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Abstract—The generation of desirable video game contents 

has been a challenge of games level design and production. In this 

research, we propose a game player flow experience driven 

interactive latent variable evolution strategy incorporated with a 

Deep Convolutional Generative Adversarial Network (DCGAN) 

for undertaking game content generation with respect to a 2D 

Super Mario video game. Since the Generative Adversarial 

Network (GAN) models tend to capture the high-level style of the 

input images by learning the latent vectors, they are used to 

generate game scenarios and context images in this research. 

However, as GANs employ arbitrary inputs for game image 

generation without taking specific features into account, they 

generate game level images in an incoherent manner without the 

specific playable game level properties, such as a broken pipe in 

the Mario game level image. In order to overcome such 

drawbacks, we propose a game player flow experience driven 

optimised mechanism with human intervention, to guide the 

game level content generation process so that only plausible and 

even enjoyable images will be generated as the candidates for the 

final game design and production. 
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I. INTRODUCTION

A. Procedural Content Generation (PCG)

Procedural Content Generation (PCG) is algorithmic design
and creation of game contents, such as game levels, weapons, 
obstacles, and characters. It is conducted by an automatic 
programme during the game design process, with limited or 
indirect input from game designers [1]. On one hand, PCG can 
help free up game designers from tedious manual creation of 
games contents; on the other hand, this algorithmic approach is 
able to facilitate a so-called mixed-initiative design paradigm 
of a human designer or player cooperating with the generative 
algorithm to generate the desired game contents, which can be 
both more computationally creative and better tailored for the 
game players. A PCG system refers to a process that 
incorporates a PCG method as one of its components [2]. As an 
example, through measuring and using Neural Networks of an 
AI-assisted game design tool to model the response of players 

in a novel game level generation scenario, the PCG system can 
create player-adaptive games in a generate-and-test loop until a 
satisfactory solution is obtained, so that it maximises the 
enjoyment and playable factors of the game. As suggested in 
[2], common desirable properties of a PCG solution are its 
Speed, Reliability, Controllability, Expressivity, Diversity, 
Creativity and Believability. In this research, we are more 
focused on fulfilling the Expressivity, Diversity, Creativity and 
Believability prosperities, which are more related to the 
Computational Creativity aspects of the proposed deep learning 
and interactive evolutionary computation based PCG system. 

In recent years, Convolutional Neural Network (CNN), 
Generative Adversarial Network (GAN), and Autoencoders are 
the popular Deep Neural Networks that have been used as part 
of a PCG system to generate games level images. A CNN 
model can be trained to extract the latent features from the 
training datasets, for example, from a set of 2D game level 
images. Then a GAN model is trained to generate creative new 
game levels from these latent features by interpolations or 
extrapolations in the latent dimensions. An Autoencoder can be 
trained to encode the original high dimensional training games 
level images into low dimensional latent features first and then 
reconstruct a new high dimensional image from the latent 
features [3] [4][5]. 

B. Deep Convolutional Generative Adversarial Network

(DCGAN)

The GAN model [6] includes two competitive components:
the generative neural network mapping sampled latent 
variables to data space and the discriminator neural network 
assigning a detection probability of a real training sample or a 
generated fake instance by the generative network. The 
objective of the GAN model is to train the generator to 
generate perfect fake instances to fool the discriminator and 
simultaneously to train the discriminator to detect these fake 
instances from the actual data as accurately as possible. The 
sampled latent variables for fake instances generation are 
normally chosen independently by the generator from a 
random distribution, such as Gaussian noise vectors. Since the 
discriminator is trained in a manner of supervised learning with 
actual data that bear the ground truth, the criticism by the 



discriminator can force the generator to generate higher quality 
instances. With respect to the training of the discriminator in 
the GAN model, a series of CNNs but without pooling layers 
can be employed to automate the challenging feature extraction 
process. Once the GAN model is trained, the discriminator will 
be discarded and only the generator will be kept to generate 
new data instances that reflect the essential characterises of the 
training examples. The inputs to the trained generator are 
normally fixed size latent variables that are randomly sampled 
from a space of Gaussian noise vectors. Besides the standard 
GAN model, [7] proposes a Deep Convolutional Generative 
Adversarial Network (DCGAN) architecture, which extracts 
the features of image representations with strided convolution 
rather than the conventional dense network used in the original 
GAN model. 

