dermoscopic images which has been improved by the convolutional layers based on the separable layers. By convolutional layers and the specific operations on the kernel of them, the velocity of the algorithm increases and the training parameters decrease. Additionally, we used a suitable preprocessing method to enter the images into the neural network. Suitable structure of the convolutional layers, separable convolutional layers and transposed convolution in the down sampling and up sampling parts, have made the structure of the mentioned neural network. This algorithm is named Sep-unet and could segment the images with 98% dice coefficient

    An interactive evolution strategy based deep convolutional generative adversarial network for 2D video game level procedural content generation.

    Get PDF
    The generation of desirable video game contents has been a challenge of games level design and production. In this research, we propose a game player flow experience driven interactive latent variable evolution strategy incorporated with a Deep Convolutional Generative Adversarial Network (DCGAN) for undertaking game content generation with respect to a 2D Super Mario video game. Since the Generative Adversarial Network (GAN) models tend to capture the high-level style of the input images by learning the latent vectors, they are used to generate game scenarios and context images in this research. However, as GANs employ arbitrary inputs for game image generation without taking specific features into account, they generate game level images in an incoherent manner without the specific playable game level properties, such as a broken pipe in the Mario game level image. In order to overcome such drawbacks, we propose a game player flow experience driven optimised mechanism with human intervention, to guide the game level content generation process so that only plausible and even enjoyable images will be generated as the candidates for the final game design and production

    List of 121 papers citing one or more skin lesion image datasets

    Get PDF

    Deep learning based melanoma diagnosis using dermoscopic images

    Get PDF
    The most common malignancies in the world are skin cancers, with melanomas being the most lethal. The emergence of Convolutional Neural Networks (CNNs) has provided a highly compelling method for medical diagnosis. This research therefore conducts transfer learning with grid search based hyper-parameter fine-tuning using six state-of-the-art CNN models for the classification of benign nevus and malignant melanomas, with the models then being exported, implemented, and tested on a proof-of-concept Android application. Evaluated using Dermofit Image Library and PH2 skin lesion data sets, the empirical results indicate that the ResNeXt50 model achieves the highest accuracy rate with fast execution time, and a relatively small model size. It compares favourably with other related methods for melanoma diagnosis reported in the literature

    Prediction Using LSTM Networks

    Get PDF
    Photovoltaic (PV) systems use the sunlight and convert it to electrical power. It is predicted that by 2023, 371,000 PV installations will be embedded in power networks in the UK. This may increase the risk of voltage rise which has adverse impacts on the power network. The balance maintenance is important for high security of the physical electrical systems and the operation economy. Therefore, the prediction of the output of PV systems is of great importance. The output of a PV system highly depends on local environmental conditions. These include sun radiation, temperature, and humidity. In this research, the importance of various weather factors are studied. The weather attributes are subsequently employed for the prediction of the solar panel power generation from a time-series database. LongShort Term Memory networks are employed for obtaining the dependencies between various elements of the weather conditions and the PV energy metrics. Evaluation results indicate the efficiency of the deep networks for energy generation prediction

    Weather Based Photovoltaic Energy Generation Prediction Using LSTM Networks

    Get PDF
    Photovoltaic (PV) systems use the sunlight and convert it to electrical power. It is predicted that by 2023, 371,000 PV installations will be embedded in power networks in the UK. This may increase the risk of voltage rise which has adverse impacts on the power network. The balance maintenance is important for high security of the physical electrical systems and the operation economy. Therefore, the prediction of the output of PV systems is of great importance. The output of a PV system highly depends on local environmental conditions. These include sun radiation, temperature, and humidity. In this research, the importance of various weather factors are studied. The weather attributes are subsequently employed for the prediction of the solar panel power generation from a time-series database. Long-Short Term Memory networks are employed for obtaining the dependencies between various elements of the weather conditions and the PV energy metrics. Evaluation results indicate the efficiency of the deep networks for energy generation prediction

    Deep recurrent neural networks with attention mechanisms for respiratory anomaly classification.

    Get PDF
    In recent years, a variety of deep learning techniques and methods have been adopted to provide AI solutions to issues within the medical field, with one specific area being audio-based classification of medical datasets. This research aims to create a novel deep learning architecture for this purpose, with a variety of different layer structures implemented for undertaking audio classification. Specifically, bidirectional Long Short-Term Memory (BiLSTM) and Gated Recurrent Units (GRU) networks in conjunction with an attention mechanism, are implemented in this research for chronic and non-chronic lung disease and COVID-19 diagnosis. We employ two audio datasets, i.e. the Respiratory Sound and the Coswara datasets, to evaluate the proposed model architectures pertaining to lung disease classification. The Respiratory Sound Database contains audio data with respect to lung conditions such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, while the Coswara dataset contains coughing audio samples associated with COVID-19. After a comprehensive evaluation and experimentation process, as the most performant architecture, the proposed attention BiLSTM network (A-BiLSTM) achieves accuracy rates of 96.2% and 96.8% for the Respiratory Sound and the Coswara datasets, respectively. Our research indicates that the implementation of the BiLSTM and attention mechanism was effective in improving performance for undertaking audio classification with respect to various lung condition diagnoses

    Failure Mode Identification of Elastomer for Well Completion Systems using Mask R-CNN

    Get PDF
    corecore