C. Interactive Latent Variable Evolution (LVE) Strategy

Whilst those randomly and independently chosen samples
of latent variables would be used to generate new data 
instances, a well devised search strategy of sampled latent 
variables could be used to generate instances with certain 
desirable features. For selecting salient input latent variables 
for the generator, Latent Variable Evolution (LVE) approaches 
[8][9] have been proposed for searching the most suitable 
latent variable for the GAN model to generate an image that is 
closely matched to the targeted/trained images.  

Covariance Matrix Adaptation Evolutionary Strategy 
(CMA-ES)[10] is a well-known search strategy for evolving 
vectors of real numbers and is efficient for optimizing non-
linear non-convex problems in the continuous domain without 
a-priori domain knowledge. The optimization process of CMA-
ES does not rely on the assumption of a smooth fitness
landscape. CMS-ES has been applied into the evolution of the
latent vectors for Mario game level image generation [3]. The
effectiveness of the evolution strategy can be improved with an
interactive user guide and directed with the evaluation
feedback from the image user during the evolution. A user’s
evaluation feedback can be incorporated into the fitness
function for guiding the evolution of the latent variables. For
example, the best generated images are selected by the user.
Then the latent variables that produced these images are
evolved to create a set of new much desirable variables by
using a crossover operation [9].

II. THE PROPOSED PCG METHOD

A. A Flow Experience Driven Interactive LVE Strategy

In this research, we propose a flow experience driven
interactive evolutionary strategy to extend the CMA-ES based 
DCGAN for Mario game level generation [3]. In particular, we 
take a game player’s self-reported flow experience [11] as the 
game level playability evaluation feedback and incorporate it 
interactively and periodically into the latent variable fitness 
function for the LVE strategy. The feedback signal is used as 
an additional critic term to the fitness evaluation function on 
the game level validated by the play through of the game 
simulation agent.     

In the most general sense, flow is an optimal experience 
state in which people report feelings of concentration, deep 
enjoyment and complete absorption in an activity. The game 

contents that are generated and presented to the game players 
affect the perceived flow/optimal experience while playing the 
game. From the perspective of game player’s experience, the 
Flow Channel Theory [12] is arguably the most important 
concept for game design. A Flow Channel is where the player’s 
skills and game’s challenges are balanced effectively, and the 
player is neither anxious nor bored. Outside the channel, the 
player is too anxious, or too bored, it will drive them to 
frustration. Frustrated players are very likely not to continue 
playing the game. 

We extend the conventional game playthrough statistics 
data-based fitness evaluation at a game level to incorporate a 
player’s self-reported flow experience information. In other 
words, we evaluate the overall fitness of a game level with a 
new objective function as follows. 

O=P+J+FS  (1) 

where, P denotes the fraction of the level that is completed 
by the game simulator agent in terms of progress on the x-axis, 
with a value range of 0-1, 

J represents the number of jump actions performed by the 
game simulator agent, which is a non-deterministic value, 

FS indicates the player’s self-reported flow experience, 
with a value range of 0%-100%, on a particular periodical level 
generation. 

The proposed LVE strategy aims to maximise the objective 
score function O of latent vectors during the evolution process, 
in which an optimised vector sample is deliberately selected to 
be mapped onto games level image space. The role of the FS 
factor is to induce a more stable and much faster convergence 
of the objective function by adding into human player’s 
interactive critic (e.g. positive reinforcement). The degree of 
convergence acceleration will be influenced by the value of FS.  

It is worth noting that the value of P, J, and FS can be all 
generated by a game player for each game level under 
evaluation. However, under such contexts, the whole 
evaluation process will be conducted by a human game player 
rather than mainly by the game simulator agent, which can be 
quite a tedious task. Therefore, in this research, we alleviate 
such problems by combining evaluation with human and game 
simulator agent together to balancing the human intervention 
and agent-based automation using GANs. 

B. 2D Super Mario Game Level Image Generation Procedure

The generated game level images/contents will be played in
the game by the player to guide the further evaluation of the 
latent vector space in return. The CMA-ES method is extended 
with the proposed fitness function to realise the player directed 
LVE strategy, which follows 7 steps: 

1. Set up Wasserstein GAN (WGAN) process to train the
generator and discriminator.

2. The trained generator produces a set of games level
contents from input latent vectors .

3. Set up the Mario game engine to stage the generated game
level.



4. Player interactively assigns a satisfaction score for a latent
vector based on his/her self-reported flow experience in
playing the corresponding game level with the Mario
game engine.

5. The Mario game engine calculates the fitness score for the
latent vector with parameters, including the satisfaction
score, defined in the objective function.

6. CMA-ES evaluates the fitness score of latent vectors to
direct the further evolution of latent vectors.

7. The Mario game engine stages an improved game level
from an improved latent vector produced by the previous
iteration of the evolving process.

III. THE PROPOSED PCG SYSTEM

The proposed PCG system shown in Figure 1 consists of a 
DCGAN, a CMA-ES based game level evaluator, and a Mario 
game AI simulator. Since the game level evaluation strategy is 
human in the loop based, a game level designer needs to play 
the Mario game simulator to provide the part of the subjective 
evaluation feedback to the CMA-ES based game level 
evaluator during the PCG procedure. The Mario game level 
representation is encoded as tiles according to the Video Game 
Level Corpus (VGLC) [5]. 

Fig. 1. The architecture & sataflow of the PCG system 

A. Mario Game Level Representation

The Mario game level is built with a set of basic tiles (e.g.,
solid/ground, enemy and pipes) whose properties are 
represented by the particular character symbols of the Video 
Game Level Corpus (VGLC) [5]. Each VGLC character 
symbol is mapped into a distinct integer, which is converted to 
a one-hot encoded vector as input into the discriminator of 
MarioGAN. The generator model of MarioGAN also 
represents its outputs in a one-hot encoded format, which are 

converted back to a collection of integer values. These integer 
values are sent to the Mario AI simulation agent for rendering 
and playing through. The detailed mapping from VGLC tile 
types and symbols, to MarioGAN training number codes, and 
finally to Mario AI simulation agent for tile visualizations are 
illustrated in [3]. 

B. MarioGAN

MarioGAN 1  is a Pytorch implementation of the GAN
model that interprets the structure of Super Mario Bros games 
levels. MarioGAN is based on a DCGAN model that adapts 
from the model in [3] and trained with the WGAN [13] 2

algorithm. The MarioGAN network uses strided convolutions 
in the discriminator and fractional-strided convolutions in the 
generator. Batchnorm processing is applied in the generator 
and discriminator after each layer. The generative model of 
MarioGAN is trained on actual Mario levels from the Video 
Game Level Corpus for generating new level segments from 
latent vectors, and these segments can be stitched together to 
make complete levels.  As demonstrated in [3], the MarioGAN 
model with a promising LVE strategy is able to generate 
playable game levels. The strategy can be either purely based 
on the static properties of the generated level (e.g., certain tile 
distributions) or on the results of simulations of playing the 
level by an artificial agent. The trained generative model 
evolves game levels with a Java version of CMA-ES and by 
playing levels with Robin Baumgarten’s A* Agent.  

In our work, we extend the ‘Simulations of Game 
Evaluation’ function in [3] to incorporate a human game 
player’s interactive evaluation with the simulation agent’s 
evaluation in parallel. With the extension, the trained generator 
is effectively to generate game levels under an ensembled 
evaluation of the game simulation agent playing through the 
level and the human game player’s subjective flow score for 
the corresponding game level. 

C. CMA-ES Evaluator

The CMA-ES method [10] is widely used for optimizing
non-linear non-convex problems in the continuous domain 
without a-priori domain knowledge. It does not rely on the 
assumption of a smooth fitness landscape. MarioGAN uses a 
Java based CMA-ES 3  to evolve the latent vector of real 
numbers and apply a fitness function of calculating simulation 
agent’s level playing through performance. Under the guidance 
of a particular fitness function, CMA-ES searches through the 
space of latent vectors to produce levels that pass the 
evaluation of the games simulation agent as well as the 
satisfaction of the flow experience of human player. 

D. Mario Game AI Simulation Agent

The A* agent by Robin Baumgarten4 performs at a super-
human level to determine the playability of a given level. 
Given jumping is the main mechanic in Mario and is required 
to overcome obstacles such as holes and enemies, the 
correlation between the number of jumps and difficulty is a 

1 https://github.com/TheHedgeify/DagstuhlGAN

2 https://github.com/martinarjovsky/WassersteinGAN

3 http://cma.gforge.inria.fr/

4 https://www.youtube.com/watch?v=DlkMs4ZHHr8



reasonable assumption for playing the Mario game [3]. The 
number of jump actions performed by the agent can 
realistically approximate the experienced difficulty of playing 
through the game level as if being played by a human player.  

E. Human Player’s Interactive Evaluation

The human player interactive evaluation employs a human
in the loop to perceive flow experience-based extension in the 
evaluation strategy for CMA-ES to accelerate the search of 
optimised latent vectors. Owing to the incorporation of human 
evaluation intervention, the revised fitness function is more 
capable of producing specific and plausible game levels 
effectively in comparison with those generated using the 
original fitness function. We introduce the evaluation details 
below. 

IV. EXPERIMENTS AND DISCUSSION

A. Experiment Configuration

We adopt experiment configuration settings in [3] for our
experiments. 

1) Level for Training MarioGAN

The MarioGAN method is trained with a level file from the
VGLC encoded original Nintendo game Super Mario Bros [3]. 
Each input training image was generated by sliding a 28 (wide) 
x 14 (high) window over the raw level from left to right, one 
tile at a time. The width of 28 tiles is equivalent to the width of 
the screen in Mario. 173 training images are cropped from the 
level file in total. The size of the latent vector input to the 
MarioGAN generator is 32. In total 10 types of tiles with each 
integer tile are expanded to a one-hot vector. The training 
inputs for the discriminator are 10 channels. i.e. one-hot across 
10 possible tile types.  

2) Parameters of CMA-ES Evaluator

The CMA-ES process runs 20 iterations to generate 2240
levels in total. During each iteration, 112 latent vectors are 
generated to identify the best candidate from the evolution 
population. The maximum number of searching samples for 
finding one best candidate is 100.   

3) Parameters of Human Player’s Interactive

Evaluation

The human player’s interactive evaluation is scheduled at
the end of each iteration, i.e. for every 112 generated levels, a 
game player perceived flow experience score is added into the 
latent vector/level fitness value, which is calculated by the 
objective function introduced in Section II.A with the 
simulation agent’s performance of playing through the level. 

B. Experimental Results

The purpose of the experiments is to demonstrate the 
pattern of how the human player’s interactive evaluation would 
help stabilise and accelerate convergence of the objective 
function with the simulation agent together. 

Figure 2 illustrates the bumping convergence of the mean 
fitness values of the generated game level over 20 iterations. 

Figure 3 shows a convergence acceleration of the average 
fitness values with human player’s interactive evaluation with 
a flow score included at the end of each iteration over the 20 
iterations. At the iteration 9, the first convergence emerges 
from iteration 9 to 12. Figure 4 demonstrates the human 
player’s perceived flow score for each iteration. There is a 
positive correlation between the human player’s interactive 
evaluation and the generation of game level with better fitness. 
Figure 5-7 are the similar correlation patterns around iterations 
6 and 36 of another 50-iteration evaluations. Figure 8 shows 
the evolution of generated game levels over a 20-iteration 
evaluation. These game levels are gradually fit into the 
expectation of a human player. 

Fig. 2. Convergence of the mean fitness values of generated game levels 
during 20 Iterations (Lower values are better in CMA-ES.) 

Fig. 3.  Convergence acceleration of the flow score included mean fitness 
values of during 20 iterations (Lower values are better in CMA-ES.) 

Fig. 4. Human player’s perceived flow score at the end of eachiteration during 

20 Iterations (The higher values are better.) 



Fig. 5. Convergence of of the mean fitness values of generated game levels 
during 50 iterations (Lower values are better in CMA-ES.) 

Fig. 6. Convergence acceleration of the flow score included mean fitness 

values of during 50 iterations (Lower values are better in CMA-ES.) 

Fig. 7. Human player’s perceived flow score at the end of each iteration 
during 50 iterations (The higher values are better.) 

C. Discussion

The experimental results demonstrate the stabilisation and 
acceleration of the convergence of the latent vector’s optimised 
objective score are correlated with positive enforcement of a 
player’s flow score. While this is an effective pattern from the 
evolution perspective, there is also subjective nature of human 
interventions from the game level design perspective. The good 
balance between effective level generation and objective 

human intervention shall be a critical consideration as part of 
the whole strategy of game level design and production, for 
example, to assign different weights/frequency to human 
interventions and agent-based evaluations. 



Fig. 8. Generated level at the end of each iteration from 1 to 20 

V. CONCLUSION

This research presents a human player’s flow experience 
driven interactive latent variable evolution strategy for guiding 
a DCGAN model to algorithmically generate desirable 2D 
Super Mario video game level contents. The evolution strategy 
is incorporated into and evaluated with game simulation 
agent’s performance-based evolution strategy as a positive 
reinforcement to stabilise and accelerate the convergence of the 
mean fitness scores of generated game levels. In the future, the 
effectiveness of the interactive strategy will be further 
investigated with the trade-off between intervention frequency 
and fitness improvements of the generated game levels. It is 
also interesting to train the simulation agent directly with 

reinforcement learning or imitation learning mechanisms with 
hyperparameter fine-tuning by swarm intelligence algorithms 
[14][15][16][17][18] to learn the implied human flow 
experience in advance, so that it is possible to minimise the 
frequency of human intervention further during the level 
design generation process. 
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